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ABSTRACT

While invariance of causal mechanisms has inspired recent work
in both robust machine learning and causal inference, causal mech-
anisms often vary over domains due to, for example, population-
specific differences, the context of data collection, or intervention.
To discover invariant and changing mechanisms from data, we pro-
pose extending the algorithmic model for causation to mechanism
changes and instantiating it via Minimum Description Length. In
essence, for a continuous variable 𝑌 in multiple contexts C, we
identify variables 𝑋 as causal if the regression functions 𝑔 : 𝑋 → 𝑌

have succinct descriptions in all contexts. In empirical evaluations
we show that our method, Vario, reveals mechanism changes, dis-
covers causal variables by invariance, and finds causal networks,
such as on real-world data that gives insight into the signaling
pathways in human immune cells.
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1 INTRODUCTION

We consider the task of finding structural causal mechanisms 𝑓 for
a variable 𝑌 when data comes from heterogeneous sources – such
as different hospitals, experimental conditions, or moments in time.
The distribution of covariates 𝑋 changes in these environments,
violating the commonly taken i.i.d. assumption. As an added dif-
ficulty, the variable 𝑌 may itself be subject to changes – whether
due to confounding factors, sampling bias, or external intervention.
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Here, we propose a causal model that permits each context 𝑐
a separate structural mechanism 𝑓 𝑐 . That is, in contrast to the
literature [23, 28], we do not assume there exists a single invariant
mechanism 𝑓 which causes 𝑌 in the same way in all contexts but
acknowledge that external factors unknown to us may influence
its distribution in practice. For example, in medical treatments,
we may see local variations and group-specific trends; in fMRI
measurements, data collection conditions affect the causal strengths;
and lastly, experts often study biological systems under different
conditions, manipulating parts of the system through controlled
interventions [15, 35, 40].

We illustrate this situation in Fig. 1 for three contexts and vari-
ables under distribution shift (lightning bolts). The same graphical
causal model (DAG) applies in each condition. As the structural
causal model (SCM) shows, however, the generating process 𝑓 of 𝑌
is different in the third context. We are interested in discovering
the partitioning Π of contexts into those groups that share an in-
variant mechanism for 𝑌 . By discovering Π, we find out whether
there is a single or whether there are multiple mechanisms at play,
what these are, how they differ, and where they apply. Aside from
informing us in which contexts the generating process is the same
and hence what datasets one can safely pool for learning, we show
that we can use the discovered partitions to establish causality.

To achieve this, we build upon the algorithmic model of causa-
tion [18] and extend it to multiple contexts andmechanisms. That is,
we adopt an information-theoretic perspective and identify the true
causal mechanisms as those that allow the simplest, as measured by
Kolmogorov complexity, description of the conditional distribution
of 𝑌 given 𝑋 across all contexts.

We show that we can achieve a computable score via the Mini-
mumDescription Length (MDL) principle [6]. As a proof of concept,
we instantiate our framework for linear functional models. We in-
troduce the Vario algorithm, which divides contexts into groups
by invariance and, if possible, uses these invariances to tell apart
causal and non-causal variables.

We give an overview of our approach in Fig. 1 (dashed parts).
Our algorithmic causal model (ACM, top) represents each cause-
effect relationship by a set of mechanisms. Our approach (bottom) is
two-pronged. Using linear models 𝑔 to approximate the generating
process 𝑓 , we partition the contexts by the similarity of the models.
Based on the partitions found for different variable sets and their
scores, we discover the causal variables, here 𝑋1.

On synthetic and real-world data, we confirm that our method
finds stable mechanisms, intervention targets, and causal variables
even in the presence of nonlinearities. On the protein interaction
dataset by Sachs et al. [35], Vario outperforms existing approaches
for causal discovery from multiple environments.
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Figure 1: Causal Model (top): We consider multiple contexts that share the causal graph, but which may be observed under

distribution shift or intervention (lightning bolts). For a target variable 𝑌 we are interested in discovering the invariant causal

mechanisms (𝑓1) as well as where the generating process changes (𝑓2). Approach (bottom): From data, Vario partitions contexts

into groups (Π) based on function similarity, and discovers causal variables (𝑋1) based on invariance in groups.

We organize the remainder of this paper as follows. Next, we
cover related work in Section 2. We introduce notation and pre-
liminaries in Section 3. In Section 4, we develop the theory of our
approach by defining our causal model, Π-invariance, and a practi-
cal score, and we discuss how to use those for causal discovery. In
Section 5 we present the Vario algorithm for discovering partitions
and Π-invariant sets of covariates. We empirically evaluate Vario
and its competitors on synthetic and real-world data in Section 6,
and wrap up with a discussion and conclusions in Section 7.

2 RELATEDWORK

Causal discovery from observational data is an actively studied
problem, and almost all approaches to it are either constraint-based,
such as the FCI [39] and PC algorithms [38], or score-based, such as
GES [3]. Traditional methods consider identically distributed data.
There is growing literature on causal inference in the non-i.i.d. case.
This includes nonstationary [14] as well as heterogenous data as we
assume it, collected from different contexts or environments. We
assume that the assignment of observations to contexts is known,
and further that we observe an identical set of variables; see Huang
et al. [13, 15] and Hu et al. [12] for relaxations of this.

Approaches for causal inference from multiple contexts gen-
erally fall into one of two categories: combining locally learned
models or learning a model jointly from all data. The former include
graph merging approachs [9, 44], model averaging [37], or direct
estimation of differences in causal graphs [45]. Approaches that
discover a shared causal model do so by considering in one form or
another the principle of independent mechanisms [16, 29, 36, 41, 47].

One variant of this principle is invariance, the idea that causal
mechanisms remain the same when the distribution of the cause

changes. Peters et al. [2, 28] are the main proponents of invariance
as an asymmetry between causal and non-causal associations. Their
approach to Invariant Causal Prediction (ICP) comprises a subset
search over 𝑋 , and an intersection of those subsets that satisfy
invariance w.r.t. a target 𝑌 , which they prove to be a subset of
the causal variables for 𝑌 . Extensions of ICP cover the nonlinear
case [11], and accommodate an influence of contexts on 𝑌 in the
form of hidden variables [34].

Several authors [2, 4, 10, 23, 32] propose to leverage invariance
for out-of-distribution learning, suggesting to prefer invariant pre-
dictors for robustness. As it is generally easier to identify invariant
dependencies than strictly causal ones, several approaches to risk
minimization make use of invariance [1, 20, 33].

More recent approaches go beyond invariant causal relations and
consider mechanism changes. As such, the Joint Causal Inference
(JCI) framework [27] introduces a context variable 𝐶 to the causal
graph, making traditional causal discovery algorithms applicable
to multiple contexts; the method CD-NOD [47] adapts the PC algo-
rithm specifically. Other authors discuss structure discovery under
uncertain interventions [5, 7, 17, 40, 43] with the aim to discover
causal DAGs in the interventional Markov Equivalence Class [8].
Key methods include GIES [7], which assumes known intervention
targets, and UT-IGSP [40] for uncertain interventions.

This work addresses a general setting where mechanism changes
or interventions with unknown types and targets may exist. Instead
of conditional independence testing [27, 40, 47], we use functional
modeling to be able to use the invariance asymmetry explicitly. In
particular, we rely on the algorithmic causal modeling framework
and the associated model inference criteria [18, 21, 36] which allow
to identify causal relationships beyondMarkov Equivalence [24, 26].
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3 PRELIMINARIES

In the following, we define the notation and basic concepts we use
throughout the paper.

3.1 Invariance in Causal Models

We consider continuous random variables 𝑋 = {𝑋1, . . . 𝑋𝑛}, writ-
ing𝑌 ∈ 𝑋 to refer to a designated variable of interest.Wemeasure𝑋
in𝑚 different contexts C = {𝑐1, . . . , 𝑐𝑚}, e.g. corresponding to data
collected in different hospitals. Writing 𝐶 for the random variable
denoting the context, we hence collect data from a joint distribu-
tion 𝑃 (𝑋,𝐶). We assume that the directed acyclic graph (DAG) G
describing the causal relationships is the same in all contexts but
that the structural equation can differ between them,

𝑋𝑖 = 𝑓
𝑐
𝑖 (paG (𝑋𝑖 ), 𝑁𝑖 ) for all 𝑖 ,

where 𝑁𝑖 ⊥⊥ (𝑋,𝐶) is a noise variable independent of 𝑋 and 𝐶 . In
other words, 𝑃 (𝑋 | 𝐶 = 𝑐) can differ for different contexts 𝑐 .

We are interested in finding out in which contexts the mecha-
nisms 𝑓 𝑐

𝑖
differ and where they remain the same. The case where

𝑓 𝑐
𝑖
= 𝑓𝑖 for all contexts 𝑐 is commonly known as invariance [2, 28].

Invariance is based on the principle that the mechanism 𝑓𝑖 causing
𝑋𝑖 should be independent of 𝑃 (paG (𝑋𝑖 )), and hence that it remains
in place when the distribution of the covariates changes [28, 41].
While in principle, physical mechanisms stay the same, we want
to model interventional and observational data alongside, or ac-
count for variance over different contexts due to limited samples.
We would therefore like to tell between which contexts invariance
holds and between which there are differences in treatment effects.
In the latter case, 𝑓𝑖 changes independently of 𝑃 (paG (𝑋𝑖 )), which
is commonly known as the independent change principle [41, 47].

To find sets of contexts where invariance holds as well as those
where it does not, we take an information-theoretic approach based
on Kolmogorov complexity and the algorithmic model of causality.

3.2 Kolmogorov Complexity

The Kolmogorov complexity of an object 𝑥 is the length of the
shortest program 𝑝 for a universal TuringmachineU that computes
𝑥 and halts [22]. That is, 𝑝 is the shortest possible description, or,
optimal lossless compression of 𝑥 . Formally, we have

𝐾 (𝑥) = min
𝑝∈{0,1}∗

{|𝑝 | : U(𝑝) = 𝑥} .

For a distribution 𝑃 , it is defined as the length of the shortest pro-
gram that approximates 𝑃 to within any precision 1/𝑞,

𝐾 (𝑃) = min
𝑝∈{0,1}∗

{|𝑝 | : |U(𝑝, 𝑥, 𝑞) − 𝑃 (𝑥) | ≤ 1
𝑞
} .

Kolmogorov complexity is an integral concept in algorithmic causal
modelling, which we move to next.

3.3 Algorithmic Model of Causality

In the algorithmic model of causation [18], causal mechanisms are
considered programs that operate on objects. For variables 𝑋,𝑌 it
states that if 𝑋 causes 𝑌 , denoted 𝑋 → 𝑌 , then

𝐾 (𝑃 (𝑋 )) + 𝐾 ((𝑃 (𝑌 | 𝑋 )) ≤ 𝐾 (𝑃 (𝑌 )) + 𝐾 ((𝑃 (𝑋 | 𝑌 ))) .
In general, this implies the algorithmic variant of the well-known

Markov condition, introduced by Janzing and Schölkopf [18, 21].

Postulate 3.1. [18] (Algorithmic Markov Condition). A DAG G
formalizing the causal structure of 𝑋 is only acceptable as the true

causal structure if

𝐾 (𝑃 (𝑋1, ...𝑋𝑛))
+
=

∑︁
𝑖

𝐾 (𝑃 (𝑋𝑖 | paG (𝑋𝑖 )) .

where

+
= denotes equality up to an additive constant.

In particular, if one can state the true causal model as a DAG
over 𝑋 , the above principle permits inferring all causal directions.
It states that the true causal model corresponds to the simplest,
in terms of Kolmogorov complexity, factorization of the joint dis-
tribution. Consequently, it allows deciding between DAGs in the
same Markov Equivalence Class [18]. It has inspired approaches to
various causal inference problems [19, 24, 26].

Unlike our setting where data comes from multiple environ-
ments, all of these approaches rely on the idea that the data 𝑋 are
i.i.d., i.e., from the same environment. Therefore, we next develop
an extension of the algorithmic framework suitable for our task.

4 THEORY

We now extend the algorithmic model of causality to multiple con-
texts and state its properties. We then develop a practical approach
based on theMDL principle and finally give results on identifiability.

4.1 Causal Models with Changing Mechanisms

We assume that the causal DAG G is the same for all environments
to capture invariant structure. For each variable Y, however, multi-
ple causal mechanisms 𝑓 𝑐 : paG (𝑌 ) → 𝑌 may exist that govern it
in different contexts.

The mechanisms 𝑓 𝑐 can be shared within a group 𝜋𝑘 of multiple
contexts, which we specify using a partition Π of C into groups.
That is, Π = {𝜋𝑘 }𝑘 , for which

⋃
𝑘 𝜋𝑘 = C and 𝜋𝑖 ∩ 𝜋 𝑗 = ∅ for 𝑖 ≠ 𝑗 .

We write Π(𝑐) to denote the group 𝜋𝑘 containing 𝑐 , 𝑐 ∈ 𝜋𝑘 . Overall,
we state our causal model as follows.

Assumption 4.1 (CausalModel with ChangingMechanisms). Given
a DAG G for 𝑋 as well as partitions Π𝑖 of C for each variable 𝑋𝑖 , we

consider the structural equation model

𝑋𝑖 = 𝑓
Π𝑖 (𝐶 )
𝑖

(paG (𝑋𝑖 ), 𝑁𝑖 ) ,

where 𝑁𝑖 ⊥⊥ (paG (𝑋𝑖 ),𝐶) is independent of paG (𝑋𝑖 ) and 𝐶 .

An example is given in Fig. 1, where the variable of interest 𝑌
is governed by a different structural equation in the intervened
context 𝑐3, so that it has the partition Π = {{𝑐1, 𝑐2} , {𝑐3}}.

In this example, the same function 𝑌 = 𝑓1 (𝑋1, 𝑁 ) is applied to
𝑋1 for both sets 𝑐1, 𝑐2, i.e. 𝑋1 respects the structure of the partition
Π of 𝑌 . We will call this Π-invariance of 𝑋1 w.r.t. 𝑌 according to
the following definition.

Definition 4.2 (Π-invariance). Given a DAG G and a partition Π𝑖

of C for 𝑋𝑖 , we call a set 𝑆 ⊂ 𝑋 Π-invariant w.r.t. 𝑋𝑖 , denoted as

𝑆 ∈ IΠ (𝑋𝑖 ), if for all 𝑐1, 𝑐2 ∈ C with Π𝑖 (𝑐1) = Π𝑖 (𝑐2) we have

𝑃 (𝑋𝑖 | 𝑆,𝐶 = 𝑐2) = 𝑃 (𝑋𝑖 | 𝑆,𝐶 = 𝑐1) .

In particular, the causal parents of each variable are Π-invariant.
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Proposition 4.3 (Π-invariance for causal variables). If the gener-

ating model is as in Assumption 4.1 with DAG G where a variable 𝑌

has partition Π, then Π-invariance holds for the causal parents of 𝑌 ,

paG (𝑌 ) ∈ IΠ (𝑌 ) .

We now revisit the independent change (IC) principle. To do so
we extend the algorithmic Markov condition from Postulate 3.1 to
the case of multiple contexts. We arrive at the following criterion as
to which partition Π and causal parents 𝑋 = paG (𝑌 ) are plausible
for a given variable 𝑌 .

Proposition 4.4 (Algorithmic Markov Condition for Changing
Mechanisms). Let G be a causal DAG over 𝑋 with causal model with

partitions Π𝑖 of C for each 𝑋𝑖 as in Assumption 4.1. Then the pair

(G, {Π𝑖 }) is acceptable only if for all 𝑖

Π𝑖 , paG (𝑋𝑖 ) = arg min
Π,𝑆

∑︁
𝜋∈Π

𝐾 (𝑃 (𝑋𝑖 | 𝑆,𝐶 ∈ 𝜋)) . (1)

That is, the true causal model leads to a factorization of 𝑃 into
distributions 𝑃 (𝑋𝑖 | paG (𝑋𝑖 ),𝐶 ∈ 𝜋) that can be described inde-
pendently of non-causal variables for a given target, as well as
independently of the context in a given group.

Guided by the above properties, we now develop our approach
for causal discovery in multiple contexts.

4.2 Discovering Invariances using MDL

We next explain how to use the algorithmic Causal Model over
multiple contexts to discover changing mechanisms from data.

While Kolmogorov complexity is not computable [22], it can be
approximated from above using the Minimum Description Length
(MDL) principle [6]. Rather than taking the minimum over all pro-
grams 𝑝 , we instead consider the best compression of the data
using a restricted model class M of programs. Writing 𝐿(𝑥,𝑀)
for the compression of 𝑋 using model 𝑀 ∈ M, we have 𝐾 (𝑥) ≤
min𝑀∈M 𝐿(𝑥,𝑀) with equality ifM contains all programs.

We here use a two-part score 𝐿(𝑥,𝑀) = 𝐿(𝑀) +𝐿(𝑥 | 𝑀), i.e. we
separately encode the model and the data given the model [6].

For a given partition Π and potential covariates 𝑆 for 𝑌 , we write
the score as 𝐿(𝑌,𝑀𝑌 (Π, 𝑆)), but we will drop the dependency of𝑀
on 𝑌, 𝑆,Π when clear from the context. We have

𝐿(𝑌 | 𝑀) + 𝐿(𝑀) =
∑︁
𝑐

𝐿(𝑌 | 𝑀𝑐 ) +
(∑︁

𝑐

𝐿(𝑀𝑐 | 𝑀Π) + 𝐿(𝑀Π)
)

where𝑀𝑐 is the best-fitting model for 𝑌 in a single context. Note
that 𝐿(𝑌 | 𝑀) does not depend on Π itself, but only on the local
models𝑀𝑐 . Equivalently, Π depends on 𝑌 only through the models
𝑀𝑐 . We can therefore ignore the data cost 𝐿(𝑌 | 𝑀) and find the
partition Π∗ satisfying

Π∗ = arg min
Π

𝐿(𝑀) + 𝐿(𝑌 | 𝑀)

= arg min
Π

𝐿(Π) + 𝐿(𝑀Π | Π) +
∑︁
𝑐

𝐿(𝑀𝑐 | 𝑀Π) .

To encode the model𝑀 , we must now make assumptions on the
model class used. To do so, we use linear functions𝑔𝑐 (𝑋 ) = 𝛼𝑡𝑐𝑋+𝛼0.
While simple, we show next that under some conditions using linear
functions is not detrimental to the identifiability of the correct
partitions as well as Π-invariant sets.

Theorem 4.5 (Linear approximation preserves partitioning and
invariance). Given a target 𝑌 , let Π be its partition of the contexts

C. Let 𝑈 ⊂ R𝑛−1
be a bounded set and F ⊂ 𝐿2 (𝑈 ) be a subset of

square-integrable functions containing the set L of linear functions

𝑥 ↦→ 𝛼𝑡𝑥 +𝛼0. Further assume that each function 𝑓 𝑐 is sampled from

F according to an absolutely continuous probability measure𝑄 on F .
Let 𝛼 𝑓 = arg min𝛼,𝛼0 𝐸

( (
𝑓 (𝑋 ) − 𝛼𝑡𝑋 − 𝛼0

)2
)
be the projection of 𝑓

onto its best linear approximation and write 𝛼𝑐 = 𝛼 𝑓 𝑐 . Then𝑄-almost

surely

𝑓 𝑐𝑖 = 𝑓 𝑐 𝑗 if and only if 𝛼𝑐𝑖 = 𝛼𝑐 𝑗 .

In particular, the partition Π as well as the Π-invariant sets IΠ (𝑌 )
according to {𝛼𝑐 } are 𝑄-almost surely the same as for the {𝑓 𝑐 }.

Now, to encode𝑀Π , we must encode both the partition Π as well
as the aggregate model𝑀Π given Π. To encode the partition Π, we
first encode the number of contexts using the MDL-optimal code
for integers 𝐿N [31]. The assignment of each context to one of at
most |𝐶 | groups can be encoded under a uniform distribution using
log |𝐶 | bits. Overall

𝐿(Π) = 𝐿N ( |𝐶 |) + |𝐶 | ∗ log|𝐶 | .

It remains to transmit the model 𝑀Π given Π. For each group
𝜋 ∈ Π we encode the group mean parameter 𝛼𝜋 = mean(𝛼𝑐 :
Π(𝑐) = 𝜋) using the asymptotically optimal precision of |𝐶 |1/2 per
dimension [6], so that we obtain

𝐿(𝑀Π | Π) =
∑︁
𝜋∈Π

𝐿(𝑀𝜋 ) =
( |𝑆 | + 1) |Π |

2 log |𝐶 | . (2)

Last, we need to encode the individual parameters 𝛼𝑐 for each
mechanism in 𝑀Π . We do so by modeling each 𝛼𝑐 as Normally
distributed with, 𝛼𝑐 ∼ 𝑁 (𝛼Π (𝑐 ) , 𝜎2) with unit variance 𝜎2 = 1,

𝐿(𝑀𝑐 | 𝑀Π) = 𝐿(𝑀𝑐 | 𝑀Π (𝑐 ) )

=
|𝑆 | + 1

2 log(2𝜋) + 1
2



𝛼𝑐 − 𝛼Π (𝑐 )

2
2 . (3)

With the above, we have a principled way of encoding the co-
efficients. While guaranteed to work well with large sample sizes,
there is a risk of underfitting when |𝐶 | takes small values, as we
expect in our use case. Hence, an adequate adjustment of the model
cost in Eq. (2) to the error in Eq. (3) may be needed. Rather than
pre-specifying a model cost that only depends on |𝐶 | as above, we
can choose the appropriate value adaptively to the data at hand.

To give intuition, we are interested in that number of groups
𝑘 = |Π | which contains the most information about the coefficients
yet does not overfit. To find such a 𝑘 we can use the so-called
elbow property of the log mean squared error over 𝑘 = 1, ...|Π | [42].
We find that 𝑘 for which the error decreases most steeply, and so
that for 𝑘 + 1 onward, the error flattens out, for which we use the
following score

𝐿′ (𝑀Π, 𝑀𝐶 ) =
1

𝑘 − 1 log
|𝐶 |∑︁
𝑐=1
(𝛼𝑐 − 𝛼𝜋 )2 . (4)

Moving forward, we use the MDL score 𝐿 unless stated otherwise.
With a score that for each variable or set 𝑋 can find partition Π

in linear models, we turn to causal discovery next.
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4.3 MDL-based Causal Discovery

We now explain how we use Π−invariance for causal discovery. As
in Section 4.2, we will assume linear Gaussian functional models.
This means that causal variables have invariant regression coef-
ficients in each group of Π (Proposition 4.3). More importantly,
under appropriate conditions the converse holds, i.e. the invariance
property is obtained only for causal variables. To see this, we can
extend the identifiability result of Peters et al. [2, 28].

Proposition 4.6 (Π−invariance for causal discovery). Let 𝑌 be

generated according to the causal model of Assumption (4.1). Further
assume that the mechanism 𝑓 Π is linear, 𝑌 = 𝛼𝑇

Π (𝐶 )𝑋 + 𝑁 and

𝑁 ∼ N(0, 𝜎2), 𝑁 ⊥⊥ (𝐶,𝑋 ). Also assume that Π can be written as

Π = {𝜋, C \ 𝜋} where |𝜋 | ≥ 2, and for each variable 𝑋𝑖 , there is

at least one pair 𝑐1, 𝑐2 ∈ 𝜋 s.t. Π𝑖 (𝑐1) ≠ Π𝑖 (𝑐2) . Then, a subset of

causal variables SΠ ⊆ paG (𝑌 ) are identifiable by invariance of the

regression coefficients 𝛼𝑘 over the contexts 𝑐𝑘 ∈ 𝜋 .

To illustrate, in Fig. 1 the causal variable 𝑋1 admits the same

linear function 𝑔1 in two contexts, irrespective of the distribution
shift of 𝑋1 in one of these contexts. For 𝑋2 in contrast, only a
spurious dependency to 𝑌 exists, so that the linear function changes

when 𝑋2 undergoes distribution shift in one of these contexts.
Note that this asymmetry holds due to the heterogeneity of the

covariates. We also remark that we cannot use invariance when 𝑌
has a different generating process in every context.

To find sets of invariant variables in practice, we can proceed
similarly to invariant prediction without mechanism changes [2, 28]
and consider different subset regressions. That is, we find SΠ∗ as

SΠ∗ = {𝑋𝑖 | 𝑋𝑖 admits Π∗}

=
⋂
{𝑋𝑆 | 𝑋𝑆 ∈ IΠ∗ (𝑌 )}

=
⋂
{𝑋𝑆 | Π∗ = arg minΠ 𝐿(𝑀𝑌 (𝑋𝑆 ,Π))} . (5)

We have 𝑋𝑆 ∈ IΠ∗ if the function 𝑓 : 𝑋𝑆 → 𝑌 is Π∗−invariant,
in which case the partition Π∗ leads to the best scoring model.
We keep all variables 𝑋𝑖 in the intersection of such sets 𝑋𝑆 . Most
importantly, by stating Eq. (5) in terms of our MDL-score, we can,
with Π∗ unknown, choose the partition with the lowest score.

We address the methodological details in the following.

5 THE VARIO ALGORITHM

We now introduce the Vario algorithm for discovering stable and
changingmechanisms from data based on the theory outlined above.
We present the pseudo-code of the principal method as Algorithm 1.
Unless otherwise stated, we use the MDL-score 𝐿 .

Given data 𝑋,𝑌 over contexts C, Vario returns a partition Π∗

and the set S∗Π of variables admitting this partition. We also return
other sets of admissible variables SΠ to be used in postprocessing.

In the first step (lines 2-4), we find potential partitions for each
subset𝑋𝑆 . We linearly regress𝑌 onto𝑋𝑆 in each context and cluster
the resulting functions by similarity. We do so using subprocedure
Vario-Π, which given coefficients {𝛼1, . . . , 𝛼 | C | } for all contexts,
returns candidate partitions ordered by their scores. We postpone
a detailed description of Vario-Π to Appendix B.

In a second step (lines 5-10) we address the intersection in Eq. (5).

Algorithm 1: Vario(𝑋,𝑌 )
input : target variable 𝑌 , covariates 𝑋 in contexts C
output : partition Π∗ and set SΠ∗ , as in Eq. (5)

1 admissible← {}; Π∗ ← {}; SΠ∗ ← {};
2 foreach set 𝑋𝑆 do

3 regression 𝑌 ∼ 𝛼𝑇𝑋𝑆 in each 𝐶 ∈ C;
4 admissible(𝑋𝑆 ) = Vario-Π ({𝛼1, ...𝛼 | C | }) ;
5 foreach variable 𝑋𝑖 do
6 X = {𝑋𝑆 | 𝑋𝑖 ∈ 𝑋𝑆 } ;
7 admissible(𝑋𝑖 ) =

⋂
𝑋𝑆 ∈X admissible(𝑋𝑆 ) ;

8 foreach partition Π in admissible(𝑋𝑖 ) do
9 add 𝑋𝑖 to SΠ ;

10 𝐿(𝑋𝑖 ,Π) = 1
|X |

∑
𝑋𝑆 ∈X 𝐿(𝑀𝑌 (Π, 𝑋𝑆 )) ;

11 Π∗,SΠ∗ = arg minΠ,SΠ
∑
𝑋𝑖 ∈𝑆Π 𝐿(𝑋𝑖 ,Π) ;

12 return Π∗,SΠ∗ , each non-empty set SΠ ;

We consider each 𝑋𝑖 and add it to the set 𝑆Π if it is a member
of all subsets that admit Π (line 7). To find the best 𝑆Π without
going through all partitions, we associate a cost to 𝑋𝑖 and Π (line
10). The cost corresponds to 𝐿(𝑀𝑌 (Π, 𝑋𝑆 ) in Eq. (5) averaged over
all supersets 𝑋𝑆 . That is, we account for how well Π describes the
linear regressions with 𝑋𝑖 . Finally, Vario returns Π∗ and SΠ∗ with
the lowest cost. We explain their interpretation in the following.

Vario for Intervention Discovery. First, we can use Vario to locate
interventions. By Assumption 4.1 and its instantiation through
MDL, we take Π∗ to be the most likely partition for 𝑌 , and can thus
detect interventions on 𝑌 . If a context 𝑐0 with observational data
exists, we estimate the interventional contexts as

𝐼 (𝑌 ) = {𝑐𝑖 | Π∗ (𝑐𝑖 ) ≠ Π∗ (𝑐0)} .
If 𝑐0 is unknown, we assume that the largest 𝜋 in Π is the observa-
tional group and find 𝐼 (𝑌 ) accordingly.

Vario for Local Causal Discovery. We primarily propose Vario
to find causal variables for a target 𝑌 based on Π-invariance. These
correspond to the set SΠ∗ that we find along with Π∗. We have

Π∗ = arg min
Π;SΠ

𝐿(𝑀𝑌 (SΠ,Π))

where the minimization ranges over all sets SΠ of Π-invariant
variables, which is consistent with our modeling goal in Sec. 4.2.
Under the conditions of Sec. 4.3, we have 𝑆Π∗ ⊆ paG (𝑌 ). Vario can
therefore discover the causal parents of the target.

Vario for Global Causal Discovery. Although not our primary
goal, we now describe a natural extension of our approach for global
causal discovery, which we call Vario-G. It not only discovers the
causally relevant variables for 𝑌 , but a complete causal network.

The core idea of Vario-G is that instead of naively aggregating
all edges found with Vario, we can refine the result by utilizing
partitions and scores along paths in the network. To this end, in the
first step (lines 1-5) of Algorithm 2, we include each set SΠ found
with Vario, not just the best one. Specifically, for each 𝑋 in one of
the sets SΠ , we add an edge to our graph, writing 𝑋 →Π𝑥𝑦

𝑌 in G
to say that Π𝑥𝑦 is the partition for 𝑌 which 𝑋 admits.
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Algorithm 2: Vario-G(𝑋 )
input : variables 𝑋 in contexts C
output : G with edges 𝑋 →Π 𝑌

1 foreach target variable 𝑌 do

2 SΠ = Vario (𝑋 \ {𝑌 }, 𝑍 ) ;
3 foreach pair (𝑋,Π) s.t. 𝑋 ∈ SΠ do

4 add edge 𝑋 →Π𝑥𝑦
𝑌 to G ;

5 label with 𝑆𝑥𝑦 = 𝐿(𝑀𝑌 (Π, 𝑋 ));

6 foreach path 𝑋 →Π𝑥𝑦
𝑌 →Π𝑦𝑧

𝑍 exists in G do

7 if 𝑋 →Π𝑥𝑧
𝑍 exists in G then

8 if consistent(Π𝑥𝑧 ,Π𝑥𝑦 ∪ Π𝑦𝑧) then
9 if 𝑆𝑥𝑧 > 𝑆𝑥𝑦 and 𝑆𝑥𝑧 > 𝑆𝑦𝑧 then prune

𝑋 → 𝑍 ;

10 return G;

We take the union of admissible edges for all targets (lines 1-5).
The edges found in this way can include indirect, ancestral causal
relations 𝑋 → 𝑍 if there is a path 𝑋 →Π𝑥𝑦

𝑌 →Π𝑦𝑧
𝑍 in G.

However, in such a case, the mechanism changes for 𝑍 on the
direct path must match those along the path via the intermediate
node: for example, if 𝑌 was intervened upon in context 𝑐1 and 𝑍
was intervened upon in 𝑐2, the partition Π𝑥𝑧 for the direct path
shows interventions in both 𝑐1 and 𝑐2, since it shows the coefficient
changes of the composed linear function 𝑔𝑋→𝑍 = 𝑔𝑌→𝑍 ◦ 𝑔𝑋→𝑌 .
Moreover, if 𝑔𝑋→𝑍 emerges from composition rather than a direct
causal edge, its MDL model score does not improve upon that of
either𝑔𝑌→𝑍 or𝑔𝑋→𝑌 (see Appendix A). We can make this property
about ancestral paths precise by defining consistency of partitions.

Definition 5.1 (Consistency). A partition Π1 is consistent w.r.t. Π2
if for each pair 𝑐, 𝑐′ ∈ C, if Π2 (𝑐) = Π2 (𝑐′) then Π1 (𝑐) = Π1 (𝑐′).

Intuitively, Π1 is consistent w.r.t. Π2 if Π2 has same or more fine-
grained groups than Π1. We also define the union of partitions as
Π12 := Π1 ∪Π2 containing the combined interventions of both par-
titions, Π12 (𝑐) = Π12 (𝑐′) iff Π1 (𝑐) = Π1 (𝑐′) and Π2 (𝑐) = Π2 (𝑐′).

We then obtain for each chain of three nodes an ancestral path
with the following properties.

Proposition 5.2. For an ACM (Assumption 4.1), with DAG G and

linear models, i.e. 𝑋𝑖 = 𝛼
𝑇
Π𝑖 (𝐶 )paG (𝑋𝑖 ) + 𝑁 and 𝑁 ∼ N(0, 𝜎2), let

𝑋 →Π𝑥𝑦
𝑌 →Π𝑦𝑧

𝑍

be a path in G. Let 𝑆𝑥𝑦 = 𝐿(𝑀𝑌 (Π𝑥𝑦, 𝑋 )), 𝑆𝑦𝑧 = 𝐿(𝑀𝑍 (Π𝑦𝑧 , 𝑌 )) be
the MDL-scores. Then there is an edge

𝑋 →Π𝑥𝑧
𝑍 ,

that is, 𝑋 admits Π𝑥𝑧 for 𝑍 with score 𝑆𝑥𝑧 = 𝐿(𝑀𝑍 (Π𝑥𝑧 , 𝑋 )), and
• Π𝑥𝑧 is consistent w.r.t. Π𝑥𝑦 ∪ Π𝑦𝑧 ,

• 𝑆𝑥𝑧 ≥ 𝑆𝑥𝑦 and 𝑆𝑥𝑧 ≥ 𝑆𝑦𝑧 .

Weuse these properties to prune ancestral variables in the second
step (lines 5-8) of Algorithm 2. While we can make an analogous
statement for longer paths, we limit consideration to paths over
one intermediate node. For simplicity, we prune edges in one pass
and examine edges by increasing score gain, which we define next.
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Figure 2: Vario recovers partitions exactly. Given is the accu-

racy of Vario-Π at findingΠ for𝑌 given𝑋 = paG (𝑌 ).We show

results per the 𝑥% decisions ordered by confidence, where

solid lines show the empirical score 𝐿′, dashed ones the the

MDL score 𝐿, for |C| = 5, 8, |Π | < 5. Baseline accuracy of ran-

domly choosing a partition is given by the gray line.

Confidence. For partition discovery with Vario-Π, we can readily
give a confidence statement. We want to measure the score gain
that results from using the discovered groups of contexts rather
than no groups, so we compare the encoded lengths of Π and the
singleton partitioning Π0 = {{𝑐1}, ..{𝑐𝑘 }} as follows

𝐿conf (Π) = 𝐿(𝑀𝑌 (Π, 𝑋 )) − 𝐿(𝑀𝑌 (Π0, 𝑋 )) .
For causal discovery with Vario-G, we define the confidence in

an edge𝑋 →Π 𝑌 as the gain in MDL-score of using𝑋 in addition to
the remaining causal parents,𝑋𝑆 = 𝑆Π∗ \ {𝑋 }. In detail, we estimate
this set as 𝑋𝑆 = arg min𝑋 ′

𝑆
𝐿(𝑀𝑌 (Π, 𝑋 ′𝑆 )), and define

𝐿gain (𝑋 →Π 𝑌 ) = 𝐿(𝑀𝑌 (Π, 𝑋𝑆 )) − 𝐿(𝑀𝑌 (Π, 𝑋 ∪ 𝑋𝑆 )) .

Complexity. The time and space complexity of Vario-Π are in
O(𝑏) depending on the search strategy. For exhaustive search, 𝑏 is
a bell number of C. For a heuristic that we use in practice, 𝑏 = |C|3,
and for a greedy version we have 𝑏 = |C|2 (Appendix B).

For Vario, we have worst-case time complexity O(2 |𝑋 |𝑏) and
space complexity O(|𝑋 |2𝑏). For this to be the case, we designed
Vario to traverse only 𝑋 and not all sets 𝑆Π (lines 5-10 of Algo-
rithm 1). Note that this requires estimating scores on a per-variable
basis (line 10) rather than directly computing them.

For Vario-G, we have complexityO(2 |𝑋 |𝑏 |𝑋 |) for the first phase,
O(|𝑋 |3) for considering ancestral paths. We deem the search over
partitions feasible since we do not expect a large number of different
domains in practice and as we found our approach to work well
when few contexts are given (see Section 6). The main bottleneck is
searching over all subsets in Vario, similar to existing invariance-
based approaches [2]. To circumvent this, one can preprocess 𝑋
using a standard feature selection for 𝑌 [23] as our interest is in
distinguishing causal features from correlated ones.

6 EVALUATION

In this section, we evaluate Vario on synthetic and real data. Since
we propose different use cases of our method, we structure our
analysis by the following questions.

(1) Can Vario-Π find good partitions?
(2) Can Vario use partitions to discover causal variables?
(3) Can Vario-G use partitions on paths to find causal graphs?
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(a) Mean shift, one at a time.
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(b) Mean shift, context groups.

Π = {𝜋1, 𝜋2, 𝜋3 } .
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(c) Hard interventions.

Π = {𝜋1, 𝜋2 } .
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(d) Mechanism changes.

Π = {𝜋1, 𝜋2, 𝜋3 } .

Figure 3: Vario discovers causal variables in different settings. Shown is the 𝐹1-score on discovering causal variables 𝑋𝑖 ∈ paG (𝑌 )
for each target 𝑌 in a random causal graph G, with |C| = 5,|G| = 5. Example partitions for 𝑌 are shown in each setting.

6.1 Experimental Setup

We implemented Vario in R. We compare to ICP [2] as state of the
art in invariance-based causal discovery; the JCI [27] framework
for constraint-based causal discovery from multiple contexts un-
der mechanism changes; and UT-IGSP [40] for score-based causal
discovery from multiple contexts under uncertain interventions.
We use the original implementations recommended by the authors,
e.g., instantiating JCI with the FCI algorithm [27]. All experiments
finished within one day on a standard commodity laptop.

For the experiments with synthetic data, we first generate ran-
dom acyclic networks G over 𝑋 with density 𝑝 of connections.
Based on G we generate data for multiple contexts, with |𝑋 | =
|𝐶 | = 5, 𝑝 = 1 unless otherwise specified. We consider a linear
Gaussian model that is augmented by context variables 𝐶 , i.e.,

𝑋𝑖 =
∑︁
𝑖

𝛼𝑐𝑖 𝑗𝑋 𝑗 + 𝛽𝑐𝑖 𝐶 + 𝑁, 𝑁 ∼ N(0, 1), 𝑐 ∈ C , (6)

where coefficients 𝛼𝑐
𝑖
are the causal strengths for 𝑋𝑖 in context 𝑐 ,

and 𝛽𝑐
𝑖
serve to simulate shift interventions. We choose the causal

coefficients uniformly from [−1,−0.25]∪[0.25, 1], where the entries
are 𝛼𝑖 𝑗 ≠ 0 when 𝑋 𝑗 ∈ paG (𝑋𝑖 ) is a causal parent.

In our setting of multiple contexts, 𝛼, 𝛽 may change across con-
texts depending on a partition chosen randomly for each variable.
For instance, we can use the same 𝛼 and have in each context 𝑐
where 𝛽𝑐

𝑖
= 1 a shift intervention on 𝑋𝑖 . Alternatively, we can

modify 𝛼 to model a soft intervention or mechanism change for 𝑌 .

6.2 Vario-Π for Partition Discovery

First, we check whether Vario can discover good partitions. For this
purpose we consider mechanism changes, meaning that between
groups 𝜋, the causal coefficients 𝛼 take different values.

We run Vario-Π on input (𝑌, paG (𝑌 )) for each target in random
graphs G and match the partition it discovers to the ground truth.

In Fig. 2 we report, over the top-𝑘% most confident decisions,
the accuracy of exactly discovering the correct partition. We use
𝐿conf, respectively 𝐿′, to order decisions by. In the figure, we give
the results for |C| = 5, 8. As a baseline, we give the favorably
ordered accuracy of a randomly guessed partition, for illustration
with |C| = 5. We find that Vario recovers the ground truth Π∗ with
much larger accuracy than is possible by chance. The empirical
score 𝐿′ (solid lines) slightly outperforms the MDL score 𝐿 (dashed

lines). This is what we expect because the MDL score sets a constant
coefficient penalty for a given value of |C|, as shown in Eq. (2).
In contrast, the empirical score uses the elbow criterion, which
depends on the given coefficient values 𝛼𝑐 as shown in Eq. (4),
making the latter option more adaptive.

6.3 Vario for Local Causal Discovery

Since Vario-Π reliably finds good partitions, we now examine
whether our weaker form of invariance still allows causal discovery.

We hereby evaluate Vario’s main algorithm using 𝐿 and 𝐿′
respectively, and compare the set SΠ of invariant variables that
Vario discovers with the ground truth paG (𝑌 ), using F1 scores.

Since ICP works well for two contexts, we merge all observa-
tional contexts into one and all interventional contexts 𝑐 ∈ 𝐼 (𝑌 )
into one. In addition we are interested in whether our score-based
approach offers any advantages over ICP’s hypothesis testing. Thus,
we also include a version named ICP* that applies ICP to two con-
texts at a time. It considers an edge causal if found in any pair of
contexts, which we consider reasonable given that ICP’s results are
sparse, and that this design was used to apply ICP in practice [2, 25].
We here omit causal discovery approaches disregarding contexts,
as preliminary results showed them to perform worse.

Mean Shift, one at a time. We first consider a simple setup where
each variable may be subject to a mean shift intervention in at most
one context, and each variable is affected in a different context.
For example, this design might correspond to a typical diagonal
experiment with interventions Mooij et al. [27]. Fig. 3a shows the
methods’ performance on identifying the causal parents paG (𝑌 ).
While JCI, ICP*, and UT-IGSP have high precision in finding causal
edges, they are conservative and find fewer edges than Vario, with
ICP finding no edges as expected under interventions. We obtain
the best overall results with Vario, with the MDL score benefitting
slightly over the empirical one (Fig. 3a).

Mean Shift, context groups. Next, we consider more general mean
shifts. Each variable has a partition with groups, and the affected
contexts may overlap for different variables. We observe in Fig. 3b
that competitors’ performance degrades, while Vario’s perfor-
mance is not notably impaired. In practice, we cannot rule out
that more than one variable changes per context, especially as in-
terventions may have off-target effects that are not known a priori.
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Figure 4: Vario discovers causal interactions in the Sachs

et al. [35] dataset. Green edges are correct, dashed green are

ancestral (but not anticausal), red edges are anticausal, and

dashed gray are spurious edges with regard to the consensus

network. ICP obtains an F1 score of 0.38, Vario 0.56.

Hard Intervention. We also simulate surgical interventions that
remove the influence of the causal parents altogether. That is, 𝛼
attains value zero in one group, 𝛼𝑖 (1) = 0, 𝛼𝑖 (2) = 1. Although
Vario assumes fixed causal parents to 𝑌 over contexts, it does not
suffer from this in practice (Fig 3c).

MechanismChanges. Last, we consider changes in causal strength.
In this setting, 𝛽 = 0, and context groups arise from differences in
𝛼. This setting corresponds to causal mechanism changes or soft
intervention on 𝑌 , and we observe the most considerable difference
between Vario and its competitors (Fig 3d).

We conclude that Vario can find not only partitions but also
causal variables based on them, whereby it can handle different
types of mechanism changes. For experiments evaluating inter-
vention discovery in the same settings, see Appendix C. In the
remainder of this chapter, we focus on the performance of Vario
in the non-linear case.

6.4 Vario-G for Global Causal Discovery in

Real Data

We round up by evaluating Vario on the protein signaling dataset
by Sachs et al. [35] with measurements of proteins in human im-
mune cells. The aim is to gain insight into the cell signaling path-
ways underlying such tissues. The data include eight experimental
settings with molecular interventions on eleven proteins.

As there is controversy as to which pathways constitute the
ground truth, we here use the network that Meinshausen et al. [25]
propose, included in Appendix C, which serves as a summary of
causal pathways reported in the literature and should be sufficient
to allow a broad comparison to related methods. As a complica-
tion, path signaling may include feedback loops. Causal inference
methods, including ours, assume acyclicity, however. Perfect iden-
tifiability may thus not be achievable on this dataset [25, 27].
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Figure 5: Vario is accurate when it is confident. Given are the

accuracies (top) over the top-𝑘% discovered edges ordered by

gain (bottom) for the Sachs et al. [35] dataset.

We show the networks found by ICP [2] and Vario-G in Fig. 4.
We find remarkably many edges that agree with the literature, in-
cluding 18 causal and only four reverse arrows. We remark that
edges are reported for ICPwhenever it finds invariance between any
pair of contexts, given that its invariance test is conservative [25].
As JCI finds similarly few edges [27] we postpone the result to
Appendix C. UT-IGSP [40] here has a high type II error (e.g., the
maximum retrieved number of true positives is 11, for which it finds
26 false positives) so that we refrain from showing the network.
Concerning other existing methods that do not consider multiple
contexts or invariance, we note that most rely on explicit back-
ground knowledge about interventions [27, 30] whereas Vario is
applicable without known intervention targets.

On intervention detection, we achieve an 𝐹1-score of 0.36 when
using both the direct and indirect interventions reported in Sachs
et al. [35] as ground truth, as compared to 0.3 for JCI [27].

We last investigate how confidence in edges relates to accuracy.
To do this, we evaluate edges 𝑋 → 𝑌 that Vario and Vario-G find,
and consider the gain 𝐿gain of using 𝑋 in the causal parent set for 𝑌 .
In Figure 5 we show the accuracies over edges (top) over the top-𝑘%
decisions as ordered by gain (bottom). We see that high gain values
strongly correlate with high accuracy (top). For example, we found
that all five spurious edges and two of the anticausal edges in Fig. 4
have the smallest gains among all edges. We also confirm Fig. 5
that the associated gain values are informative (bottom).

We also point out the difference between all admissible edges
(blue) and those in the final result (yellow). It is due to Vario find-
ing many variables that admit a partitioning, some of which are
removed in the pruning step. Hence, many false-positive decisions
of Vario are indirectly causal relationships and, since Vario-G
removes edges based on partitions and MDL-scores, both of these
offer qualitative information about causal effects in the network.

Overall, this experiment shows that Vario serves to gain in-
sight into real-world networks. In particular, we found that besides
constraint- and score-based methods, an invariance-based approach
is effective for discovering causes and effects.
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7 DISCUSSION AND CONCLUSION

In this work, we address the problem of finding a set of invariant
causal mechanisms for a variable 𝑌 that we observe in different
contexts C. We base our approach on the algorithmic model of
causation and the principle of independent change, where we search
for the simplest, in terms of Kolmogorov complexity, factorization
of the joint distribution into independent mechanisms. We propose
a practical instantiation using Minimum Description Length that
allows discovering such mechanisms in the linear case, and discuss
how doing so connects to causal discovery.

Our algorithm Vario can serve different goals, including inter-
vention discovery, causal discovery, and gaining insight into where
the generating process for 𝑌 changes, showing which contexts can
be pooled together to base predictions on. Our evaluations have con-
firmed that Vario can handle different data generating processes,
outperforms state of the art in invariance-based causal discovery,
and can compete with non-linear approaches.

For the future, wewould like to extendVario fromfinding groups
for one target variable at a time to discovering causal networks in
a score-based fashion. To do this efficiently, we need heuristics to
bypass the exact search over partitions and variable subsets that
we currently use. Another promising direction is to investigate the
theory and practice of using Vario to determine causal orientations;
empirically, we have found that it works remarkably well in this
regard, rarely returning any causal children rather than parents.
We further plan to extend Vario such that it can discover changes
due to noise interventions or selection bias.
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Algorithm 3: Vario-Π(𝑋𝑆 , 𝑌 , 𝛼)
input : 𝑋𝑆 , 𝑌 , coefficients 𝛼 = (𝛼1, ..𝛼 | C | ) of 𝑔 : 𝑋𝑆 → 𝑌

output : partitions Π ranked by score 𝐿
1 Ranking = {};
2 foreach number of groups 𝑘 = 1, ...|C| do
3 if greedy then candidates =

topdown_partitions (𝛼,Π∗
𝑘−1);

4 if heuristic then candidates = ordered_partitions (𝛼, 𝑘);
5 foreach Π𝑘 in candidates do
6 Ranking(Π) = 𝐿(𝑀𝑌 (𝑋𝑆 ,Π)) ;
7 Π∗

𝑘
= arg minΠ𝑘

Ranking(Π𝑘 ) ;
8 sort(Ranking);
9 return Ranking

A APPENDIX

We here state the proofs accompanying the propositions in the
main paper.

Proof of Proposition 4.3. Π−invariance follows by definition
from the algorithmic Causal Model in Assumption 4.1 for each
variable 𝑋𝑖 and partition Π𝑖 . □

For Proposition 2, we first formally define algorithmic Causal
Models on string representations. An ACM over the strings 𝑥1, ...𝑥𝑛
associates with each string 𝑥𝑖 a program 𝑞𝑖 computing 𝑥𝑖 from its
causes paG (𝑥𝑖 ) and an independent noise term, based on the true
causal structure between the strings given as a DAG G.

Postulate A.1. (Algorithmic Model of Causality). Let 𝑥1, . . . , 𝑥𝑛 be

strings and G the DAG capturing their causal structure, where no

latent confounders exist. Then each 𝑥𝑖 is computable by a program 𝑞𝑖
of length O(1) from its parents paG (𝑥𝑖 ) and 𝑛𝑖 as input,

𝑥𝑖 = 𝑞𝑖 (paG (𝑥𝑖 , 𝑛𝑖 ))

where all 𝑛𝑖 are independent.

To establish the connection between causality and algorithmic
descriptions, we need the algorithmic Markov Property on string
representations, of which we consider the following recursive for-
mulation.

Postulate A.2. (Algorithmic Markov Condition). For any ACM, the

complexity 𝐾 (𝑥1, ...𝑥𝑛) factorizes according to the DAG G,

𝐾 (𝑥1, ...𝑥𝑛)
+
=

∑︁
𝑥𝑖

𝐾 (𝑥𝑖 | paG (𝑥𝑖 ))

where

+
= denotes equality up to an additive constant.

Conceptually, with string representations instead of random
variables to describe properties of interest, we need not assume
that we can collect i.i.d. observations on each variable. We can thus,
for the same random variable 𝑌 , use different nodes𝑦𝑖 that describe
individual realizations of 𝑌 [18], or groups thereof with nodes 𝑦𝜋 .
Consequently, we can apply the algorithmic Markov Condition to
graphs G where the target 𝑌 has any partition Π.
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Figure 6: Vario serves to find out which contexts can be pooled

together for learning.We compare 𝐿2-loss of a linear model,

trained on all contexts (LM) or observational ones (Vario)

for an unseen context 𝑐′, where |C| = 5 and |Π | = 2, 3, 4.

Proof of Proposition 4.4. The statement follows by applying
the algorithmic Markov Condition A.2 to a class of algorithmic
Causal ModelsGΠ that separate the string𝑦 into nodes {𝑦𝜋1 , ...𝑦𝜋𝑚 }
for each 𝜋𝑖 ∈ Π and that otherwise use the DAG-structure of G. □

We further point out that the results on invariant causal predic-
tion in the linear case apply within each group of contexts 𝜋 ∈ Π
wrt. 𝑌 . We refer to Peters et al. [28] for detailed proofs.

Proof of Proposition 4.6. We can apply Proposition 1 by Pe-
ters et al. [28] to 𝑋,𝑌 | Π(𝑐) = 𝜋, as within groups contexts do not
affect the generating process 𝑓 𝜋 : paG (𝑌 ) → 𝑌 , thus the assump-
tion that 𝑌 is not directly affected by contexts holds in 𝜋. □

Proof of Proposition 5.2. Let 𝑋1 → 𝑋2 → 𝑋3 in G, with Π12
for𝑋2 and Π23 for𝑋3. We want to show that𝑋1 admits a consistent
partition Π13 for 𝑋3, i.e. Vario finds a direct path 𝑋1 → 𝑋3 with
Π13, and that there is an upper bound on the model score of Π13.

Let 𝑔12 : 𝑋1 → 𝑋2, 𝑔23 : 𝑋2 → 𝑋3, then there is a transitive
function 𝑔13 : 𝑋1 → 𝑋3 with coefficients 𝛼𝑐13 = 𝛼𝑐12𝛼

2
23 for each

𝑐 , thus 𝛼𝑐12 ≠ 𝛼𝑐12 ∨ 𝛼
𝑐
23 ≠ 𝛼𝑐23 ⇒ 𝛼𝑐13 ≠ 𝛼𝑐13, that is, Π12 (𝑐) ≠

Π12 (𝑐′) ∨ Π23 (𝑐) ≠ Π23 (𝑐′) and Π13 is consistent w.r.t. Π12 ∩ Π23 .
Let 𝑆12 = 𝐿(𝑀𝑋2 (Π12, 𝑋1)) and 𝑆23 = 𝐿(𝑀𝑋3 (Π23, 𝑋2)) be the

MDL-scores for encoding the linear functions 𝑔12, 𝑔23, respectively.
For all partitions, we obtain zero cost for encoding the coefficient er-
rors in the data limit, 𝐿(𝑀𝐶 | 𝑀Π) = 0. Since |Π13 | ≥ |Π12 |, |Π13 | ≥
|Π23 | by consistency, we have 𝐿(𝑀Π13 ) ≥ 𝐿(𝑀Π13 ) and 𝐿(𝑀Π13 ) ≥
𝐿(𝑀Π23 ), so the same holds for the model scores. □

Proof of Theorem 4.5. Since the functional 𝛼 : 𝑓 ↦→ 𝛼 𝑓 is
linear, we can write F = ker(𝛼) ⊕ F ′. Thus, if two functions 𝑓 , 𝑔
map to the same 𝛼 𝑓 = 𝛼𝑔 we know that 𝑓 − 𝑔 ∈ ker(𝛼). Thus
if 𝑄 (𝛼 𝑓 = 𝛼𝑔) > 0 we have 𝑄 (ker(𝛼)) > 0. Equivalently, due to
the disintegration theorem the restriction of 𝑄 | F′ to F ′ has an
atom at the origin, 𝑄 | F′ ({0}) > 0. However, since 𝑄 is absolutely
continuous, so is 𝑄 | F′ , which is a contradiction. □

B PSEUDOCODE

Vario for Partition Discovery. We here show the missing piece
of our approach, Vario-Π. As shown in Algorithm 3, we evaluate
partitions Π𝑘 for each number of groups 𝑘 (lines 2-5). For each
partition we consider the model𝑀𝑌 (𝑋𝑆 ,Π)) and score it (line 4) as
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Figure 7: Vario detects interventions in different settings. Shown is the 𝐹1-score on discovering interventional contexts 𝑐 ∈ 𝐼 (𝑌 )
for each target 𝑌 in a random causal graph G, with |C| = 5,|G| = 5. Settings are the same as in Fig. 3.

described in Section 4.2. We finally return a ranked list of partitions
ordered by 𝐿 (respectively 𝐿′) to use in the main Algorithm 1.

To avoid enumerating all partitions, we propose a heuristic. We
order each dimension of 𝛼𝑖 and on each set {𝛼𝑐

𝑖
| 𝑐 ∈ C}, only allow

partitions without gaps. We denote these as ordered_partitions (𝑘).
To justify, given infinite data the partitions for all causal variables𝑋𝑖
coincide (Assumption 4.1). Thus, the orderings of each dimension 𝛼𝑖
will agree, and the true partition will be among those we consider.
At each 𝑘 we hereby have (𝑘 − 1) options for 𝑑 dimensions of 𝑋 ,
leading to runtime inO(𝑑 |C|3). We can also opt for a greedy version
that does not consider all ordered partitions at 𝑘 , but only those
that result from splitting one group of the best partition at 𝑘 − 1,
called topdown_partitions (𝑘). The greedy version is in O(𝑑 |C|2).

Vario for Out-of-Distribution Learning. We briefly describe an
additional use case of our method: generalization to unseen contexts.
It has two aspects. First, the discovered partitions can, by revealing
in which contexts interventions or latent variables are present,
inform us which contexts we can safely combine for learning. We
do so by only using observational contexts, C \ 𝐼 (𝑌 ), for prediction.
Secondly, the use of causal variables rather than all covariates may
also lead to more reliable predictions, particularly in case that the
unseen context is subject to distribution shift [4, 23, 46].
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(b) Estimated by JCI.

Figure 8: Causal interactions in the Sachs et al. [35] dataset.

Shown is the consensus network [25] and the causal graph

found with JCI [27], with green edges if present in (a).

C ADDITIONAL RESULTS

Vario for Out-of-distribution Learning. As a concluding exper-
iment, we consider predicting 𝑌 by the Π−invariant mechanism
that governs the majority of contexts. In detail, we assume that
the underlying generating process 𝑓 : 𝑋 → 𝑌 applies to at least
two observed contexts and will continue to generate 𝑌 in future
contexts; all the while, different mechanisms may apply in inter-
ventional contexts. In Figure 6 we confirm that pooling only those
contexts where 𝑓 is in place and learning a linear model leads to
more reliable predictions in a future context 𝑐′ (Fig. 6a). In partic-
ular, the effect improves with covariate shift: if 𝑋 is distributed
differently from C in 𝑐′, the gap is more prominent (Fig. 6b). We
refer to Magliacane et al. [23] to illustrate similar effects regarding
the use of causal variables rather than all correlated variables.

Vario for Intervention Discovery. Complementary to our results
on causal discovery in Fig. 3, in Fig 7 we present the results on
intervention discovery in the same settings. Although we found
the empirical score 𝐿′ to perform better on partition discovery
when the causal parents are known (Fig. 2), on a causal graph with
unknown parents we do not observe a notable difference between
using 𝐿′ and 𝐿 anymore (Fig.7), so that we suggest relying on the
principled MDL-approach with Vario-𝐿 in practice. While JCI [27]
here shows better performance in the first setting, as soon as there
are multiple groups, results are on par with those of Vario.

Competitors for Global Causal Discovery in Real-World Data. In
continuation of the results on the Sachs et al. [35] dataset, we show
the consensus network [25] and the causal network that JCI finds
in Figure 8. For JCI, we favorably combined the results of different
variants that they consider [25, 27]. For results of UT-IGSP on this
dataset, we refer to Squires et al. [40] as we obtain many false-
positive edges with this approach.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Invariance in Causal Models
	3.2 Kolmogorov Complexity
	3.3 Algorithmic Model of Causality

	4 Theory
	4.1 Causal Models with Changing Mechanisms
	4.2 Discovering Invariances using MDL
	4.3 MDL-based Causal Discovery

	5 The Vario Algorithm
	6 Evaluation
	6.1 Experimental Setup
	6.2 Vario- for Partition Discovery
	6.3 Vario for Local Causal Discovery
	6.4 Vario-G for Global Causal Discovery in Real Data

	7 Discussion and Conclusion
	References
	A Appendix
	B Pseudocode
	C Additional Results

