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ABSTRACT
Medical dialogue generation is an important yet challenging task.
Most previous works rely on the attention mechanism and large-
scale pretrained language models. However, these methods often
fail to acquire pivotal information from the long dialogue history to
yield an accurate and informative response, due to the fact that the
medical entities usually scatters throughout multiple utterances
along with the complex relationships between them. To mitigate
this problem, we propose a medical response generation model
with Pivotal Information Recalling (MedPIR), which is built on two
components, i.e., knowledge-aware dialogue graph encoder and
recall-enhanced generator. The knowledge-aware dialogue graph
encoder constructs a dialogue graph by exploiting the knowledge
relationships between entities in the utterances, and encodes it with
a graph attention network. Then, the recall-enhanced generator
strengthens the usage of these pivotal information by generating
a summary of the dialogue before producing the actual response.
Experimental results on two large-scale medical dialogue datasets
show that MedPIR outperforms the strong baselines in BLEU scores
and medical entities F1 measure.

CCS CONCEPTS
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Computing methodologies→ Discourse, dialogue and prag-
matics; Natural language generation.
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1 INTRODUCTION
Medical dialogue system (MDS) has received much attention due
to its high practical value. Previous works [5, 15, 21] usually model
the dialogue history as sequential text and employ the sequence-
to-sequence (Seq2Seq) models that built on large-scale pretrained
text encoder and decoder to generate medical responses.

To have a comprehensive understanding of the patient, medical
dialogues are always relatively long, and there are rich medical
terminologies scattered in multiple utterances. Some works [9, 19,
20, 22] introduce the external medical knowledge into the Seq2Seq
models and show that it can improve the performance. But these
works fall short in utilizing the complex medical relationships be-
tween different utterances, which is important for inducing the
next response. As shown in Figure 1, the entities tenesmus and en-
teritis indicate the symptom relationship between utterance#1 and
utterance#4. Due to ignoring the medical relationship between ut-
terances, the strong baseline model BERT-GPT-Entity [5] misses the
pivotal entity colitis in the generated response. Our MedPIR derives
the colitis from enteritis and generate a more accurate response.

How to acquire pivotal information from long dialogue history is
the core of MDS. Previous works heavily rely on the cross-attention
mechanism to use dialogue history, which falls short in locating the
key information from a long sequence. This issue may be caused
by the fact that the cross-attention mechanism is not trained with
explicit supervision signals when recalling pivotal information.
Recent works [8, 15, 26, 32] proposed to extract the medical key
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#1 Patient:最近总是拉红色糊状大便，有里急后重感。请问是什么
原因？男，24岁。 (I have been pooping red mushy stool recently, and
I feel tenesmus. What is the reason? male, 24 years old.)

#2 Doctor:您好！这种情况多长时间了？(Hello, how long has this
been going on? )

#3 Patient:有一个多月了，隔几天就有这种情况。(It has been more
than a month, and this happens every few days. )

#4 Doctor:这种情况考虑是肠炎的可能。最好是到医院消化内科就
诊。(It could be enteritis with such symptoms.You had better to see a
doctor in the gastrointestinal department.)

… …

#14 Patient: 这个检查完了，能知道是什么病因吗？现在特别担心
是不是病很严重。(After examination, can we figure out what’s the
cause? I'm really worried about my illness.)

Doctor: 可以初步判断病情，最
好做一下肠镜检查，初步判断是
结肠炎。(The condition can be
judged preliminarily, it is best to
have a colonoscopy, and the
preliminary consideration is the
colitis.)

BERT-GPT-Entity:肠镜检查不一定能看到病因。
(Colonoscopy may not reveal the cause.)

Ours without PIR:这种情况考虑肠炎的可能性比较大。
(It could be enteritis with such symptoms)

Ours: 不一定能看到病因，做个肠镜检查排除一下有没有慢性结肠
炎(It may not be able to get the cause, do a colonoscopy to rule out the
possibility of chronic colitis.)

结肠炎
colitis

症状
symptom

症状
symptom

肠镜
colonoscopy

检查
examination

里急后重
tenesmus

肠炎
enteritis

检查
examination

相关
Relate to

symptom

Figure 1: An excerpted medical dialogue from MedDG [21].
The colored words are key medical phrases and the under-
lined parts represent the pivotal information to induce the
response. The knowledge graph shown on the right is use-
full for diagnosing. The responses generated by the base-
lines and our proposed method are shown at the bottom.

phrases and sentences from the dialogue history and incorporate
them into response generation via the cross-attention mechanism
as well. However, these works bypass the fundamental problem of
utilizing medical relations between different utterances, and fail to
fully exploit the pivotal information from dialogue history during
response generation.

The above investigation suggest that it is important to model
the complex medical relationships between multiple utterances
and explicitly guide the decoder to make full use of the pivotal
information during response generation. In this work, we propose
a Medical response generation model with Pivotal Information
Recalling (MedPIR), where we enforce the generator to recall pivotal
information during generation. It mainly contains the knowledge-
aware dialogue graph encoder and recall-enhanced generator.

The knowledge-aware dialogue graph encoder exploits the knowl-
edge relationship between medical entities scattered in different
utterances to construct the dialogue graph. And its representation
acquired with graph attention networks is fed to the generator.
Hence, the knowledge-aware dialogue graph encoder can facili-
tate the generator to use pivotal medical information distributed
in multiple utterances from the perspective of the global dialogue

structure. The recall-enhanced generator is designed to explicitly
generate the pivotal information from long dialogue history first.
And then, the pivotal information sequence is used as the prefix of
response to prompt to generate more focused responses. In this way,
the recall-generator enforces the cross-attentionmechanism to fully
use the pivotal information from the encoder with the recall signal.
Moreover, the recall-enhanced generator also strengthens the in-
teraction between the response and pivotal information recalled
from dialogue history via the self-attention mechanism within the
decoder. Besides, we also retrieve relevant knowledge from the med-
ical knowledge graph CMeKG [3] and use the medical pre-trained
model to obtain an in-depth understanding of medical knowledge.

Our contributions can be summarized as follows:
1) We propose an MDS model with pivotal information recall-

ing (MedPIR). It can exploit the complex medical relationship be-
tween dialogue utterances via the knowledge-aware dialogue graph
encoder and recall pivotal information from long dialogue history
to produce accurate responses in the recall-enhanced generator.

2) We conduct extensive experiments on large-scale medical
dialogue datasets MedDG [21] and MedDialog [5].The experimental
results show that our proposed model achieves new state-of-the-art
results by outperforming previous strong baselines VRBot [15] and
BERT-GPT-Entity [21] on BLEU and medical entities F1 metrics.

2 RELATEDWORKS
Medical Dialogue System (MDS). Previous MDS works mostly

adopt a sequence-to-sequence framework [1, 30]. It consists of a
context encoder to encode the dialogue history and a decoder to
generate the response. Since the medical dialogue is often long
and contains professional medical information, it is difficult for the
attention mechanism to attend on the pivotal information in the dia-
logue history. To recognition key information in medical dialogues,
Du et al. [8] and Zhang et al. [32] extract patient’s symptoms and
medical status from history. Most recent, Li et al. [15] proposed
a variational medical dialogue generation model strengthens by
summarizing diagnosis history through a key phrase. However,
these method only extract key information by phrases and cannot
make fully use of the complicated pivotal information scattered in
dialogue history. Different from previous works, we build medical
dialogue graph that exploits medical relationship between utter-
ances, and train the model to generate the pivotal information
before producing the actual response, so that the model can learn
to focus on the key information.

Dialogue Graph Construction. To model the relationship between
utterances in a dialogue, Chen et al. [4], Sun et al. [28], Xu et al. [31]
propose to construct a dialogue structure graph based on dialogue
state transitions. Feng et al. [10] proposed to model the dialogue
structure of the meeting by modeling different discourse relations.
However, they did not exploit external knowledge base, which
is essential for producing medical dialogue response. In contrast,
we construct a knowledge-aware dialogue graph by incorporating
external medical knowledge from CMeKG.

Knowledge-grounded Dialogue Generation. Recent works [6, 11,
17] proposed to improve the performance of dialogue modeling by
retrieving relevant knowledge from the commonsense graph, such
as ConceptNet [27], and incorporating the object facts in generation.
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Dinan et al. [7], Kim et al. [13], Lian et al. [18], Zhao et al. [34] fa-
cilitated knowledge-ground dialogue generation by retrieving from
unstructured documents. Li et al. [15] and Lin et al. [19] used medi-
cal knowledge graph to guide response generation through copy
mechanism [24], but they did not use medical knowledge graph to
exploit dialogue structure. In this work, the external knowledge
is used to construct dialogue graph and is also encoded with a
knowledge encoder.

3 METHODOLOGY
The key information of medical dialogue often scatters throughout
the long history, making it difficult for traditional MDS models
to acquire pivotal information from the dialogue history. In this
section, we first describe the base medical response generation
model in Section 3.1. Then, we introduce two techniques to improve
the recalling of pivotal information from the dialogue – knowledge-
aware dialogue graph encoder (Section 3.2) and recall-enhanced
generator (Section 3.3). Finally, the training method of our proposed
method is presented in Section 3.4.

3.1 Base Model
Most previous works in dialogue response generation [5, 21] adopt
the sequence-to-sequence architecture to model the dialogue his-
tory and exploit external medical knowledge [15, 19, 20] to gen-
erate the response. For our base model, we follow Chen et al. [5]
and use BERT-GPT as the backbone of our encoder and the gen-
erator. Given a dialogue history between a doctor and a patient
𝑋 = (𝑋1, 𝑋2, ..., 𝑋𝑀 ), where 𝑋𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, ...𝑥𝑖, |𝑋𝑖 |) is 𝑖-th utter-
ance in the dialogue history with |𝑋𝑖 | tokens, the context encoder
encodes the concatenation of utterances to obtain the context en-
coding H𝑐𝑡𝑥 .

We also follow previous works [7, 15, 32] to retrieve external
knowledge and use a knowledge encoder to obtain the knowledge
encoding H𝑘 (more details are elaborated in Section 4.1.4). The
base model produces responses 𝑌 = (𝑦1, 𝑦2, ..., 𝑦 |𝑌 |) conditioned
on both H𝑐𝑡𝑥 and H𝑘 .

3.2 Knowledge-aware Dialogue Graph Encoder
Since the base dialogue model only views the medical dialogue his-
tory as a sequence of utterances, it is hard to model the diverse med-
ical causal relationships between different utterances [10], which
implies the pivotal medical information for inducing the next re-
sponse. To tackle this problem, we propose the Knowledge-aware
Dialogue Graph Encoder (KDGE) that constructs a dialogue graph
with knowledge, and then encodes the graph with a graph attention
network.

First, we transform the sequential dialogue history into a graph.
Each utterance is regarded as a vertex, and there are two types of
edge between the vertices. One type of edge connects the neigh-
boring utterances, which denotes the normal temporal relations
like previous works [4, 31]. The other type is knowledge-aware edge,
which connects the scattered utterances with medical relationships.
These knowledge-aware edges incorporates medical knowledge
from external medical knowledge graph into the dialogues, allow-
ing the model to represent complex medical relationships of the
utterances. More concretely, we first extract medical entities from

𝑿𝟏: I have … and I feel tenesmus . What …

𝑿𝟐: Hello, how longhas this been going …

𝑿𝟑: It has been more than a month …

𝑿𝟒: It could be enteritis with such symptoms ...

𝑿𝟓: Have the stool routine and colonoscopy…

𝑿𝟔: Had done colonoscope in August …

𝑋1 𝑋2

𝑋3𝑋4

𝑋5 𝑋6

symptom

examination
examination examination

symptom

examination

Figure 2: A part of medical dialogue and the corresponding
dialogue graph we construct. The blue edges connect the ut-
terances withmedical relations revealed bymedical entities,
the orange edges connect the neighbouring utterances.

each utterance, and then look up the relationships between them
from an external knowledge graph.1 We add a knowledge-aware
edge between two utterances if there exists a relationship between
the medical entities from the two utterances. Fig. 2 shows an exam-
ple of this construction process. In the left part, the bold words are
entities scattered in utterances, and the blue lines connect entities
with certain relations. The right part represents the constructed
knowledge-aware dialogue graph.

With the constructed knowledge-aware dialogue graph 𝐺 , we
then apply Relational Graph Attention Network (RGAT) proposed
by Busbridge et al. [2] to encode these pivotal relational information
in the dialogue. For each vertex 𝑣𝑖 in𝐺 , we use a transformer-based
encoder to encode its corresponding utterance, and compute the
average of the token representations as the utterance embedding.
Then the utterance embedding is concatenated with its speaker
embedding (a trainable embedding that represents the role of the
speaker) to form 𝑣𝑖 ’s initial vertex embedding v0

𝑖
. At last, RGAT is

used to compute the updated encoding of the vertices:

(v1, ..., v𝑀 ) = 𝑅𝐺𝐴𝑇

(
(v01, ..., v

0
𝑀 ),𝐺

)
. (1)

To perform dialogue recalling, we regard the context encoding
as initial history representation, and define recall score 𝛼𝑣𝑖 as the
importance of utterance 𝑋𝑖 for recalling as follows:

𝛼𝑣𝑖 = 𝜎

(
(W𝑞

𝑣h𝑐𝑡𝑥 )𝑇 (W𝑘
𝑣v𝑖 )

)
, (2)

where h𝑐𝑡𝑥 is mean-pooled from H𝑐𝑡𝑥 ,W
𝑞
𝑣 andW𝑘

𝑣 are trainable
parameters, 𝜎 denotes the sigmoid function. Then the final structure
encoding of 𝑋𝑖 is obtained from the addition of utterance encoding
h𝑖 and vertex encoding v𝑖 weighted by the corresponding recall
score:

h𝑠𝑡𝑐,𝑖 = 𝛼𝑣𝑖 (h𝑖 + v𝑖 ) . (3)
The concatenation of {h𝑠𝑡𝑐,𝑖 }𝑀𝑖=1 is the final structure encoding,
denoted as H𝑠𝑡𝑐 .

3.3 Recall-Enhanced Generator
In the base model, the generator first performs unidirectional self-
attention with the generated sequence to obtain the decoding state
at each time, and then exploits H𝑐𝑡𝑥 and H𝑘 by the cross-attention
mechanism. When this dialogue model is only trained to produce
the response, its attention mechanism is often overwhelmed with
1We choose CMeKG as our medical knowledge graph because it is the largest Chinese
medical knowledge graph that is publically available.
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𝑿𝟏: I have … and I feel tenesmus …

𝑿𝟐: Hello, how long has this been …

𝑿𝟑: It has been more than a month …

… …

𝑿𝟏𝟒: After the examination , can …

Context Encoder

Knowledge Encoder

Self-A�en�on & Layer Normaliza�on

+

Feed Forward Network

Layer Normaliza�on

Recall Pivotal Informa�on Generate Response

This kind … [R] After … my illness The condition… the colitis. [SEP][RSEP]

[CLS] This kind … [R] After … illness The condition … the colitis.

… …

Embedding Matrix

Gate

+

+

𝑯𝑠𝑡𝑐

𝑯𝑐𝑡𝑥

𝑯𝑘

Construct Graph

Retrieve Knowledge

query
Pooling & MLP

Pooling & MLP

bacteria
medicine

symptom

disease

examina�on

Recall -Enhanced Geneator

Knowledge-aware
Dialogue Graph Encoder

𝑋1 𝑋2

𝑋3𝑋4

𝑋5 𝑋6

examinationexamination

symptom

…

Figure 3: The overall architecture of MedPIR. The context encoder encodes dialogue history into context encoding first. Then,
the knowledge-aware dialogue graph encoder encodes dialogue graph and uses context encoding as the query to obtain the
final structure encoding. The knowledge encoder encodes the retrievedmedical knowledge fromCMeKG. The right part shows
the recall-enhanced generator.

the long dialogue history and fails to focus on the pivotal infor-
mation. We propose Recall-Enhanced Generator (REG) to explicitly
generate the pivotal information R before producing the response.
R is a brief summary that contains key medical information of the
dialogue history. After producing R, it will continue to generate
focused response as follows:

𝑦𝑡 = 𝑅𝐸𝐺 (H𝑐𝑡𝑥 ,H𝑘 ,H𝑠𝑡𝑐 , [R;𝑦<𝑡 ]), (4)

At training time, R is automatically constructed with medical
pretrained model PCL-MedBERT (more details introduced in Sec-
tion 3.4) to serve as a supervision signal to train the model to recall
pivotal information. At test time, MedPIR will first produce the
recalled information and then generate the response. There are
two main advantages of the method: 1) the qualified pre-generated
recall R provides a shortcut for the generator to access key his-
tory information through self-attention; 2) recalling strengthens
the cross-attention mechanism to attend to the pivotal information
provided by the encoders.

As shown in the right half of Fig. 3, tokens are first converted
to embedding through the embedding matrix as the initial hidden
state inputting to the generator. Then, REG sequentially generates
the recalled pivotal information R, a separator, and finally the
target response 𝑌 . Note that we use the average pooled knowledge
encoding as the embedding of separator to drive the knowledge
fusion during generation, as shown in the bottom-right part.

More specifically, REG consists of multiple layers decoder block.
Let h𝑙−1𝑡 denote the output of (𝑙−1)-th layer at 𝑡 step. The calculating
process in 𝑙-th block can be formulated as:

h𝑙𝑆,𝑡 = LayerNorm
(
SA(h𝑙−1𝑡 ) + h𝑙−1𝑡

)
, (5)

h𝑙𝐹 ,𝑡 = 𝐹𝑢𝑠𝑖𝑜𝑛 (H𝑐𝑡𝑥 ,H𝑠𝑡𝑐 ,H𝑘 ) + h𝑙𝑆,𝑡 , (6)

h𝑙𝑡 = LayerNorm
(
FFN(h𝑙𝐹 ,𝑡 ) + h

𝑙
𝐹 ,𝑡

)
, (7)

where SA denotes unidirectional self-attention in decoder, and FFN
is a feed-forward network.

To integrate different type of information from the encoders,
we introduce the Fusion(·) operation, a gating mechanism that
combines the context encoding H𝑐𝑡𝑥 , structure encoding H𝑠𝑡𝑐 , and
knowledge encoding H𝑘 . It first condenses multifaceted encoding
by taking h𝑙

𝑆,𝑡
as the query to perform cross-attention (CA) with

H𝑐𝑡𝑥 , H𝑠𝑡𝑐 and H𝑘 respectively, and then conduct weighted sum
of the condensed encodings with the gate scores:

𝐹𝑢𝑠𝑖𝑜𝑛 (·) = 𝑔𝑙𝑐𝑡𝑥CA
𝑙 (H𝑐𝑡𝑥 , h

𝑙
𝑆,𝑡 ) + 𝑔

𝑙
𝑘
CA𝑙 (H𝑘 , h

𝑙
𝑆,𝑡 )

+ 𝑔𝑙𝑠𝑡𝑐CA𝑙 (H𝑠𝑡𝑐 , h
𝑙
𝑆,𝑡 ),

(8)

where the gate scores 𝑔𝑐𝑡𝑥 , 𝑔𝑠𝑡𝑐 and 𝑔𝑘 are obtained by a linear
layer with sigmoid function:

𝑔𝑙 = 𝜎

(
W𝑙CA𝑙 (H, h𝑙𝑆,𝑡 )

)
. (9)

Then, the three gate scores are normalized by the softmax function
to obtain the final gate scores applied in Eq. (8).

At the last layer, an output projection layer is applied to get the
final generating distribution 𝑝𝑡 over vocabulary:

𝑝𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
W𝑣h

𝐿
𝑡 + 𝑏𝑣

)
. (10)

While recalling pivotal information and generating response,
the gate-based fusion network dynamically controls the inflows
of context encoding, structure encoding, and knowledge encoding.
The structure encoding obtained from KDGE provides complemen-
tary information to the context encoding, facilitating REG to recall
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pivotal information. This behavior can be demonstrated by the
visualization of the gate scores in the Fig. 4.

3.4 Training
3.4.1 Recall Supervision Signals. The ideal recall sequence R is a
summary of the current dialogue. But medical dialogue summary is
not annotated inmost cases. To deal with this problem, we introduce
PCL-MedBERT to select the utterances that are most relevant to the
target response as training signals. First, PCL-MedBERT encodes𝑋𝑖
and 𝑌 into h𝑟

𝑖
and h𝑟𝑦 respectively, and we use the cosine-similarity

between them to score 𝑋𝑖 :

𝑠𝑖𝑚(𝑋𝑖 , 𝑌 ) =
h𝑟
𝑖
· h𝑟𝑦

∥h𝑟
𝑖
∥∥h𝑟𝑦 ∥

. (11)

Then, we select 𝑘 utterances with highest similarity scores, de-
noted as 𝑋𝑟 = (𝑋𝑟

1 ...𝑋
𝑟
𝑘
). The concatenation of 𝑋𝑟 is used as the

target recall R for training recall generation. Despite that this is
a distantly-supervised method, the utterances extracted by PCL-
MedBERT2 usually contain pivotal information for generating an
informative medical response (see Fig. 5 for an example of extracted
and generated recall sequence). To further facilitate the model to
generate qualify R at inference, we also train it to identify pivotal
utterances by supervising the recall score 𝛼𝑣𝑖 (obtained by Eq. (2))
through binary cross-entropy:

L𝑟 =

𝑀∑︁
𝑖=1

−𝑟𝑖 log𝛼𝑣𝑖 − (1 − 𝑟𝑖 ) log(1 − 𝛼𝑣𝑖 ), (12)

where 𝑟𝑖 ∈ {0, 1} indicates whether 𝑋𝑖 is in 𝑋𝑟 . The higher 𝛼𝑣𝑖 , the
more important 𝑋𝑖 is for recalling.

3.4.2 Overall Training Objective. We minimize the negative log-
likelihood of the recall sequence R = (𝑠1, 𝑠2, ..., 𝑠 |R |) and response
𝑌 , where 𝑌 is generated after R:

LR =

|R |∑︁
𝑖=1

− log 𝑝 (𝑠𝑖 |𝑋, 𝑠<𝑖 ), (13)

L𝑌 =

|𝑌 |∑︁
𝑖=1

− log 𝑝 (𝑦𝑖 |𝑋,R, 𝑦<𝑖 ) . (14)

Then we jointly optimize L𝑌 , LR and L𝑟 weighted by 𝜆𝑌 , 𝜆R and
𝜆𝑟 , respectively:

L = 𝜆𝑌L𝑌 + 𝜆RLR + 𝜆𝑟L𝑟 . (15)
We present the overall training algorithm in Algorithm (1).

4 EXPERIMENTS
4.1 Settings
4.1.1 Datasets. Weadopt twomedical dialogue datasetsMedDG [21]
and MedDialog [5] to evaluate our proposed model. Both of them
are collected from online consultation websites. In MedDG, the
training/development/test sets contain 14864/2000/1000 dialogues
respectively, where each utterance is semi-automatically annotated
with 5 types with a total of 160medical entities. Li et al. [15] pointed
thatmost dialogues inMedDialog have less than 5 utterances, which
also contain few medical professional information. Thus, we follow
2https://code.ihub.org.cn/projects/1775

Algorithm 1: Training Algorithm
Input: training dialogue dataset D, initial parameter of

MedPIR 𝜃 , learning rate 𝛾 , PCL-MedBERT
1 while not converged do
2 foreach sample (𝑋,𝑦) in D do
3 Obtain 𝑋𝑟 by PCL-MedBERT;
4 Calculate {𝛼𝑣𝑖 }𝑀𝑖=1 by Eq.(2);
5 L𝑟 ←

∑𝑀
𝑖=1 −𝑟𝑖 log𝛼𝑣𝑖 − (1 − 𝑟𝑖 ) log(1 − 𝛼𝑣𝑖 ) ;

6 Calculate 𝑝 (𝑠𝑖 |𝑋, 𝑠<𝑖 ) and 𝑝 (𝑦𝑖 |𝑋,R, 𝑦<𝑖 ) by Eq.(10)
7 LR ←

∑ |R |
𝑖=1 − log 𝑝 (𝑠𝑖 |𝑋, 𝑠<𝑖 ) ;

8 L𝑌 ←
∑ |𝑌 |
𝑖=1 − log 𝑝 (𝑦𝑖 |𝑋,R, 𝑦<𝑖 ) ;

9 L ← 𝜆𝑌L𝑌 + 𝜆RL𝑅 + 𝜆𝑟L𝑟 ;
10 𝜃 ← 𝜃 − 𝛾∇L;
11 end
12 end

the refined version of MedDialog preprocessed by Li et al. [15]
to evaluate our method, where the training/development/test sets
include 32723/3000/3000 dialogues respectively.

4.1.2 Evaluation Metrics. We use BLEU [23] to evaluate the n-gram
lexical similarity, and use DISTINCT [16] to evaluate the diversity
of the generated responses. We also take medical entities F1 score
as an important metric, which can better evaluate the actuality of
medical response than lexical similarity metrics. In MedDG dataset,
we use the published script3 to recognize entities in responses, and
evaluate different types of entity respectively. Due to MedDialog
is not annotated with entities, we first collect medical entities in
CMeKG, then extract entities in responses by string matching with
the collected entities. Besides, we conduct human evaluation to eval-
uate the responses’ fluency, coherence, and correctness. The fluency
only measures whether the generated response is fluency, while
coherence measures whether the generated response is smooth
and logical with context. The correctness evaluates whether the
responses uses correct medical knowledge. Three metrics are scored
by annotators with a range from 1 (bad) to 5 (excellent).

4.1.3 Baselines. We use Seq2Seq [29] and HRED [25] as RNN-
based dialogue generation baselines. Compared to Seq2Seq, HRED
uses hierarchical encoders to model the dialogue context from to-
ken level and utterance level. DialoGPT [33] and BERT-GPT [5]
are transformers-based pre-trained dialogue response models. Di-
aloGPT is pre-trained on open-domain dialogue corpora, while
BERT-GPT is pre-trained on medical domain dialogue corpora. We
also compared VRBot [15], which summarizes patient states and
physician actions into phrases through variational method and gen-
erate the response. In entity annotated dataset MedDG, we also
compare with the entity concatenation method proposed by Liu
et al. [21], which predict the entities used in the response first, and
then concatenate the predicted entities with history to produce the
response. Such two stages method has been verified to be effective
in MedDG [21]. In the following, -Entity suffix is used to distinguish
the model with entity concatenation method.

3https://github.com/lwgkzl/MedDG
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Model
Sequence Metrics Entity Metrics

B@1 B@2 B@4 D@2 F1 F1-D F1-S F1-A F1-T F1-M
Seq2Seq [29] 0.3852 0.3487 0.3297 0.8561 0.113 0.096 0.068 0.395 0.096 0.055
Seq2Seq-Entity [21] 0.3884 0.3416 0.3380 0.8635 0.195 0.224 0.159 0.406 0.178 0.107
HRED [25] 0.3819 0.3365 0.3345 0.8670 0.109 0.097 0.064 0.383 0.098 0.053
HRED-Entity [21] 0.3942 0.3386 0.3255 0.8731 0.195 0.232 0.155 0.411 0.191 0.106
DialoGPT [33] 0.3122 0.3125 0.3266 0.7869 0.122 0.100 0.089 0.409 0.104 0.094
DialoGPT-Entity [21] 0.3193 0.3106 0.3446 0.7892 0.176 0.180 0.095 0.366 0.203 0.094
BERT-GPT [5] 0.4260 0.3593 0.3344 0.8893 0.146 0.138 0.099 0.399 0.106 0.101
BERT-GPT-Entity [21] 0.4286 0.3545 0.3187 0.8976 0.207 0.236 0.171 0.410 0.208 0.131
VRBot [15] 0.3455 0.3144 0.3306 0.7460 0.075 0.073 0.052 0.194 0.100 0.035

MedPIR (Ours) 0.4476 0.3866 0.3621 0.8915 0.227 0.263 0.175 0.413 0.213 0.144
− Knowledge-aware dialogue graph encoder (KDGE) 0.4109 0.3317 0.2888 0.8976 0.216 0.258 0.170 0.413 0.212 0.135
− Recall-enhanced generator (REG) 0.4247 0.3541 0.3353 0.8897 0.220 0.262 0.175 0.407 0.210 0.141
− Knowledge encoder 0.4379 0.3738 0.3573 0.8848 0.144 0.150 0.095 0.385 0.137 0.082
− KDGE & REG 0.4023 0.3308 0.2964 0.8946 0.220 0.260 0.175 0.412 0.212 0.139

Table 1: Automatic evaluation results on MedDG dataset. The models with ‘-Entity’ suffix denotes their inputs incorporate en-
tities by concatenating themwith history directly. The entity F1 scores of different categories: F1-D (Disease), F1-S (Symptom),
F1-A (Attribute), F1-T (Test) and F1-M (Medicine). B@n denotes BLEU-n and D@2 denotes DISTINCT-2.

4.1.4 External Knowledge. We exploit external knowledge follow-
ing the previous knowledge-grounding dialogue generation meth-
ods [7, 15], where the retrieved knowledge is encoded and fused
in the decoder. As verified by Liu et al. [21], predicting the med-
ical entities used in the next response is helpful for informative
response generation. Thus, we train our knowledge retrieval model
to retrieve medical entities might be used in the response.

First, the medical entities appeared in the dialogue history are
used as center nodes to select sub-graphs with one-hop relation in
CMeKG. Then, we only retrieve entities contained in sub-graphs,
which reduces the searching space for effective retrieval. Inspired
by the bi-encoder dense retrieval method [12], we employ two
independent PCL-MedBERT to encodes dialogue history 𝑋 and
any entity 𝐸 (consists of several tokens) respectively, and take the
representation at the [𝐶𝐿𝑆] token as the encoder’s output.

Denote the dialogue history encoding as h𝑋 , and the entity en-
coding as h𝐸 , the inner product of h𝑋 and h𝐸 denotes the score to
retrieve this entity. Let 𝐸+

𝑖
be one of the positive entity appeared in

the target response, alone with 𝑛 negative entities {𝐸−
𝑗
}𝑛
𝑗=1 not ap-

peared. We optimize the loss function as the negative log likelihood
of the positive entity:

L𝑋,𝐸+
𝑖
= − log

exp(hT
𝑋
h𝐸+

𝑖
)

exp(hT
𝑋
h𝐸+

𝑖
) +∑𝑛

𝑗=1 exp(hT
𝑋
h𝐸−

𝑗
)
. (16)

The losses produced by all positive entities in each example are
averaged as the final loss to train the retriever.

We retrieve top 20 entities for each dialogue history. This can be
done with a single forward pass over datasets, where the retrieved
entities are not changed during training and inference. Then, we
employ an another PCL-MedBERT as the knowledge encoder to en-
code the retrieved entities. The retrieved entities are sorted by their

retrieval scores and are concatenated by [𝑆𝐸𝑃] token to a sequence.
The knowledge encoder encodes the sequence to knowledge encod-
ing H𝑘 , and the encoder will be finetuned during training.

4.1.5 ImplementationDetails. For knowledge-aware graph encoder,
the vertex embedding size and speaker embedding size is 512, and
we use 2 layers RGAT [2] to encode the graph. For recall supervised
signals construction, we set utterance number 𝑘 to 3 in MedDG
and 2 in MedDialog, and constrained the recall utterances in the
last six rounds of dialogue history. For the RNN-based models,
the encoder and decoder consist of one layer LSTM. Both the size
of word embedding and hidden states are set to 300. For VRBot,
we do not use the additional annotation of response intention for
comparable experiments. For pre-trained models BERT-GPT and Di-
aloGPT, the configurations are following the original works. We use
exploitable pre-trained parameters of BERT-GPT to initialize our
model. Due to its decoder uses encoding from encoder through self-
attention, we initialize the cross-attention modules from scratch.
We also pre-trained our model on medical domain corpus that used
in BERT-GPT to improve the performance. For entity prediction
in MedDG, we use 10-fold cross-validation models and ensemble
results by majority voting method. The learning rate is initialized
to 10−4 and 10−5 for the RNN-based model and pre-trained model.
The loss coefficients 𝜆𝑌 and 𝜆R are set to 0.9, and 𝜆𝑟 is set to 0.1. We
use the Adam optimizer [14], learning rate warm-up over the first
3000 steps and linear decay of the learning rate. Models generate
responses through beam-sample4 algorithm, where beam-size and
topk are set to 5 and 64. Other generation hyper-parameters keep
default settings. We use the NLTK toolkit with SmoothFunction7 to
calculate BLEU scores following Liu et al. [21].

4https://huggingface.co/transformers/internal/generation_utils
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4.2 Results and Analysis
The automatic evaluation results are shown in Table 1 and Table 2.
MedPIR outperforms other models both on BLEU and F1 metrics.
As shown in Table 1, BERT-GPT-Entity is the model with the best
all-around performance among comparative models. Our model
outperforms the strongest baseline model BERT-GPT-Entity on
BLEU-1/2/4 scores by a large margin, and outperforms it by 2 points
on F1. In addition, MedPIR outperforms BERT-GPT∗ by 3 points on
F1 and 1 points on BLEU-1 (see Table 2). These experimental results
indicate that the proposed model is superior to previous models in
terms of fluency and accuracy. We can see that transformer-based
models DialoGPT, BERT-GPT∗ and MedPIR performs significantly
better than RNN-based models, e.g. DialoGPT outperforms VRBot
by 4 points on F1, suggesting the advantages of transformers-based
models in larger dataset. Moreover, the experimental comparisons
in DISTINCT-2 metric suggest our model reaches a competitive
level in generating diverse responses when achieving new SOTA
results on other evaluation metrics.

We also observe that all the models with -Entity improves the
BLEU-1 and F1 scores. It verifies the medical entities are useful
knowledge for medical response generation. But we also observe
that the entity concatenation method is unstable, e.g., BERT-GPT-
Entity obtain worse BLEU-4 than BERT-GPT. It may be caused by
the low medical entities prediction accuracy. In addition, it is costly
to annotate the entities entailed in utterances. But it is necessary
for the entity concatenate method. By comparing the experimental
results of MedPIR-KDGE & REG on F1 metric, we found that our
knowledge retrieval strategy and gate-based fusion network are
more effective and stable than other models.

Model B@1 B@2 B@4 D@2 F1
Seq2Seq [29] 0.301 0.225 0.163 0.791 0.063
HRED [25] 0.299 0.226 0.180 0.785 0.080
DialoGPT [33] 0.275 0.204 0.155 0.706 0.128
BERT-GPT∗ [5] 0.298 0.232 0.202 0.821 0.145
VRBot [15] 0.281 0.203 0.147 0.668 0.081

MedPIR (Ours) 0.308 0.237 0.210 0.811 0.174
− KDGE 0.291 0.229 0.201 0.825 0.158
− REG 0.285 0.229 0.202 0.813 0.163
− Knowledge encoder 0.296 0.231 0.202 0.817 0.164
− KDGE & REG 0.291 0.227 0.187 0.827 0.159

Table 2: Automatic evaluation results on MedDialog dataset.
BERT-GPT∗ has been pre-trained on the MedDialog. REG
indicates recall-enhanced generator, and KDGE indicates
knowledge-enhanced dialogue graph encoder.

4.2.1 Ablation Study. We also take the ablation experiments to
verify the effects of different modules in MedPIR, which are pre-
sented in the last four lines of Table 1 and Table 2. The experimen-
tal results suggest both knowledge-aware dialogue graph encoder
(KDGE) and recall-enhanced generator (REG) improve the med-
ical response generation. When we dropout the REG, where the

generator produces responses directly, there is an obvious perfor-
mance degradation on BLEU scores and a slight decrease on F1
score. It suggests the effectiveness of training the model generates
pivotal information weakly supervised by PCL-MedBERT. When
we only dropout the KDGE (− KDGE), the performance decrease
significantly on BLEU and F1 scores. It indicates that the KDGE is
vital to facilitate the recall-enhanced generator in MedPIR. Though
the model is trained to generate recall, there is only a modest im-
provement without structure encoding. It is because the structure
encoding captures the causal information from dialogue structure,
supporting the model recalling long dialogue history effectively.
Finally, when we dropout KDGE & REG, the performance decreases
the most on BLUE metrics, indicating the effectiveness of the two
main components in MedPIR.

As shown in Table 2, the REG and KDGE improve less in Med-
Dialog than in MedDG. We suggest that it may be attributed to the
fact that the length of dialogue in MedDialog is relatively short,
which is also pointed by Li et al. [15]. The average number of utter-
ances in MedDialog (9.5, the version cleaned by Li et al. [15]) is less
than MedDG (21.5). It shows that MedPIR could focus on pivotal
information scattered in long dialogue history and has preferable
performance as the conversation length increases.

4.2.2 Analysis of Multifaceted Encoding. We select an example
from MedDG and draw the picture to show how the model uses di-
alogue structure encoding, context encoding and knowledge encod-
ing during recalling pivotal information and generating response.
As shown in Fig. 4, the blue and red dots represent tokens of re-
sponse and recall, respectively. The horizontal axis and vertical axis
show the gates’ scores 𝑔𝑠𝑡𝑐 and 𝑔𝑐𝑡𝑥 , respectively, and the scale of
a dot is proportional to 𝑔𝑘 . We observe that recall tokens distrib-
ute in the bottom-right part, and response tokens distribute in the
upper-left part. It indicates that the model mainly uses structure en-
coding when recalling pivotal information and mainly uses context
encoding when generating the response. This distribution shows
that KDGE provides complementary information to the context
encoding and facilitates REG to recall pivotal information. Though
the response generation uses less structure encoding, the generator
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Figure 4: The blue dots and red dots represent tokens of re-
sponse and recall respectively. The scale of the dot is propor-
tional to the knowledge gate score.
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Dialogue History Generated Recall Retrieved Knowledge Generated Response

𝑿𝟓:这种情况考虑是肠炎的可能，最好是到医院消化内科就诊。
It could be enteritis with such symptoms. You had better to see a doctor in the
gastrointestinal department.

这种情况考虑是肠炎的可能，最好
是到医院消化内科就诊。[SEP] (It
could be enteritis with such
symptoms. You had better to see a
doctor in the gastrointestinal
department. [R] ) 这个检查完了，
能知道是什么病因吗？现在特别担
心是不是病很严重。[R] (After the
examination, can we figure out
what’s the cause? I'm really worried
about my illness. [R])红色糊状物考
虑病情已经加重，最好是到消化内
科复查肠镜。[RSEP] (Red mushy
stool means the illness is aggravated,
you’d better to go to the hospital
digestive department to review
colonoscopy. [RSEP])

不一定能看到病因。做个肠镜检
查，排除一下有没有慢性结肠炎。
(It may not be able to get the cause,
do a colonoscopy to rule out the
possibility of chronic colitis.)

𝑿𝟕: 8月份做过肠镜，说是有盲肠息肉，已经去掉了。之前检查是因为拉完，
滴血。现在是一直拉红色糊状物。
Had done bowel mirror in August, there was caecal polyp, and I had taken it out.
The previous test was done because of the bleeding. Now I’m pooping the red
mushy stool all the time.

𝑿𝟖:红色糊状物考虑病情已经加重，最好是到医院消化内科复查肠镜。
Red mushy stool means the illness is aggravated,you’d better to go to the hospital
digestive departmentto review colonoscopy.

Target Response

可以初步判断病情，最好是做一
下肠镜检查。初步判断是结肠炎。
(The condition can be judged
preliminarily, it is best to have a
colonoscopy. The preliminary
considerationis the colitis.)

𝑿𝟗:还要化验血常规，长期大便出血会引起贫血。
Still need to test blood routine. Long-term defecatebleeds can cause anemia.

𝑿𝟏𝟎:因为伴有里急后重感，一定要注意查找病因。
Becauseaccompaniedby tenesmus, we must find the cause.

𝑿𝟏𝟒: 这个检查完了，能知道是什么病因吗？现在特别担心是不是病很严重。
After the examination, can we figure out what’s the cause? I'm really worried
about my illness.

结肠炎
colitis

症状
symptom

便脓血
bloody purulent stool

症状
symptom

肠镜
colonoscopy

检查
examination

里急后重

Tenesmus

肠炎
enteritis

症状
symptom

症状
symptom

肠镜
colonoscopy

检查
examination

出血
bleeding

里急后重

Tenesmus

Figure 5: An example of recall and response generated by MedPIR in MedDG. The recalled utterances are colored correspond-
ingly in the dialogue history. The bold entities in the history are used to retrieve knowledge. The retrieved knowledge with
red-colored words are used in the generated response.

can access the pre-generated recall sequence by self-attention. The
scales of blue dots are larger than red dots, indicating the model
access knowledge information more when generating the response.

4.2.3 Human Evaluation. We conducted the human evaluation of
responses in the aspects of fluency, consistency, and entity correct-
ness. We randomly selected 100 samples from the test set of MedDG,
and the corresponding responses generated bywell-performedmod-
els, e.g., DialoGPT, DialoGPT-Entity, BERT-GPT, BERT-GPT-Entity
and MedPIR. To ensure the fairness of assessment, the responses of
each sample are shuffled and then provided to volunteers for evalu-
ation. The final statistic results are shown in Table 3. Three manual
evaluation indicators show that our proposed model still performs
the best and far surpasses other models. Especially in aspects of
coherence and correctness, MedPIR significantly outperforms other
compared models, suggesting that the proposed method improve
the quality of responses.

4.2.4 Case Study. We present a case to show the pivotal informa-
tion recalling method in our MedPIR in Figure 5. The model gener-
ates recalled utterances, including the history utterances 𝑋5, 𝑋14

and 𝑋8 in order, which are colored correspondingly in the dialogue
history. The retrieved knowledge includes the symptoms and ex-
aminations about enteritis and colitis are colored by corresponding

Model Fluency Coherence Correctness
DialoGPT 3.69 3.46 2.76
DialoGPT-Entity 4.30 3.20 2.84
BERT-GPT 4.36 3.73 3.06
BERT-GPT-Entity 4.35 3.74 3.13
MedPIR 4.42 3.86 3.25

Table 3: Results of human evaluation. The maximum score
of each indicator is 5.

background colors in the dialogue history. MedPIR generates the
responses conditioned on the retrieved knowledge and recalled
utterances, which are presented in the second and third columns.
The generated response and target response are shown in the last
column. We can observe that the generated response’s semantics is
similar to the target response, where both of them express that the
patient may suffer the colitis and should do a colonoscopy. The case
indicates MedPIR can generate responses with pivotal information
recalling and use retrieved knowledge effectively.

5 CONCLUSION
In this paper, we propose a medical response generation model
with pivotal information recalling (MedPIR) to explicitly generate
the pivotal information before producing the response. In this way,
the generator strengthens the interaction between the response
and pivotal information from dialogue history. MedPIR mainly
consists of a knowledge-aware dialogue graph encoder (KDGE) and
a recall-enhanced generator (REG). KDGE constructs a dialogue
graph by exploiting the knowledge relationships between entities
in the utterances, and encodes the graph through a graph encoder.
REG equipped with the gate module to incorporate multifaceted
encodings, and it recalls the pivotal information and generates the
response successively. Our experiments on MedDG and MedDialog
datasets demonstrate the effectiveness of MedPIR.
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