
HAL Id: hal-03771301
https://hal.science/hal-03771301

Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Egress-TT Configurations for TSN Networks
Pierre-Julien Chaine, Marc Boyer -Onera, Claire Pagetti, Franck Wartel

To cite this version:
Pierre-Julien Chaine, Marc Boyer -Onera, Claire Pagetti, Franck Wartel. Egress-TT Configurations
for TSN Networks. International Conference on Real-Time Networks and Systems RTNS 2022, Jun
2022, Paris, France. �hal-03771301�

https://hal.science/hal-03771301
https://hal.archives-ouvertes.fr

Egress-TT Configurations for TSN Networks

Pierre-Julien CHAINE – Airbus – Toulouse, France
pierre-julien.chaine@airbus.com – ORCID: 0000-0002-5062-8694

Marc BOYER – ONERA / DTIS
Université de Toulouse, F-31055 Toulouse, France

Marc.Boyer@onera.fr – ORCID: 0000-0003-2910-4738

Claire PAGETTI – ONERA / DTIS
Université de Toulouse, F-31055 Toulouse, France

Claire.Pagetti@onera.fr – ORCID: 0000-0001-7265-1839

Franck WARTEL – Airbus Defence and Space – Toulouse, France
franck.wartel@airbus.com – ORCID: 0000-0002-5265-647X

Abstract

Latency and jitter are two main requirements when controlling cyber-
physical systems, especially in case of remote control through a network.
When jitter is a major concern, one can either control the jitter all along
the path, or compensate it by buffering at reception. This is usually
done by the destination host, but it can also be done by the last network
node. We call this approach Egress TT. This paper presents Egress TT,
its benefits in terms of configuration time and applicative constraints.
It also presents two possible implementations within a Time Sensitive
Networking context.

1 Introduction

The control of a cyber-physical system by a computer is often done by sending
messages through a network. The adequate behaviour of the system depends
not only on the latency in the network but also on its variability, called jitter.

One common way to provide low jitter in embedded networks consists in
controlling it all along the path, by carefully choosing the emission instants
(also known as time slots) of all messages on all hops, i.e computing a schedule.
Such time-triggered behaviour is called subsequently End-to-End TT.

Another way, mostly done at application level, consists in compensating the
latency variability by buffering messages and delivering them at the correct
instant. This is the approach of LET - Logical Execution Time [13]-. Our
proposal, that we call Egress TT (called LETT by [3]), consists in doing this
buffering at the egress node of the network. The purpose of that is to reduce

1

the development effort at application level by relocating the on-time delivery
capability into the network. In these approaches, latency is traded for jitter.
This is however not always an issue: in some real-time systems, the requirement
is not to have the smallest latency, but rather to respect a deadline constraint.
Therefore a system designer will be able to choose between one approach or the
other depending on its needs.

Moreover, End-to-End TT has some drawbacks. First determining its sched-
ules is computationally expensive and scalability is a real issue. Second, it re-
quires that all hops along the path are able to respect this schedule. It also has
advantages as the determinism and the ability to guarantee small latencies.

TSN is composed of several standards, extending Ethernet with several real-
time mechanisms, among which IEEE 802.1Qbv [16] that allows to implement
the End-to-End TT approach [8, 27, 10, 14] and benefits from its advantages.
But when considering TSN, a third drawback appears, related to the queue-
based implementation of TSN. If two frames f1 and f2 are supposed to be
emitted one after the other, they have to be put in the queue in the same
order. Moreover, if f1 is not produced, its slot can be used by f2, breaking
the pre-computed schedule, as identified by [8] and recalled in section 3.2. This
means that the End-to-End TT approach applied to TSN has an impact on data
production and task scheduling.

Egress TT tackles the drawbacks listed for End-to-End TT, especially in
a TSN context. First, in Egress TT, not all devices need to implement TSN
but only the very last device in the path of any flow. The others can rely
on standard Ethernet (cf. [15]). This will facilitate the upgrade of networks
by not replacing all devices with TSN-capable ones. Second, as we propose in
this paper, Egress TT configuration can be implemented using only priority
based arbitration along the path, except on the last hop port in the path of any
flow. This approach drastically reduces the computation effort thanks to the
reduction of the number of schedules having to be computed (the experiments
will show that scalability is not anymore an issue). Lastly, Egress TT was also
designed to minimize the constraints on the scheduling of the tasks in charge of
data production.

We propose two possible implementations of Egress TT over TSN networks,
Exclusive Queue Allocation and Size Based Isolation, in order to fulfil fault-
tolerance requirements. Indeed, when a message of a flow is lost, it should not
affect any other flow. This comes with a price: the number of flows in a last hop
port is limited. We have proposed a constraint programming formalization to
compute Egress TT configurations and made a thorough experiments campaign
to assess the quality of the approach, in particular compared to End-to-End
TT. Experiments confirm that latencies are traded off for jitter i.e. Egress
TT configurations induce greater latencies than End-to-End TT. Nevertheless,
they offer other advantages (see above) that are more significant in industrial
systems.

The paper is organized as follows: Section 2 introduces the system model
and Section 3 presents TSN 802.1Qbv. Section 4 describes the problem state-

2

ment. Section 5 introduces the concepts of Egress TT and section 6 details the
constraint programming methodology to compute Egress TT configurations.
Finally, we compare Egress TT to End-to-End TT via a large campaign of
experiments in Section 7.

2 System Model

2.1 Host model

At emission, when an application produces a message, it is put into a mailbox
(ISO L7) and then placed in the appropriate queue at MAC level (ISO L2),
waiting for emission.

Definition 1 (Deposit / Emission instants). Let m be a message. We define
the deposit instant TSAP(m) as the instant at which m is deposited in the L2
service access point. We define the emission instant Te(m) as the instant at
which the first bit of m is emitted on the medium.

Definition 2 (Reception / Delivery instants). Let m be the a message. We
define the reception instant Tr(m) as the instant at which the last bit of m is
received at receiver end-station physical level. We define the delivery instant
Td(m) as the instant at which m is provided to the receiver application.

L7

L2

PHY

TSAP(m)

Te(m)Tr(m)

m

m

m m

m

≤ bL7→L2 ≤ bL1→L7

Figure 1: Frame behaviour on the network

Hypothesis 1 (Restricting the problem at the flow level). We assume we know
two bounds bL7→L2, bL1→L7 on the time needed to cross the host layers: forall
message m: Te(m)− TSAP(m) ≤ bL7→L2, Td(m)− Tr(m) ≤ bL1→L7.

This is illustrated in Fig. 1. As a consequence, the configuration problem
can be defined and solved solely at the network level.

2.2 Flow-level model

Definition 3 (Flow). Let F be the set of flows. A flow f ∈ F is characterized
by the tuple 〈Srcf , LDestsf ,Sizef , Pf 〉 where:

• Srcf is the source end-station which emits the messages;

3

• LDestsf is the set of receiver end-stations;

• Sizef is the constant size in bytes of one message.

• Pf is the period of the flow. Thus, a flow f is a sequence of messages (or
frames). We denote by fl the l-th message of f ;

Hypothesis 2. In this paper, one message equals one frame i.e. there is no
applicative fragmentation.

Remark 1. Let τfl the transmission duration of fl i.e. the duration between
the emission of the first and the last bit of fl. Since the message size per flow
is constant, the transmission duration per flow is constant too.

Definition 4 (Ref (fl)). We define the reference instant of fl as Ref(fl) =
l × Pf and thus the message fl will be enqueued during the interval TSAP(fl) ∈
[Ref(fl),Ref(fl+1)[.

Definition 5 (PMAF). The system period is the hyper-period of all the flows
and it is denoted by PMAF.

Ref (fl) Ref (fl+1)

Pf

TSAP (fl)
Ref(fl) + B−fl

Release(fl) = Ref(fl) + B+
fl

Figure 2: Ref (fl), TSAP(fl) and Prod(fl)

Applications come with a set of flow contracts, where each flow contract
consists of a temporal window for messages production (see Fig. 2) so that
they respect their performance, safety and development requirements (see Sec-
tion 2.3). Such a contract is bargained off-line between applications and plat-
form providers. It is expected that applications always respect their contracts
and that the on-board network ensures the quality of service of each application
as long as it fulfils its contracts.

Definition 6 (Application Flow Contract). Let fl be the l-th message of f .
The production contract associated to fl is the interval Prod(fl) = [Ref(fl) +
B−fl ,Ref(fl) + B+

fl
] ⊆ [Ref(fl),Ref(fl+1)[, where B−fl (resp. B+

fl
) is the earliest

(resp. latest) production offset. The upper bound of Prod(fl) is called Release
instant and denoted Release(fl)= Ref(fl) +B+

fl
. The production traffic contract

for a flow f , denoted Prod(f), is defined by Prod(f) = ∪l∈NProd(fl).

This definition entails that ∀f ∈ F,∀l ∈ N, TSAP(fl) ∈ Prod(fl) i.e. Ref(fl)+
B−fl ≤ TSAP(fl) ≤ Release(fl).

Hypothesis 3 (Synchronization). We assume that emitters and egress nodes
are synchronized and the synchronization error is insignificant with respect to
the order of magnitude of the requirements presented hereafter.

4

2.3 Flows’ Requirements

Performance Requirement 1 (Deadline). Let a flow f ∈ F, it comes with a
deadline constraint so that Tr(fl) ≤ fl.deadline and fl.deadline ≤ Ref(fl) + Pf .

Definition 7 (Reception Jitter). The reception jitter [25] or jitter between
two frames fl and fm is defined as the variability of their reception instants, it
is denoted Jitfl,m such that ∀f ∈ F,∀l,m ∈ N, Jitfl,m = |(Tr(fl) − Ref(fl)) −
(Tr(fm) − Ref(fm))|. The overall jitter of a flow is denoted Jitf such that
∀f ∈ F, Jitf = max

l,m
Jitfl,m .

Performance Requirement 2 (Jitter). A flow f also has a jitter constraint
defined as f .jitter ∈ N∪{NA} where NA stands for not applicable (thus no jitter
constraint) and otherwise f .jitter is the maximum accepted jitter.

We refer to the flows with jitter constraints as jitter flows and to the others
as no jitter flows, and we denote Fj = {f ∈ F|f .jitter 6= NA} the set of jitter
flows.

In addition to performance, safety requirements are often required. In par-
ticular ARINC 664 [1] or TTEthernet [24] networks offer Fault Isolation mech-
anisms. Among the faults supported by those networks, we restrict ourselves to
message loss.

Definition 8 (Message loss independence). A system is considered as message
loss independent if for all flow f , the loss of messages of f has no negative
impact on the performance (deadline/jitter) of the other flows.

Safety Requirement 1. Any configuration of the network should fulfill the
message loss independence requirement.

A configuration shall also have the slightest impact on applications, meaning
that the application development should be the least impacted by the network
configuration.

Development Effort Requirement 1. Any configuration should minimize
the constraints on data production1, i.e. minimizing B−fl (ideally down to 0)

and maximizing B+
fl

(ideally up to Pf).

3 TSN configuration model

The embedded network is composed of several TSN or Ethernet-capable devices
and links. A configuration is the composition of the local configurations of each
device.

1see Def. 6

5

3.1 Output ports model

Each device (end-station or switch) is composed of a certain number of output
ports. An output port is composed of up to eight internal queues, also known as
traffic classes. These queues have priorities, and come with several mechanisms
to do traffic shaping, bandwidth sharing, etc.

Definition 9 (Output port). We denote the set of output ports in the net-
work by P. An output port p = (q0, . . . , q7, TS) is composed of eight2 internal
queues qj and a Transmission Selection (TS). Each queue q is associated with
a Transmission Gate (TGq).

We summarize the output port model in Fig. 3. Both internal queues and
TS will rule when frames access the medium. This TSN representation also
applies to Ethernet output port with restricted options as detailed just after.
Transmission Selection Algorithm. TSN offers to add a Transmission Se-
lection Algorithm (TSA) after each queue, but we do not consider them in this
paper and just mention it for completness.
Transmission Gates. This mechanism, also referred to as Time Aware Shaper,
adds the possibility for internal queues, in both switches and end-stations, to
be regulated according to time-driven rules. In effect, there is a gate associated
to each internal queue which can be opened or closed. The schedule switching
from open to closed and back is pre-computed off-line, is periodic and is called
a Gate Control List (GCL).

Definition 10 (Gate Control List). Let p a port, its associated gate control list,
denoted GCL(p)3, is defined by the list [e0, . . . , em−1] of m events ei = 〈si, ti, di〉
where

• si = 〈si,0, . . . , si,7〉 is the status of the gates si,j ∈ {o, C} where o stands
for open and C stands for closed,

• ti ∈ N is the time offset from the start of e0 at which event ei starts.

• di = ti+1 − ti is the duration during which the gate state si will hold.

In particular, the period of repetition of the pattern is
∑
di and gcd(di) is called

gate granularity.

Hypothesis 4 (Gate Control List period). The system we consider is periodic,
it is sufficient to compute the gate schedules on the hyper-period of all its flows.
Therefore,

∑
di = PMAF.

Remark 2. Ethernet-capable devices do not have transmission gates and this
is equivalent to the gates being open all the time, i.e. ∀p,GCL(p) = [e0] =
[〈〈o, . . . , o〉 , 0, PMAF〉].

2Without loss of generality, we assumed a fixed number of queues.
3This is a simplification of IEEE 802.1Q standard where OperControlList is the only con-

sidered parameter.

6

Figure 3: Scheduled Traffic Parameters

Transmission Selection A frame is emitted when it is available for trans-
mission (cf. Def. 11) and has the highest priority among frames available for
transmission (with #7 the highest priority and #0 the lowest).

Definition 11 (Frame available for transmission). A frame (or message) m in
queue q of output port p is ”Available for transmission” at instant t when:

1. The frame is the head of q,

2. TGq is open at instant t,

3. TGq remains open long enough to transmit the frame.

Remark 3 (Frame Preemption). We do not consider TSN standard for frame
preemption [17] in this study. Such evolution could be done with inspiration
from [29] by slightly redefining the equation of Def 11.

3.2 Frame loss problem due to Transmission Gates

TSN relies on transmission gates mechanism schedules per queue and may gen-
erate non deterministic behaviour at message level in the presence of failure.
This concept is illustrated with two figures: in Fig. 4a, the nominal expected
behaviour (so as to cope with jitter requirements for gm) is shown. Fig. 4b
presents a scenario where message fl is lost, leading gm to be sent in place of
fl, creating an unwanted jitter.

This is not compatible with safety requirement 1. Two constraints exist in
the literature [8] to cope with this issue.

• flow isolation: a queue is dedicated to a flow from its first to its last
message in an hyper-period. Therefore, at each instant, only messages

7

time
Closed fl Closedgm Closed

fl

gm

(a) Nominal expected behaviour

time
Closed gm Closed Closed

fl

gm

Additional jitter for gm

(b) Message Loss

Figure 4: Need for Queue/Flow/Frame Isolation

from a single flow can be present in the queue and interleaving of frames
from different flows is not allowed;

• frame isolation: a queue can be shared by several flows, but at each in-
stant, only messages from a single flow can be present in the queue.

All cases prevent messages from different flows to be in the queue at the same
time. Thus, a message loss cannot affect the behaviour of messages of other
flows.

4 Problem Statement

We now formulate what computing valid configurations (i.e. satisfying require-
ment in section 2.3) means at system level.

4.1 System configuration

A system configuration is composed of a flow-level configuration and a network-
level configuration.

Definition 12 (Flow configuration). The configuration of a flow f is Config(f) =
[(p1,FtQMp1), . . . , (pl,FtQMpl

)] where

• Pathf = p1, . . . , pl is the path followed by f , that is the sequence of output
ports that are crossed;

• FtQMpj is the associated Flow to Queue Mapping on each port pj. In
particular, since a port is defined by p = (q0, . . . , q7, TS), FtQMp(f) ∈
{q0, . . . , q7};

Hypothesis 5. We assume that the routing of the flows along the switches is
fixed and static. Such an hypothesis is standard in the literature for embedded
systems. This could be relaxed in a future work.

A network-level configuration consists in finding a configuration for all the
output ports.

Definition 13 (Port configuration). The configuration of a port p ∈ P is equiv-
alent to finding a GCL configuration. Thus Config(p) = GCL(p).

8

In summary, computing a system configuration consists in determining:{
∀f ∈ F,∀p ∈ Pathf ,FtQMp(f)

∀p ∈ P,GCL(p)
(1)

We want to compute valid configurations that fulfil all the requirements given
in Section 2.3.

4.2 Optimization Criteria

The development effort requirement is ensured with an optimization criteria:
maximize the production window (cf. Def. 6) of the configurations. We propose
the following optimization criteria over a given window (the MAF):

maximize
∑

∀f∈F s.t. f .jitter6=NA

(Release(fl)− Ref(fl))
2 (2)

Rationale 1. We chose a quadratic cost function to reduce the solution to
homogeneous solutions only, where no flow is compensating for another flow
(e.g. one flow has a tiny production window and another flow compensate with
a huge one) as requested by our industrial use case. This function could be
modified depending on specific use case requirements.

5 Egress TT Overview

The usual way to solve the problem presented in the previous section is to
compute End-to-End TT configurations. Our approach, Egress TT, is slightly
different and offers a better trade-off with respect to our requirements.

5.1 What is Egress TT?

Most of existing works focus on End-to-End TT configurations (fully time trig-
gered) using the Transmission Gates mechanism [16].

Definition 14 (End-to-End TT configurations). All flows are scheduled in a
time triggered way on all ports in their path. The reception and transmission
instants of any frame of any flow in all input/output ports are fixed, and known
a priori.

Fig. 5 illustrates an End-to-End TT configuration with one emitter, one
receiver and two switches (SWA and SWB). By fixing the transmission instant
of all frames in all hops, the latency and jitter of the flows are controlled along
the path. In order to cope with the safety requirement, most methodologies rely
on Flow Isolation or Frame Isolation. Unfortunately, those require lower bound
on the message emission (i.e. B−fl 6= 0) and therefore, the existing End-to-End
TT configurations do not comply with Development requirement 1.

9

time

Srcf-L2

Srcf-PHY

SWAoutput

SWBoutput

(L1) LDestsf

Ref (fl)
fl

Prod(fl)

TSAP(fl)

fl

Fixed fl

Fixed fl

Fixed fl

Fixed

Figure 5: End-to-End TT Configuration

Definition 15 (Egress TT Configurations). Jitter flows are scheduled using
Transmission Gates in last hop ports only. In all other output ports, the gates,
if any, are always open.

time

Srcf-L2

Srcf-PHY

SWAoutput

SWBinput

SWBoutput

(L1) LDestsf

Ref (fl)
fl

Prod(fl)

TSAP(fl)

Te(fl)

A

NetLatBound(fl) fl

Fixed fl

Fixed

Figure 6: Egress TT Configuration

Fig. 6 illustrates an Egress TT configuration with one emitter, one receiver
and two switches (SWA and SWB), the last hop being the output queue of
SWB. Per definition 6, message fl can be deposited at any time during the
interval Prod(fl). Its emission date Te(fl) is unknown a-priori. The net-
work traversal delay of fl can be bounded and let NetLatBound(fl) be such a
bound. NetLatBound(fl) includes the delay from deposit (TSAP(fl)) to emission
(Te(fl)). We illustrate theses instants and durations in Fig. 6 (A represents the
best traversal delay). The purpose of these configurations is that whenever fl
is emitted by the application, it will be delivered to the destination end-station
at a fixed time.

Practically, there is no time-triggered schedule before the last hop on the
flow meaning that a message can encounter classical delays due to blocking by
other flows. The last hop will be in charge of absorbing the upstream network
jitter (if any) and delivering the message at the right time to satisfy the very
low jitter requirement. To ensure a low jitter reception for fl, it is sufficient to:

• be received in the correct queue of its last hop port before its schedule,

10

• be in head of that queue at fl schedule,

• not be emitted to the destination before its schedule.

Definition 16 (NetLatBound). An upper bound on the worst case duration,
from deposit to last hop emission, is denoted ∀f ∈ F,∀l ∈ N,NetLatBound(fl).

NetLatBound(fl) could be estimated for instance with classical worst case
traversal time method such as Response Time Analysis[19] or Network Calcu-
lus[32]. In Def. 21, we propose a formula for the computation of NetLatBound(fl).
This formula is quite simple and rather pessimistic but we believe it is sufficient
to demonstrate the concept of Egress TT configurations. In fact, any method
could be used to approximate NetLatBound(fl) as long as it is compatible with
the tools used to generate the network configurations. In any case, the less
pessimistic the bound is, the higher the chances to find suitable configurations
will be.

5.2 Exclusive Queue Allocation and Size Based Isolation

In order to satisfy the safety requirement in Egress TT configurations for TSN
networks, we introduce two constraints: Exclusive Queue Allocation and Size
Based Isolation.

Definition 17 (Exclusive Queue Allocation). Each jitter flow is paired with
one dedicated queue in its last hop port. No other flow can use that queue.

Being alone in the queue removes the possible non-determinism induced by
TSN Time Aware Shaper mechanism (see. 3.2). However, respecting Exclusive
Queue Allocation comes at a cost: an end-station cannot receive more that
eight jitter flows (or seven if it also receives no jitter traffic). With Size Based
Isolation, we relax that constraint so that several messages from different flows
are allowed to exist in the queue at the same time. However, it is necessary to
manage the messages behaviour to satisfy the safety objective.

Definition 18 (Size Based Isolation). All frames sharing the same queue on
last hop port shall be enqueued in increasing frame size order.

By ensuring that frames are enqueued in increasing order (size might be
artificially modified with padding at applicative level), if a frame is lost, the
following frame will not be emitted in the slot of the lost frame since its size is
bigger than the opening of the gate. Instead, the frame will be, as expected,
emitted in its allocated slot. This concept is illustrated in Fig. 7: we show the
nominal situation in 7a and the behaviour in case of message loss in 7b. Even
when fl is lost, jk is not sent in place of fl.

Being unable to impose an order between messages coming from different
sources in the last hop port without a negative impact on the application devel-
opment, we impose that flows sharing a queue in a last hop port shall come from
the same emitter and share the same path. In this situation, the application
impact is slightly increased: in addition to the traffic contract, the emitter will
have to ensure an emission order.

11

time

gm

hl

fl

jk

gm hl fl jk

Increasing gate opening durations

(a) Nominal

time

gm

hl

jk

gm hl jk

Increasing gate opening durations

(b) Loss of fl

Figure 7: Isolation by Message Size

6 Egress TT Configurations

Let us now formalize how to compute valid Egress TT configurations for TSN
networks.

6.1 First approach with Exclusive Queue Allocation

When a port is not a last hop, there is nothing much to do, hence we must focus
on the Last Hop Ports.
Last hop ports. We distinguish the output ports which are the last hop of
some flows and the others.

Definition 19 (Last Hop Ports). For a flow f following the path p1, . . . , pl,
we denote by LHf = pl the last hop port. The set of last hop ports is LH=
{p ∈ P|∃f ∈ F,LHf = p} and the set of last jitter ports is LHj= {p ∈ P|∃f ∈
Fj ,LHf = p}.

The configuration for the ports P \ LHj is equivalent to Ethernet-capable
port configuration i.e. their gates are always open.

∀p ∈ P \ LHj ,GCL(p) = 〈〈o, o, o, o, o, o, o, o〉 , 0, PMAF〉

In any last hop, that is in port p = (q0, . . . , q7) ∈ LHj , gate schedules follow
an exclusive gating pattern[5]:

• jitter flows and no jitter flows are placed in different queues;

• At any time, either exactly only one jitter associated queue gate is open
or several no jitter associated queues gates are open;

• if qi is allocated to a jitter flow f : the gate is closed almost all the time.
It is opened when a message fl is scheduled and remains open during the
message transmission duration (τfl);

• if qi is allocated to no jitter flow(s): the gate remains always open except
when one jitter associated queue is open.

Decision variables. The decision variables, i.e. the variables to which we are
trying to find a value, should be those of equation 1: the flow to queue mapping

12

and the gate control list schedule for all output ports. Instead of computing
GCL directly, we introduce an intermediate decision variable SchedLH.

Definition 20 (SchedLH). Let fl∈ Fj a jitter message, SchedLH[fl] denotes
the instant at which the gate FtQMLHf

(f) shall be opened.

From the variables SchedLH, it is possible to reconstruct GCL. Indeed, let us
consider a jitter flow f and its last hop LHf = (q0, . . . , q7) ∈ LH. f will produce
PMAF/Pf events: every time a frame of f is supposed to be transmitted, the
gate should be open. More practically, for each fl, there is an event e =<
s,SchedLH[fl], τfl > where s =< s0, . . . , s7 > with sFtQMp(f)

= o and sj = C

for j 6= FtQMp(f). Thus GCL is the union of all events associated to all
jitter messages fl where LHf = p. This union is completed with gate opening
of queues not allocated to jitter flows on the remaining time (when the jitter
associated queue gates are closed). The gate events are generated by a post
processing procedure. Since the system we consider is periodic, we only compute
schedules on one system period (i.e. PMAF).

Finally, the decision variables for the problem become:{
∀f ∈ F,∀p ∈ Pathf ,FtQMp(f)

∀f ∈ Fj ,∀l < PMAF

Pf
,SchedLH[fl]

(3)

Network Constraints. Across the network, the Flow to Queue Mapping
differs. In last hop ports, while jitter flows are placed into different queues (due
to Exclusive Queue Allocation), no jitter flows can share the same queues. In
all other ports, flows are allowed to share the same queue.

Remark 4. (Macrotick) To simplify the formulation of the equations in the rest
of the paper, the instants and durations will be written in macroticks (like [8]).
For instance, if the macrotick is the necessary duration to transmit a frame of
64 bytes, then for example Sizef = 128 =⇒ τfl = 2.

Constraint 1 (Exclusive Queue Allocation). Each jitter flow is associated with
one dedicated queue.

∀f 6= g ∈ Fj ,LHf = LHg =⇒ FtQMLHf
(f) 6= FtQMLHf

(g)

Links are modelled for the solver as two unidirectional links with opposite
directions.

Constraint 2 (Link Occupation). A link can only send a message at a time in
one direction i.e. ∀fl, gm ∈ Fj s.t. LHf = LHg:

SchedLH[fl] + τfl < SchedLH[gm] or SchedLH[gm] + τgm < SchedLH[fl]

Performance Constraints. All jitter flows are subject to deadline and jitter
constraints.

13

Constraint 3 (Ordered Delivery). For any jitter flow, the i-th message shall
be delivered before the (i+k)-th message of that flow, i.e. ∀f ∈ Fj ∀l,m ∈ N, l <
m, Tr(fl) < Tr(fm). This is translated as ∀f ∈ Fj ∀l,m ∈ N, l < m:

SchedLH[fl] < SchedLH[fm]

Constraint 4 (Deadline). The delivery instant of a flow is bounded, indeed
∀f ∈ F,∀l ∈ N,Ref(fl) ≤ Tr(fl) ≤ fl.deadline. This is translated as:

∀f ∈ Fj ,∀l ∈ N,Ref(fl) ≤ SchedLH[fl] + τfl ≤ fl.deadline

Constraint 5 (Jitter). For any jitter flow, the difference of latency of any
two messages is bounded by the flow’s jitter constraint i.e. ∀f,∈ Fj ,∀i 6= j ∈
N, |Latfi − Latfj | < f .jitter. This is translated as ∀f,∈ Fj ,∀i 6= j ∈ N:

|SchedLH[fi]− Ref(fi)− (SchedLH[fj]− Ref(fj))| < f .jitter

Last Hop associated Constraints. In order to compute the last hop schedule,
it is necessary to have an upper bound NetLatBound on the traversal time of
flows until their last hop port.

Remark 5. In this paper, a bound NetLatBound is estimated with Response
Time Analysis because this method was directly implementable as a constraint
in the solver. In fact, the solver needs to compute NetLatBound with every new
configuration since NetLatBound depends on decision variables. As mentioned
earlier, any other methods could be used to estimate that bound as long as it can
be either integrated in constraints or coupled with the solver.

Constraint 6 (Traversal Time Constraint). The release instant of any message
of a jitter flow shall be within the flow’s period. This is expressed as ∀f ∈
Fj ,∀l ∈ N:

Ref(fl) ≤ SchedLH[fl]−NetLatBound(fl) < Ref(fl+1)

Consider a jitter flow f , and its l-th message fl. With Egress TT config-
urations, in order to ensure fl arrives in FtQMLHf

(f) before its schedule, the
message must be sent after Ref (fl) and before Release(fl).

time

Tp(fl)

Ref(fl) Release(fl)

fl

SchedLH[fl]

fl.deadline
NetLatBound(fl)

Figure 8: Release instants for jitter flows

We now explain how NetLatBound is computed.

14

Definition 21 (Bound on worst case latency NetLatBound). A bound on the
worst case deposit to last hop emission latency is computed as ∀f ∈ F,∀l ∈ N:

NetLatBound(fl) =
∑

p∈Pathf ,p 6=LHf

∆(fl, p) + τfl

where ∆(fl, p) is a bound on the worst case duration for fl at output port p.

In any port, fl can be delayed, in the worst case, by several other messages.
First, fl can be delayed by all messages with same or higher priority than fl
but also one lower priority frame which arrived in the port before fl. These
delays are known as higher priority blocking HPB(fl, p), same priority blocking
SPB(fl, p) and lower priority blocking LPB(fl, p)). This delay model is inspired
from [28, 2, 29].

Definition 22 (Bound on worst case duration ∆(fl, p)). ∆(fl, p) is defined as
∀f ∈ F,∀l ∈ N,∀p ∈ Pathf , p 6= LHf :

∆(fl, p) =
HPB(fl, p) + SPB(fl, p) + LPB(fl, p)

r

It is now necessary to determine which messages will be accounted for in
HBP, SPB and LBP. In our system, all messages have a deadline smaller or
equal to the end of their period (implicit deadlines). Therefore, a finite number
of instances (i.e. frames) of each flow may be considered interfering with any
message of a defined flow (cf. [27, 4]).

Definition 23 (List of contributing flows [4]). Let FlowPort(p) be the set of all
the flows whose path includes p i.e. ∀p ∈ P,FlowPort(p) = {f ∈ F|Pathf ∩ p 6=
∅}. For any message fl of f ∈ FlowPort(p), for every flow g ∈ FlowPort(p)\{f},
there are at most dPf

Pg
e + 1 instances of flow g taking part in delaying fl. This

is illustrated in Fig. 9.

time

gk

Pg
gk+1

Pg
gk+2

Pg
gk+3

Pg

fl
Pf = 3 ∗ Pg

Figure 9: Contributing instances of g for the delay of fl

Definition 24 (Blocking durations). We formulate the priority blocking dura-

15

tions as follows: ∀f ∈ F,∀l ∈ N,∀p ∈ Pathf , p 6= LHf :

HPB(fl, p) =
∑

g∈FlowPort(p)|FtQMp(g)>FtQMp(f)

(dPf
Pg
e+ 1) ∗ Sizeg

SPB(fl, p) =
∑

g∈FlowPort(p)|g 6=f,FtQMp(g)=FtQMp(f)

(dPf
Pg
e+ 1) ∗ Sizeg

LPB(fl, p) = max
g∈FlowPort(p),FtQMp(g)<FtQMp(f)

Sizeg

(4)

6.2 Optimization criteria and post processing

Like in the state of the art (e.g. [9]), we encoded our problem as a set of decision
variables and a set of constraints to be solved by a constraint solver. It is now
necessary to encode the optimization criteria of equation 2. Therefore, this
requires to compute the release instants for both jitter and no jitter flows.
Release(fl) for jitter flows. SchedLH[fl] occurs exactly later after the worst
case duration of fl compared to Release(fl). Therefore:

∀f ∈ Fj ,∀l ∈ N,Release(fl) = SchedLH[fl]−NetLatBound(fl)

Release(fl) for no jitter flows. Release(fl) is computed a posteriori via a
post processing. Once the last hop emissions instants for jitter flows have been
decided, the scheduling instants of no jitter flows are decided with the remaining
port capacity (i.e. when gates for jitter flows are closed).

Remark 6. Because the release instant for no jitter flows is computed a pos-
teriori, it is necessary to check the correctness of that release instant that is
∀f ∈ F\Fj ,∀l ∈ N,Release(fl) ≥ Ref(fl).

The last hop gate of no jitter flows is always open (except when some jitter
message is being emitted and the output port is its last hop) and several no
jitter messages may be in the same queue at the same time. Thus, the release
instant is defined as ∀f ∈ F\Fj ,∀l ∈ N:

Release(fl) = fl.deadline−NetLatBound(fl)−∆WC+closed
LHf

(fl)

where ∆WC+closed
LHf

(fl) denotes the worst case duration needed to transmit, in

port LHf , in queue FtQMLHf
(f), no jitter message fl, including time for which

the gate of FtQMLHf
(f) is closed.

A bound on the worst case duration ∆WC+closed
LHf

(fl) is determined with an
algorithm not detailed in this paper due to lack of space and as it is quite
straightforward.

6.3 Second approach with Size Based Isolation

Let us formulate the constraints for the second implementation of Egress TT,
that is Size Based Isolation.

16

time

Tp(fl)

Ref(fl) Release(fl)

gm

hl

fl

hl fl

fl.deadline
NetLatBound(fl)

∆WC+closed
LHf

(fl)

Figure 10: Release instant for no jitter flows

Additional Decision Variable. We add an additional decision variable Padd
which translates the additional padding used to increase the size of frames.

Definition 25 (Paddfl). Let fl a message of f , we define Paddflas an addi-
tional amount of bytes that is used to increase the size of fl. In particular, we
have:

∀f ∈ F,∀l ∈ N,Sizef ≤ Sizef + Paddfl < MTUEthernet

Remark 7. The above formulation is generic and allows to take into account
systems where periods are not harmonic. When periods are harmonic, it is
possible to only compute a padding per flow instead of a padding per frame.

Constraints We now extend the definition of τfl ,

∀f ∈ F,∀l ∈ N, τfl =
Sizef + Paddfl

r

Then, we reuse all the constraints from the first approach (i.e 2, 3, 4, 5 and
6) except Constraint 1. In addition we define two new constraints: Size Based
Isolation and QueuePerEmitter.

Definition 26 (Queuep(i)). Let Queuep(i) define the set of flows sharing the
same last hop port and the same queue i.e. ∀p ∈ P,∀i ∈ [0, 7],Queuep(i) = {f ∈
F|LHf = p and FtQMp(f) = i}.

Definition 27 (fl]gm). Let fl]gm denote that fl and gm can interfere with one
another i.e. that they exist in the same queue at the same time. Therefore,
fl]gm =⇒ max(Ref(fl),Ref(gm)) < min(fl.deadline, gm.deadline).

Constraint 7 (Size Based Isolation). All interfering messages in a last hop
port shall be enqueued and transmitted in increasing message size order on last
hop i.e. ∀f, g ∈ Queuep(i),∀fl, gm s.t. fl]gm,SchedLH[fl] < SchedLH[gm] =⇒
τfl < τgm

In order to be able to control the reception order in the last hop port, we
define an additional constraint:

17

Constraint 8 (Queue Per Emitter). Any two jitter flows having different source
and same destination will be placed into the different queues i.e. ∀f, g ∈ Fj s.t. LHf =
LHg, Srcf 6= Srcg =⇒ FtQMLHf

(f) 6= FtQMLHf
(g)

The newly computed configurations allow a greater number of jitter flows
per port; but not without a cost: in addition to the release instant, the emitting
applications must follow an order constraint on emission so that their messages
arrive in the correct order in the last hop port.

7 Comparison of Egress TT and End-to-End
TT approaches

The purpose of this section is to evaluate our approach with respect to the state
of the art. The comparison will be based on two criteria: scalability and network
latency.

Both approaches were implemented in OPL and the computation was done
using CPLEX v12.9.0 running on a Ubuntu computer embedding Intel Xeon
E5-2600 v3 @ 2.6GHz and 62GiBytes of memory.

Remark 8. For all the experiments of this paper, the network devices and links
are supposed to work at 1Gbit/s.

7.1 Scalability

In this section, we use the sets of constraints without the optimization criteria
for Egress TT and our implementation of End-to-End TT with Frame Isolation.
We compare the results provided by the solver for both approaches. To assess
the scalability, we increase the number of switches on the paths and the number
of receivers, and we monitor two metrics:

• Number of constraints necessary to generate a configuration,

• Duration of the computation to find a configuration.

Path size increase. In this first set of experiments, we consider a simple
topology with one emitting end-station and one receiving end-station connected
with a set of switches from 1 to 10 switches (cf. Fig. 11a). This allows to
quantify the computation cost when adding a switch in the path.

Table 1 showcases the set of flows and their constraints. All flows have
deadlines equal to their period. This set of flows comes from an industrial case
study.

Fig. 11 presents the number of constraints and duration for the computation
of one configuration. The number of constraints for both Egress TT implemen-
tations appears constant whereas it increases with End-to-End TT. This result
was expected since, in End-to-End TT configurations, an emission instant has
to be constructed for all frames in all hops of the network. In Egress TT the
size or shape of the path of any flow is taken into account in NetLatBound.

18

Table 1: Set of flows F

Name Period f .jitter Sizef Bandwidth

f1 125ms NA 64 4Mbit/s
f2 125ms NA 512 32Mbit/s
f3 250ms NA 64 2Mbit/s
f4 500ms NA 1500 24Mbit/s
f5 125ms NA 128 8Mbit/s
f6 125ms NA 512 32Mbit/s
f7 250ms NA 512 16Mbit/s
f8 125ms NA 128 4Mbit/s

f9 − f13 125ms 1µs 64 4Mbit/s
f14 125ms 500µs 256 16Mbit/s
f15 125ms 500µs 512 32Mbit/s

A change in the path of any flow in Egress TT will only change the value of
NetLatBound and not add any additional constraint. Thus the resolution time
for Egress TT remains almost constant and thus much faster than End-to-End
TT.

Remark 9. In the experiment with 6 switches, the measured duration for End-
to-End TT does not follow the trend of the other experiments (with different
number of switches). We have no justification for this deviation and will inves-
tigate it in future works.

Number of receivers increase. In the second set of experiments, we con-
sider the same topology and increase the number of receiving end-stations from
1 to 6 (cf. Fig. 12a). This helps quantify the computation cost of adding an
end-station. Each additional end-station will be receiving 15 flows with charac-
teristics identical to those of Table 1, all emitted from ”Sender”.

Fig. 14 presents the number of constraints and duration for the computation
of one configuration. Again, the computation of a configuration is much quicker
with Egress TT than End-to-End TT. While a End-to-End TT configuration of
a network with 6 receivers will take roughly 75 minutes with our implementation,
the Egress TT configuration of the same network will only take about 9 seconds
with Exclusive Queue Allocation and 18 seconds with Size Based Isolation.
Increasing the number of receivers, hence the number of flows, increases the
number of constraints per hop for the decision of the emission instants. In
Egress TT configurations, only the emission instants of the last hop switch
in the path of any flow have to be computed. The impact of flows on each
other is taken into account in NetLatBound and additional constraints are only
added on last hops. Therefore the total number of constraints is lower and the
computation time is also shorter.

19

(a) Topology pattern

1 2 3 4 5 6 7 8 9 10
0

1

2

3

·105

Number of switches

N
u

m
b

er
o
f

co
n

st
ra

in
ts

End-to-End TT
Exclusive Queue Allocation

Size Based Isolation

(b) Number of constraints

1 2 3 4 5 6 7 8 9 10
0

100

200

300

Number of switches

D
u

ra
ti

o
n

in
se

co
n

d
s

End-to-End TT
Exclusive Queue Allocation

Size Based Isolation

(c) Duration in seconds

Figure 11: Path Size Increase experiment

7.2 Network Latency

The next experiment consists in running both End-to-End TT and Egress TT
algorithms on the same use case (depicted in Fig. 13) while using the optimiza-
tion criteria and compare the resulting network latency for both configurations.
However, since our optimization criteria (brought by Development Effort Re-
quirement 1) is not tackled by the literature, we replaced it by an optimization
criteria aiming at minimizing network latency for End-to-End TT.

We consider a set of 4 data paths detailed in Table 2. On each data path,
the source sends a set of 15 flows to the destination. Flows have the same
characteristics as the ones of Table 1. On the following graphs, we will only

Table 2: Set of flows F

Id Source Path Destination Flows
¬ ESA SWA-SWB-SWD ESE f1...f15
 ESB SWA-SWB ESD g1...g15
® ESC SWC-SWA-SWB-SWD ESF h1...h15
¯ ESD SWB-SWD ESE i1...i15

depict the average latency from data path ¬ and ¯.
Due to the intrinsic limitation of Exclusive Queue Allocation (maximum of

7/8 jitter flows per last hop port), we have compared Exclusive Queue Allocation

20

(a) Topology pattern

1 2 3 4 5 6
0

0.5

1

1.5

2
·106

Number of receivers

N
u
m

b
er

of
co

n
st

ra
in

ts

End-to-End TT
Exclusive Queue Allocation

Size Based Isolation

(b) Number of constraints

1 2 3 4 5 6
0

1,000

2,000

3,000

Number of receivers

D
u
ra

ti
on

in
se

co
n
d
s

End-to-End TT
Exclusive Queue Allocation

Size Based Isolation

(c) Duration in seconds

Figure 12: Number of Receivers Increase

with state of the art End-to-End TT only using data path ¬, and ®. Fig. 14a
shows the results of this first experiment. It took 5 seconds for Egress TT and
30 minutes for End-to-End TT to generate a valid configuration.

Then, data path ¯ is added and Size Based Isolation and state of the art
End-to-End TT are then compared. The experiment lasted 12 seconds for Egress
TT and 30 minutes for End-to-End TT. The results of this second experiment
are shown in Fig. 14b.

Experiments show that Egress TT configurations will lead to greater network
latencies than End-to-End TT configurations. This increase of network latency
is due to the definition of Egress TT configurations: a message is delayed by a

Figure 13: Topology for application impact use case

21

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10f11f12f13f14f15
0

200

400

600

Flow number (data path ¬)

A
ve

ra
ge

N
et

L
a
tB

o
u

n
d
(f
l)

in
µ

s End-to-End TT
Exclusive Queue Allocation

(a) End-to-End TT vs. Exclusive Queue
Allocation

f1 f3 f5 f7 f9 f11f13f15 i2 i4 i6 i8 i10 i12 i14
0

200

400

600

800

1,000

Flow number (data path ¬ and ¯)

A
ve

ra
g
e

N
et

L
a
tB

o
u

n
d
(f
l)

in
µ

s End-to-End TT
Size Based Isolation

(b) End-to-End TT vs. Size Based Isola-
tion

Figure 14: End-to-End TT vs. Egress TT comparisons

bound on its worst case latency so that it can always be delivered at the same
time and meet its jitter requirement.

In summary, according to the experimental results above, Egress TT con-
figurations reduce the computation effort (and computation time) compared to
End-to-End TT configurations at the cost of a greater network latency while
having, by design, a lower impact on applications.

It is important to insist on the meaning of these results: this paper compares
the scalability and latency of two approaches (End-to-End TT and Egress TT)
that were not designed for the same purpose. While End-to-End TT aimed at
satisfying jitter requirements while minimizing network latency, Egress TT con-
figurations aimed at satisfying jitter requirements while minimizing application
impact and reducing the computation effort, based on the assumption that min-
imizing latency is not always required in implicit deadlines systems. Therefore,
one solution is not better than the other. Rather, a network system designer
will have the ability to choose, according to his needs, between one approach or
the other.

7.3 ORION CEV Use Case

Finally, in one last experiment, we evaluate Egress TT on a use case adapted
from the Orion Crew Exploration Vehicle (CEV) use case (use case and topol-
ogy described in [31]). It is composed of 100 jitter flows and 86 no jitter flows.
Although the model described in Section 2 supports multicast flows, our imple-
mentations of End-to-End TT and Egress TT that we have used for this paper
do not. Therefore, we have duplicated multicast flows into several unicast flows.
Thus, the use case is composed of 168 unicast jitter flows and 147 unicast no
jitter flows.

Remark 10 (Multicast Support). There is an adverse effect in doing so: the
number of messages in the network is unnecessarily increased, which might re-

22

duce the possible configurations. However, it is sufficient to demonstrate the
concept of Egress TT configurations. Improving the implementation for multi-
cast support is relatively simple and will be proposed in future works.

Size Based Isolation offers the possibility to put in the same queue several
flows with same source and same destination. However, in this use case, there
cannot be any two flows with same source and same destination. Therefore, we
will only experiment with Exclusive Queue Allocation.

In addition, because of the limitation of Egress TT configurations with Ex-
clusive Queue Allocation(i.e. no port can receive more than 8 jitter flows), we
can only consider 157 unicast jitter flows and 147 unicast no jitter flows. We
compare this reduced use case with End-to-End TT.

Unfortunately, our implementation of End-to-End TT (state of the art),
maybe too naive, did not allow us to compute, due to lack of memory resources,
a configuration on the full set of flows of the Orion CEV use case like [32] did in
their paper. Therefore, we were only able to obtain an End-to-End TT config-
uration on a reduced set of 60 flows. The generation of the configuration lasted
about 4 hours in End-to-End TT and 18s with Exclusive Queue Allocation. The
Egress TT configuration generation for the full size use case was successful and
lasted 4 minutes. This experiment confirms our previous observation on scala-
bility and latency. On the reduced use case, observed network latencies are, in
average, 10 times greater in Egress TT than in End-to-End TT configurations.

7.4 Limitations of Egress TT

Egress TT with Exclusive Queue Allocation will always fail to find configura-
tions when a device is supposed to receive more than 8 jitter flows. Indeed,
this comes from the exclusive queue allocation since a queue is dedicated to one
jitter flow.

Egress TT with Size Based Isolation will always fail when a device is set to
receive flows coming from more that eight different sources. Again, this is due
to the Size Based Isolation constraint and our objective to keep the application
impact relatively low. In addition, the number of low-jitter flows per queue with
Size Based Isolation will be limited by the gate granularity i.e. the smallest
duration of a gate event. The maximum number of jitter frames than can be
held in a queue at the same time χp(i) is computed with the following formula :
∀p ∈ LHj ,∀i ∈ [0, 7], if ∃f ∈ Fj ∈ Queuep(i), χp(i) = dMaxsize

gcd(di)
e where gcd(di)

is the gate granularity (see Def. 10). For instance, with a granularity of 1µs, the
smallest open event will be able to transmit 125 bytes (i.e. 1µs

8 ∗ r). Therefore
considering the maximum frame size is 1518 bytes, this means that a queue can
hold up to 13 (i.e. d 1538125 e) low-jitter frames.

Egress TT will fail when the post processing on no jitter flows fails (i.e.
deadlines of no jitter flows cannot be met).

Egress TT will fail when the computation of NetLatBound(fl) becomes too
pessimistic: over-reservation of resources (Egress TT) is always less scalable
that exact allocation (End-to-End TT).

23

In the above situations, among others, End-to-End TT will always be a
better approach. Nevertheless, we believe that the improved scalability, in par-
ticular the shorter configuration time, as well as the lower application impact
will still attract industrials towards Egress TT.

8 Related Works

The Egress TT approach shares similarities with Logical Execution Time (LET),
but the aim in LET was to decouple the real timing constraints from scheduling
[13], whereas ours is rather to avoid (over)constraining the system with static
scheduling when is it not necessary.

The LETT proposal [3] presents the same approach, but the implementation
is done in a middleware, whereas our contribution consists in using TSN network
devices.

Finding a configuration for gate control lists in TSN networks is a NP-
complete problem [6] and a hot topic in the networking community. Most
configuration generation methodologies, based on Satisfiability Modulo The-
ory/Optimization Modulo Theory (SMT/OMT) solvers, root back to TTEth-
ernet networks. We detail them hereafter.

A first approach in the state of the art creates a schedule per frame (or
frame offset) for either jitter traffic or all traffic on all hops in the network.
The pioneering work in [26] introduces a formal TTEthernet network model
and an associated set of constraints for schedule generation, some of which we
inspired from. The authors also make it clear that the computation of such
schedule is expensive and introduce an incremental strategy for configuration
generation. Exploiting the constraints of the previous paper, [6] [7] propose to
create a schedule for both applications running on end-stations and the under-
lying TTEthernet network as well as new strategies to support the computation
effort. Then, authors have started to consider network based on TSN instead of
TTEthernet where the scheduling of frame is slightly different. In order to cope
with the potential non-determinism induced by the loss of a frame, [8] adapts
the constraints of [26] and introduces two new constraints namely Flow Isolation
and Frame Isolation (cf. 3.2). The previously quoted papers create schedules for
jitter traffic without any consideration on the remaining traffic in the network.
Therefore, in order to improve the performance of no jitter traffic (i.e. latency
requirements) [27], [10] and [14] introduce strategies, a priori or a posteriori, to
modify the jitter frame schedule by either spacing the frame offsets or gathering
them. [22] also proposes to add space between any two frame offsets but not
in a no jitter performance consideration but rather, to leave time for potential
retransmission of lost jitter frames.

Most recently, a second approach with configurations based on schedule per
group of frames instead of per frame, motivated by TSN Transmission Gates per
queue scheduling capability, has appeared. [9] applies its TTEthernet schedule
generation methodology [7] to TSN networks. The authors introduce new sets

24

of constraints adapted for group of frames schedules as well as Stream Isola-
tion, a fusion of Frame isolation and Flow isolation to again cover the loss of
a frame. In [25], the same authors use their new constraints to implement a
configuration generator and compare their two approaches (single frame offset
v.s. group of frames offsets), showing the benefits of group of frames schedul-
ing. More recently [23] proposes a group of frames configuration but chooses
not to use exclusive gating like all other configuration generators. Moreover, it
considers non-TSN end-stations (i.e. Ethernet) in their system. Based on previ-
ous constraints from [25] and new ones, they create a group of frames schedule
satisfying temporal constraints for jitter flows and no jitter flows using schedule
porosity in an incremental approach.

Another group of papers have chosen to take more variables into account
for configuring TSN networks, in particular, several papers (e.g. [12, 11, 18,
20, 21]) deal with joint routing and scheduling configuration generator. This
increases the solution space of frame schedules by allowing the route of flows
to be modified. To compute these configurations, the authors not only rely on
SMT/OMT based solver but also on heuristics. Recently [30] uses an heuristic
to face the scalability issue. They can configure networks with 2000 nodes and
10000 flows. We do not detail further these papers since our work is based on
ILP solvers and fixed route for all flows.

9 Conclusion

In this paper we have presented Egress TT configurations, a new way to config-
ure TSN network which admits a variable travel time for messages in the network
and constrains jitter only in the last output port in the path of any flow. Egress
TT reduces the computation costs of a configuration and maximizes application
production contracts (i.e. message emission scheduling flexibility) at the cost of
increasing network latency. It also allows to reduce the number of TSN devices
to only the very last switch in the path of any flow while the other devices rely
on standard Ethernet. Currently, Egress TT configurations require Exclusive
Queue Allocation or Size Based Isolation to reach the safety requirement of our
system. Therefore it implies limitations on the number of flows per last hop
port or per queue in a last hop port. While this solution may be sufficient in
many use cases, we will aim at increasing the number of jitter flows per last hop
port in future work.

References

[1] Aeronautical Radio Incorporated. ARINC Report 664P7-1 Aircraft Data
Network, Part 7, Avionics Full-Duplex Switched Ethernet Network. Tech-
nical Report ARINC 664P7, 2009.

[2] Philip Axer, Daniel Thiele, Rolf Ernst, and Jonas Diemer. Exploiting
shaper context to improve performance bounds of Ethernet AVB networks.

25

In Proceedings of the 51st Annual Design Automation Conference, DAC
’14, page 1–6, New York, NY, USA, 2014. Association for Computing Ma-
chinery.

[3] Wojciech Baron, Anna Arestova, Christoph Sippl, Kai-Steffen Hielscher,
and Reinhard German. LETT: An execution model for distributed real-time
systems. In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-
Fall), pages 1–7. IEEE, 2021.

[4] Henri Bauer, Jean-Luc Scharbarg, and Christian Fraboul. Worst-case end-
to-end delay analysis of an avionics afdx network. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’10, page
1220–1224, Leuven, BEL, 2010. European Design and Automation Associ-
ation.

[5] Marc Boyer and Hugo Daigmorte. Impact on credit freeze before gate
closing in cbs and gcl integration into tsn. In Proceedings of the 27th Inter-
national Conference on Real-Time Networks and Systems, RTNS ’19, page
80–89, 2019.

[6] Silviu S. Craciunas and Ramon Serna Oliver. SMT-Based task- and
network-level static schedule generation for time-triggered networked sys-
tems. In Proceedings of the 22nd International Conference on Real-Time
Networks and Systems, RTNS ’14, page 45–54, New York, NY, USA, 2014.
Association for Computing Machinery.

[7] Silviu S. Craciunas and Ramon Serna Oliver. Combined task- and network-
level scheduling for distributed time-triggered systems. Real-Time Syst.,
52(2):161–200, March 2016.

[8] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmeĺık, and Wilfried
Steiner. Scheduling real-time communication in IEEE 802.1Qbv time sen-
sitive networks. In Proceedings of the 24th International Conference on
Real-Time Networks and Systems, RTNS ’16, 2016.

[9] Silviu S. Craciunas, Ramon Serna Oliver, and Wilfried Steiner. Formal
scheduling constraints for time-sensitive networks, 2017.

[10] Frank Dürr and Naresh Ganesh Nayak. No-wait packet scheduling for
ieee time-sensitive networks (tsn). In Proceedings of the 24th International
Conference on Real-Time Networks and Systems, RTNS ’16, page 203–212,
New York, NY, USA, 2016. Association for Computing Machinery.

[11] Voica Gavrilut, Bahram Zarrin, Paul Pop, and Soheil Samii. Fault-tolerant
topology and routing synthesis for ieee time-sensitive networking. In Pro-
ceedings of the 25th International Conference on Real-Time Networks and
Systems, RTNS ’17, pages 267–276, New York, NY, USA, 2017. ACM.

26

[12] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop. AVB-Aware routing and
scheduling of time-triggered traffic for tsn. IEEE Access, 6:75229–75243,
2018.

[13] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: a time-triggered
language for embedded programming. Proceedings of the IEEE, 91(1):84–
99, 2003.

[14] Bahar Houtan, Mohammad Ashjaei, Masoud Daneshtalab, Mikael Sjödin,
and Saad Mubeen. Synthesising schedules to improve qos of best-effort
traffic in tsn networks. In 29th International Conference on Real-Time
Networks and Systems (RTNS’21), April 2021.

[15] IEEE. IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks. Technical Report IEEE 802.1Q, 2008.

[16] IEEE. IEEE 802.1Qbv, Standard for Local and Metropolitan Area
Networks-Media Access Control (MAC) Bridges and Virtual Bridged Local
Area Networks Amendment: Enhancements for Scheduled Traffic. Techni-
cal report, 2016.

[17] IEEE. Ieee 802.3br-2016, ieee standard for ethernet, amendment 5: Spec-
ification and management parameters for interspersing express traffic and
ieee 802.1qbu, ieee standard for frame preemption. Technical report, 2016.

[18] Sune Mølgaard Laursen, Paul Pop, and Wilfried Steiner. Routing opti-
mization of avb streams in tsn networks. ACM Sigbed Review, 13(4):43–48,
2016.

[19] Dorin Maxim and Ye-Qiong Song. Delay analysis of avb traffic in time-
sensitive networks (tsn). In Proceedings of the 25th International Confer-
ence on Real-Time Networks and Systems, RTNS ’17, page 18–27, New
York, NY, USA, 2017. Association for Computing Machinery.

[20] Maryam Pahlevan and Roman Obermaisser. Genetic algorithm for schedul-
ing time-triggered traffic in time-sensitive networks. In 2018 IEEE 23rd In-
ternational Conference on Emerging Technologies and Factory Automation
(ETFA), volume 1, pages 337–344, 2018.

[21] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. Heuristic
list scheduler for time triggered traffic in time sensitive networks. ACM
SIGBED Review, 16:15–20, 02 2019.

[22] Francisco Pozo, Guillermo Rodriguez-Navas, and Hans Hansson. Schedule
reparability: Enhancing time-triggered network recovery upon link failures.
In 2018 IEEE 24th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 147–156, 2018.

27

[23] Niklas Reusch, Luxi Zhao, Silviu S. Craciunas, and Paul Pop. Window-
based schedule synthesis for industrial ieee 802.1qbv tsn networks. In 2020
16th IEEE International Conference on Factory Communication Systems
(WFCS), pages 1–4, 2020.

[24] SAE. AS6802 - Time-Triggered Ethernet. Technical Report SAE AS6802,
2016.

[25] R. Serna Oliver, S. S. Craciunas, and W. Steiner. IEEE 802.1Qbv gate
control list synthesis using array theory encoding. In 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 13–
24, 2018.

[26] Wilfried Steiner. An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks. pages 375–384, 11 2010.

[27] Wilfried Steiner. Synthesis of static communication schedules for mixed-
criticality systems. In Proceedings of the 2011 14th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing Workshops, ISORCW ’11, page 11–18, USA, 2011. IEEE Com-
puter Society.

[28] Daniel Thiele, Philip Axer, Rolf Ernst, and Jan R. Seyler. Improving
formal timing analysis of switched ethernet by exploiting traffic stream
correlations. In Proceedings of the 2014 International Conference on Hard-
ware/Software Codesign and System Synthesis, CODES ’14, New York,
NY, USA, 2014. Association for Computing Machinery.

[29] Daniel Thiele and Rolf Ernst. Formal worst-case performance analysis of
time-sensitive ethernet with frame preemption. In 21st IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA’16,
pages 1–9, 2016.

[30] Marek Vlk, Katerina Brejchova, Zdenek Hanzalek, and Siyu Tang. Large-
scale periodic scheduling in time-sensitive networks. Computers and Oper-
ations Research, 137:105512, 2022.

[31] Lin Zhao, Feng He, Ershuai Li, and Jun Lu. Comparison of time sensitive
networking (tsn) and ttethernet. In 2018 IEEE/AIAA 37th Digital Avionics
Systems Conference (DASC), pages 1–7. IEEE, 2018.

[32] Luxi Zhao, Paul Pop, and Silviu S. Craciunas. Worst-case latency analysis
for ieee 802.1qbv time sensitive networks using network calculus. IEEE
Access, 6:41803–41815, 2018.

28

