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ABSTRACT
Assessing traversal times is the main concern in the verification
of embedded real-time networks. Schedulability analysis, as it pro-
vides firm guarantees, is the preferred technique for the designers
of critical systems. There are however contexts where it is not eco-
nomically or technically feasible to develop one, typically when the
software and hardware components have not been designed with
predictability in mind, e.g. as soon as TCP-based traffic is involved
in network communication or when the hardware platform is too
complex (e.g. heterogeneous System-on-Chips).

In this paper, we study if it is possible to improve the ability
of simulation to observe large traversal times, by running many
short simulations with appropriately chosen simulation time and
varying initial offsets of the stations on the network. The de-facto-
standard approach to assess maximal traversal times is to run a
single long simulation with synchronized node start offsets and
to use randomized node clock drifts inside an acceptable range.
This approach is known to yield high traversal times but is not
parallelizable. We propose an alternative approach consisting in
splitting the simulation time over multiple shorter simulations with,
optionally, randomized node start offsets.

We evaluate the optimization potential of this simple approach
on several realistic network configurations by comparing long sim-
ulations to aggregated short simulations, with and without syn-
chronized node start offsets. We observe, considering all flows, that
this allows a median improvement of up to 21.3% in terms of maxi-
mum traversal time observed, for the same simulation time budget.
Additional randomization of the node start offsets showed further
improvements of up to 4.8% in our experiments. Results from this
line of work can be used to estimate the pessimism of schedulability
analyses and verify systems for which no analysis is available.
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1 INTRODUCTION
Context of the study. Timing analysis is a crucial activity in the

design of critical systems as it allows to properly dimension the
system’s resources and it provides evidence that the timing con-
straints, such as deadlines, jitters, throughput and synchronization
are met. Under-provisioning could lead to critical failures while
over-provisioning would lead to poor cost-effectiveness. The two
main techniques to assess the timing behavior of a system on mod-
els are simulation and worst-case schedulability analysis.

Description of the problem. Schedulability analysis, as it provides
firm guarantees on the Worst-Case Response Times (WCRT) of
tasks and Worst-Case Traversal Times (WCTT) of packets in a
network, is the preferred technique for the designers of critical
systems. There are however contexts where the time and complex-
ity needed to develop a tight schedulability analysis is such that
it is technically not feasible or not viable considering the time-to-
market, skills and cost constraints. This is typically the case as soon
as the software and hardware (HW) components have not been
designed with predictability in mind. Complex hardware and soft-
ware platforms running on COTS hypervisors [7] with hierarchical
scheduling and complex schedulers fall into that category. In the
field of networking, to the best of our knowledge, TCP-based pro-
tocols are not amenable to WCTT analysis, which is a problem as
their use is increasingly considered in software-defined systems like
cars. Similar concerns arise with Ethernet TSN Quality-of-Service
(QoS) mechanisms, which can be used in a combined manner. For
instance, in TSN it is possible to use priorities, frame preemption,
several traffic shaping policies obeying different principles and
time-triggered transmissions at the same time, on a system-wide
basis or locally only on some egress ports. To make things more
complex, network devices may come from different manufacturers
(network interfaces versus bridges), and their implementation of
TSN might differ in terms of HW capabilities and, possibly, imple-
mentation of the QoS mechanisms. Sometimes even mechanisms
that are non-standardised yet, like cut-through forwarding, are
implemented in different ways in network devices.
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Objective of the study. In this work, we investigate how to set
simulation parameters, so as to increase the likelihood to observe
scenarios leading to large response times without exploiting any
expert knowledge about the use case at hand. The approach taken
is to aggregate simulation results over many short simulations
rather than running a single long one. We assess two important
parameters, namely the node start offsets and simulation time, and
how they affect the observable traversal times. This paper aims to
lay the basis for improved simulation-based approaches tailored to
approaching the worst-case trajectories of the system. Concretely,
we investigate empirically if the aggregation of short network sim-
ulations with well-chosen initial conditions is an effective approach
that yields potential for more efficient worst-case verification. In
addition, the aggregation of short simulations constitutes a simple
approach to parallelizing network simulation, and thus to speed-up
the verification time by a factor equal to the number of processors
available.

These objectives can be formulated as the following research
questions:

RQ1. Does simple aggregation of shorter simulations with syn-
chronized node start offsets yield optimization potential in
terms of observing large frame latencies?

RQ2. Does randomization of node start offsets in aggregated short
simulations enable optimizations beyond the synchronized
case?

RQ3. Is the short simulation duration an important factor in the
efficiency of the aggregation approach?

Limitations of existing solutions. The verification of real-time
systems is generally performed via two different methods - sim-
ulation and formal verification with schedulability analysis. Both
these methods have advantages and disadvantages. A schedulabil-
ity analysis can be difficult and time-consuming to develop, and
may not even be available for some systems. In addition, analysis is
prone to pessimism (see [3] for an evaluation in the case of AFDX),
which possibly leads to overdimensioning of hardware resources.
Occasionally, analyses may be flawed [8]. A bigger risk in our view
is that the analysis is applied without the system meeting all un-
derlying assumptions (e.g., traffic model, hardware and software
behavior more complex than accounted for). Simulation on the
other hand does not guarantee that the worst-case scenarios have
been observed, which is a severe drawback in the design of crit-
ical systems. Another drawback of simulation is that it tends to
be more time-consuming than schedulability analysis, especially
when the quantities of interest are high quantiles or maximum
values, which is typically what is of interest for response times and
memory usage.

Contributions. Our experiments give empirical evidence that ag-
gregating multiple short simulations outperforms a single long
simulation in most cases in terms of observing large response times.
We also show on different realistic test-cases that appropriately
selecting the simulation hyperparameters allows, in certain con-
ditions, to significantly increase the efficiency of simulation. Our
empirical findings open new paths to further exploit the potential
of short simulations with optimized hyperparameters. Finally, our

approach allows for significant speedup of usually long-running
simulations through simple and scalable parallelization.

Organisation of the paper. The remainder of this paper is orga-
nized as follows. In Section 2, we introduce core concepts that are
relevant for the positioning and understanding of this work. In
Section 3 we define the system model, formalize the problem and
describe the best known solution. Section 4 explains the experiment
design and evaluation approach, followed by a description of the
experimental setup and a presentation of the experiments’ results.
Section 5 summarizes the related work. Finally, Section 6 concludes
with a summary and Section 7 discusses the limitations of this work
and the future research directions.

2 BACKGROUND
Network simulation. Discrete Event Simulation is widely used

for networking simulation. Conceptually, at each step n of the sim-
ulation, the system is fully characterized by a state Sn and the set
of rules to change from state n to n + 1: Sn+1 = F (Sn ) is defined by
the simulation model. The evolution of the system depends on this
set of rules and the sequence of values provided by the random gen-
erator. During the simulation, various statistics on the underlying
system can be collected, such as packet traversal times, memory
usage and link loads. Discrete event simulation by its nature is
not parallelizable as each state depends on the previous iteration.
To obtain representative and statistically significant results, it is
necessary to run very long simulations if higher quantiles should
be estimated. For instance, evaluating the (1 − 10−5) quantile if
the frame latencies with 10 observations, which will be too little
for satisfactory confidence intervals in most cases, requires 106
observations, the equivalent to 277 hours of functioning time for
a 100ms frame. This might require days of computation for com-
plex communication architectures made up of several networks
transmitting hundreds of streams like in cars or airplanes.

Since real communication systems are subject to non-deterministic
phenomena, such as jitters, clock drifts and variable switching de-
lays, network simulation includes randomness to account for them.
The simulation results by consequence are of stochastic nature. As
a result, running the same simulation model with different random
seeds can yield significantly different observed maximum traversal
times. Section 4 outlines how experiments were conducted and
evaluated to consider this factor.

The modeling of the networks and the simulations are con-
ducted using the network performance evaluation software RTaW-
Pegase [1, 4], developed by RealTime-at-Work, which has been used
by OEMs and tier1s in the automotive and aerospace domains for
more than 10 years. The tool is representative of the state-of-the-
art in the industry in terms of timing-accurate simulation, offering
control over the simulation parameters and a high-performance
simulation engine that runs in constant memory and can execute
batches of simulations in parallel. To perform the simulation, the
tool generates packet flows that are propagated through the net-
work according to the routing, the selected protocols and their
parameters. Over the chosen simulation time, samples comprising
the observed communication latencies (along with other statistics
such as memory usage, link load, etc.) are collected. The traversal
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times depend on many factors such as switching and transmission
delays, waiting times at egress ports due to interfering traffic, . . . .

Targeted Applications. With increasingly complex systems and
shorter development cycles in industrial applications, it is impor-
tant to optimize the resources spent on simulation for faster and
more agile validation of the design choices. In that context, in this
work, we focus on optimizing the approximation of maximum com-
munication latencies. The results of this research can serve two
important use-cases in the field of critical systems:

• Approximation of worst-case timing behavior when formal
analysis is not available or excessively pessimistic.

• Empirical determination of upper bounds on the pessimism
of existing schedulability analyses.

Competitive nature of network traffic. In TSN networks, flows
have to compete for resources with other flows. The competition
defines how large traversal times will be, and it is influenced by
many parameters. Particularly, it can be observed that when two
flows at the same priority level share parts of their path, they cannot
experience their respective worst-case traversal times at the same
time. This can be illustrated as follows: when reordering these
two flows in the queue without changing other factors, the delay
of the first packet in the queue would increase while the second
packet’s delay would decrease. As a consequence, we can derive
that it is not possible to find a single simulation trajectory that
maximizes traversal times for all flows simultaneously. So the worst-
case scenario across all flows usually consists of a set of multiple
simulation trajectories.

3 NETWORK MODEL AND PROBLEM
DESCRIPTION

This work considers switched Ethernet networks with timing QoS
extensions defined in the IEEE Time-Sensitive Networking (TSN)
standards (see [16] for a survey and [13] for an example application
in helicopters). The topologies of such networks consist of a set
of communication switches (or "bridges"), full-duplex links and
end-nodes (or "end-systems"), each with a network interface. The
network supports unicast and multicast communications between a
set of software components distributed over a number of end-nodes.
In the following, both “traffic flow” or “traffic stream” refer to a
sequence of frames sent to one or several receivers (i.e. a multicast
connection with n receivers generates n distinct traffic flows).

3.1 Assumptions
In this study, a number of assumptions about the networks consid-
ered are made:

• The network topology and the routing of the traffic flows is
static, as most often in time-critical systems.

• The traffic flows obey one of the following transmission
patterns: periodic, periodic burst (i.e. packets making up a
segmented message, like a camera frame, are queued at once),
sporadic and TFTP [21].

• The size of the packets is fixed or upper bounded.
• The QoS mechanism is either FIFO (a single priority level),
static priorities (up to 8 priority levels in TSN) and priorities
in combination with Credit Based Shaping (CBS) [11]. The

latter mechanism shapes the bursty flows by inserting pauses
between successive packets, based on the current "credit" of
the traffic class the flow belongs to.

• Node clock drifts [15], that is the departure of the sending
node clocks with respect to a perfect clock, remain fixed over
time and are set to a realistic randomly generated value that
is unique per node (see Section 4.2).

3.2 Problem description
The essential problem we want to tackle in this paper is to find the
simulation states leading to the maximal traversal time that can
possibly occur for each flow. As flows compete for resources along
their path on the network, large traversal times will be observed
at times when there is the most competition. Further, due to this
competitive nature, there can not be a single simulation state where
all flows experience their worst-case traversal time simultaneously.
A solution to the problem will thus consist of a set of simulation
states as follows:

Swctt = {∀f ∈ F , ts , tx ∈ T : ts | TT (ts , f ) >= TT (tx , f )}

where:
• T is the set of all possible simulation states
• F is the set of all packet flows in our network
• TT (t , f ) is the Traversal Time for flow f for state t

We will explore in this paper a technique, concretely the aggre-
gation of short simulations with randomized node start offsets, to
approximate the solution. Our hypothesis is that this approach will
allow to more efficiently approximate the worst-case in comparison
to the baseline solution presented below.

3.3 Baseline solution
To the best of knowledge, the most effective available approach
to approximating worst-case traversal times via simulation is to
run a single long simulation, starting from synchronized node start
offsets while using randomized node clock drifts. This approach
has shown to yield significantly higher traversal times in practical
applications in comparison to long simulations with homogeneous
clock drifts or non-synchronized node start offsets [17].

The intuitive reasoning behind this approach is that synchro-
nized node start offsets will result in more packets arriving in close
succession at the switches, creating a "critical instant". This leads
to more congested queues, increasing thus the end-to-end traversal
times. Additionally, the randomized clock drifts are necessary to
observe different packet orders in the queues in later simulation
states, and thus explore more of the simulation state space, possibly
yielding higher traversal times. If homogeneous clock drifts for all
nodes were used, it would result in smaller hyper periods and thus
significantly reduce the simulation state space that can be explored.

4 EXPERIMENTS AND EVALUATION
The goal of our experiments is to investigate statistically how our
approach performs in comparison to the baseline solution, namely
single long simulations. The experiments are designed such that
they yield a statistically robust evaluation of our collected sim-
ulation data, which is achieved by resampling our set of short
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simulations to reduce the influence of single outliers. The experi-
mental design, which describes the general steps used to carry out
a single experiment and evaluation of its results, is explained in
the next subsection. Thereafter, we describe the experimental setup
which presents the details about the network architectures and
configurations used in the experiments, and explain the parameters
we control therein.

long sim. inst.

…

short sims

…

short sim. inst.

…

full experiments

…

resampling

cross-combination

applying metric

per-flow metrics

#f1  #f2  #f3  ...  #fn

…

#f1  #f2  #f3  ...  #fn

#f1  #f2  #f3  ...  #fn

#f1  #f2  #f3  ...  #fn

avg. over experiments

f1-avg f2-avg f3-avg ... fn-avg

represent as boxplot

Figure 1: Illustration of themulti-layer experimental design:
execution of simulation, bootstrapping of short simulations,
formation of experiment instances, application of metric in
equation 1, averaging over all experiment instances on a per-
flow basis and representation as boxplots.

4.1 Experiments design
Terminology: We call a full experiment an experiment that in-

volves all steps based on a number of experiment instances as
described below and depicted in Figure 1. Each full experiment
consists of a large number of experiment instances that are eval-
uated according to that process. An experiment instance is a pair
made up of a short simulation experiment component and a long
simulation experiment component. A short simulation experiment
component consists of a set of short simulations. A long simulation
experiment component consists of a single long simulation. Impor-
tantly, for the sake of comparability, each experiment component
of an experiment instance, be it short or long, amounts to the same
total simulation length dt . In this paper dt = 100h of functioning
time for all experiment instances. The number of short simulations
to perform, denoted by ns , is dependent on the short simulation
duration ds chosen per experiment instance. We have ns = dt /ds
where dt is, by design, always an integer multiple of ds .

Experiment flow: We conduct two (or more) experiments per
network configuration to answer RQ1 and RQ2, respectively with
synchronized and randomized node start offsets. In one of the exper-
iments, we additionally investigate the influence of the simulation
duration on the performance. Each experiment is performed by
carrying out the following steps:

(1) Dataset collection by running short and long simulations.
(2) Application of bootstrapping (resampling) to generate a num-

ber of short simulation experiment components.
(3) Construction of experiment instances by the pairwise combi-

nation of long and short simulation experiment components.
(4) Evaluation of the individual experiment instances by apply-

ing the metric defined in equation 1.
(5) Per-flow averaging over all evaluated experiment instances.
(6) Representation of flow statistics using box plots.

The first step is data collection, where we register the maximal
observed traversal times for each flow per simulation.

After data collection, a bootstrapping [9] approach is used to re-
sample the dataset of short simulations in order to create valid short
simulation experiment components of functioning time dt . As each
short simulation is independent of the others and each resampling
is thus valid. The resampling is performed by randomly selecting
short simulations following a uniform distribution. This technique
allows us to greatly increase the number of short simulation experi-
ment components, by re-using short simulations several times, and
reduce the overall influence of single over- or under-performing
short simulations on the final results.

Construction of pairwise combinations between all short and long
simulation components is applied for the same purpose of reducing
the influence of single outlier experiment instances on the overall
result.

A per-instance evaluation, using the metric defined in equation 1,
is done in order to get a relative measure of the per-flow differences
between short and long simulation components as discussed earlier.
Averaging over these metric values is then performed over all exper-
iment instances as to receive a statistically robust relative per-flow
performance value, that is not overly skewed by single outliers.

199



Approximating WCRT through the aggregation of short simulations with different initial conditions: application to TSN RTNS ’22, June 7–8, 2022, Paris, France

The final step of plotting the per-flow averages as a box plot
serves the purpose of enabling human understanding of the general
performance of both approaches and allows for easier comparison
between experiments on the same network configuration. This
would not be possible by considering hundreds or thousands of
individual flow values simultaneously.

Evaluation problem properties: Due to the stochastic nature of
network simulation, each simulation run will yield varying tra-
versal time amplitudes for a certain flow. In combination with the
high number of flows, it is thus not useful to investigate each flow
individually. Further, amplitudes of traversal time can vary signifi-
cantly across different flows, which is a direct consequence of the
scheduling mechanisms used to meet the timing constraints. As an
example, the absolute observed differences in traversal time of a
flow with a 5ms deadline is likely to be insignificant in comparison
to the variance of observed traversal times of a flow with a 200ms
deadline.

Even though our aim is to maximize the traversal times, com-
paring long and short simulation experiment components directly
on a one-to-one basis is not a statistically robust approach as val-
ues observed per flow can vary significantly across simulations,
particularly on shorter ones. Hence, we must evaluate the relative
performance across a large number of experiment instances based
on the distribution of their relative per-flow differences.

Evaluation approach: To address these factors, we adopt the met-
ric defined by equation 1, which allows to compare the results on a
statistical and relative basis. To compare the results of a long and a
short simulation experiment component pair, we can compute the
relative difference between the traversal times of the same flow for
each component, while using the long simulation component as
reference value, as follows:

∀f ∈ F : δTT (f ) = (Rs (f ) − Rl (f ))/Rl (f ) (1)

Where Rs (f ) and Rl (f ) represent the maximal observed traversal
time for flow f during the short respectively long simulation ex-
periment component. This metric can be interpreted as follows:
e.g. a value of 0.1 means the aggregated short simulations yielded
a 10% larger maximum traversal time for that flow than the long
simulation, and vice-versa for a value of −0.1.

As for the presentation of the evaluation results, each boxplot
represents a single experiment. We choose to plot experiments
based on the same network configuration on the same graph to
allow an easier comparison of the different experiment variants
(i.e., synchronized/randomized node start offsets and different short
simulation durations) to each other. Furthermore, experiments on a
specific network configuration - and thus the box plots of the same
graph - are based on the exact same data for the long simulation
to allow a more direct comparison across experiments. To give
an example, the long simulation data is reused for experiments
EX1 (synchronous node start offsets) and EX2 (randomized node
start offsets), as the long simulation component node start offsets
are always synchronized. This choice was taken as our baseline
solution is known to perform best with synchronized node start
offsets as explained in Section 3.

4.2 Experimental setup
The previous section explained how a single full experiment is
performed. In this section, the set of concrete experiments con-
ducted is presented. Three different network architectures are used
in combination with different traffic configurations. The topolo-
gies used, include a redundant topology representative of a space
launcher [19] (see Figure 2), the topology of an automotive network
used in [14] (see Figure 4) and a topology inspired frommedium-size
AFDX avionics networks [3] (see Figure 3)). These three architec-
tures have vastly different properties and are representative of the
mission-critical systems targeted in this paper. A more detailed
overview on the topology properties is provided in Table 1.

A total of 12 full experiments are conducted on the networks
introduced above. Table 2 gives an overview on the experiments
and their specific parameter settings. For each full experiment an
identifier in the format EXk is assigned for easy reference.

In all of the experiments the total simulation time for each exper-
iment instance amounts to 100 hours. Each full experiment is made
up of 16 long simulation experiment components cross-combined
with 100 short simulation experiment components after bootstrap-
ping, amounting to a total of 1600 experiment instances per full
experiment. The resampling is performed in order to increase the
short simulation experiment component dataset and more accu-
rately approximate the traversal time distribution produced by our
short simulations.

Across full experiments, synchronized and randomized node
start offset variants of the same network configuration have been
evaluated using the same long simulation data. This allows for a
more direct comparison in the context of RQ2, namely evaluating
the improvements with randomized node start offsets. We use the
metric defined in equation 1 to convert our absolute traversal times
into relative values, using the long simulations as a reference point.
Finally, we average these values per flow and construct the boxplots
that allow to argue about the general statistical performance of the
approach.

While the general system parameters remain constant over a full
experiment, there are three variables that are adjusted and their
effects evaluated: simulation time, node start offsets and simulation
random seeds. The anticipated effects of these parameters are as
follows:

• Simulation time: As the experiments show, simulation
time plays a crucial role in the performance of aggregated
short simulations. Importantly, the short simulation time
also defines the limit to the parallelism that can be achieved
compared to a long simulation.

• Node start offsets: They are a natural variable to explore as
they play a key role in the baseline solution. In the following,
their values are randomized to explore their optimization
potential.

• Simulation random seeds:Changing random seeds allows
covering more of the simulation result space, as running the
simulation repeatedly with equal random seeds would yield
the exact same results.

It should be mentioned that these three parameters do not alter the
properties of the network configurations in any way. This is not the
case for the node clock drifts, an important parameter, that changes

200



RTNS ’22, June 7–8, 2022, Paris, France Patrick Keller and Nicolas Navet

Topology # nodes # switches # links # flows # flow receivers QoS mecha. Flow types

Space 18 18 24 100 985 4 Priorities
21 Command and Control (periodic)
78 Telemetry (periodic)
1 Video (periodic burst)

AFDX 52 4 57 453 3214 5 Priorities 453 Uncategorized (sporadic)FIFO

Automotive 14 5 18 58 70
4 Priorities
+ CBS 19 Command and Control (periodic)

10 Audio (periodic)
11 Video (periodic burst)
6 Best Effort (periodic)
4 TFTP (each ACK+DAT+RRQ)

4 Priorities

Table 1: Characteristics of the network configurations.

ID Topology QoS mecha. Sim duration NSO range
EX1 Space Priorities 30s 0.0ms
EX2 30s [0.0, 0.1]ms
EX3

AFDX
FIFO 30s 0.0ms

EX4 30s [0.0, 0.1]ms
EX5 Priorities 30s 0.0ms
EX6 30s [0.0, 0.1]ms
EX7

Automotive

Prio. + CBS 30s 0.0ms
EX8 30s [0.0, 0.1]ms
EX9

Priorities

30s 0.0ms
EX10 30s [0.0, 0.1]ms
EX11 120s 0.0ms
EX12 120s [0.0, 0.1]ms

Table 2: Full experiment parameter settings. QoS stands for
Quality of Service. FIFO means all frames are scheduled at
the same priority level, while priorities means that several
priority levels are used (see Table 1). CBS stands for the
Credit Based Shaping. NSO stands for Node Start Offsets.

the traffic characteristics by speeding up or slowing down the clock
that drives frame transmissions. While in the real world we cannot
generally control the node clock drifts, we select randomized but
constant clock drifts for each node across all simulations, as dictated
by the baseline solution. We select the randomization interval as
[0.0, 0.02]%, i.e., less than 200PPM, which is sometimes used as an
accepted limit in the automotive industry [15] and is small enough
to not drastically change the traffic characteristics. The simulation
random seeds were randomized in no specific way as the effects of
a seed are not predictable. The applied randomization interval for
the node start offsets for the randomized full experiments is [0.0,
0.1]ms, using a uniform distribution. This start offset interval was
chosen to explore the close proximity of the synchronous case. The
exact effects of the node start offset range are not explored in this
work and may yield potential for further optimizations beyond this
range. We leave the exploration of this parameter as a future work.

4.3 Results
Applying the methodology introduced in Section 4.1, a total of
5 boxplot charts, one per QoS mechanism per architecture, are
produced to summarize the experiments’ results.

Figure 2: Space launcher topology.

Results - Space launcher with priorities. Results of experiments
EX1 and EX2 are shown in Figure 5. The two boxplots respectively
compare the performance of short simulations with long simula-
tions in the synchronized case (i.e., all node start offsets set to 0)
and in the non-synchronized case (i.e., node start offsets randomly
assigned in [0.0, 0.1]ms). Indeed, the bulk of the two boxes is located
in the positive range. More precisely, over the average of all experi-
ment instances, short simulations outperform long simulations: e.g.
the median value of the observed WCTTs is 21.3% larger with short
simulations than with long simulations in the synchronized case
and 25.8% in the non-synchronized case. In rare instances (see the
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Figure 3: Avionics system topology.

Figure 4: Automotive system topology.

outliers at the bottom), it happens however that long simulations
perform better, which is expressed as the negative portion on the
graphs. This is the case for 3.0% of the flows in the synchronized
case and 1.2% of the flows in the non-synchronized case.

Results - Avionics network with FIFO. The results of experiments
EX3 and EX4, visualized in Figure 6, show similar behavior as for the
space topology. Here the median improvement for the synchronous
case is 15.2%, and the additional median improvement with non-
synchronized node start offsets is about 2.2%. The general skew
of the data in favor of the randomized case has again a similar
amplitude of up to 5%. If, overall, short simulations are beneficial,
for 6.3% of the flows long simulations performed better on average
in the synchronous case and 2.1% in the non-synchronous case.

Results - Avionics network with priorities. The results of exper-
iments EX5 and EX6 in Figure 7 show again a general similar be-
havior although the gain is reduced here. Indeed, the median value

Figure 5: Space launcher topology results with priorities
(EX1 and EX2). The y-axis shows the relative difference (as
decimal fraction) between the max. WCTT observed with
short and long simulations over all flows (averaged over
all experiment instances). Short simulations here clearly
outperform long simulation in both, synchronized (median
21.3%) and non-synchronized (median 25.8%), cases.

Figure 6: Avionics topology results with FIFO (EX3 and EX4.
As seen by the position of the boxes (i.e., interquartile range),
short simulations perform better than long simulations.

of the observed WCTTs is 10.4% larger with short simulations than
with long simulations in the synchronized case and 14.9% in the
non-synchronized case. Also, for the synchronized case, 7.7% of
the flows performed better with long simulations and 2.9% in the
non-synchronized case.

Results - Automotive network with priorities and CBS. Figure 8
shows the results of experiments EX7 and EX8. Here the median
performance increases by 4.0% for the synchronous case and 8.8%
for the non-synchronized case. It should be noted that, for that
specific network configuration, about 42.9% of the flows performed
better with long simulations in the synchronized case, against 27.1%
in the non-synchronized case.
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Figure 7: Avionics topology results with priorities (EX5 and
EX6). Short simulations here again outperform long simula-
tions as the two medians are above a 10% gain.

Figure 8: Automotive topology results with priorities and
CBS (EX7 and EX8). Aggregation of short simulations per-
forms better for about 57.1% (synchronized case) and 72.9%
(non-synchronized case) of the flows.

Results - Automotive network with only priorities. Figure 9 shows
the results of experiments EX9, EX11, EX10 and EX12. EX9 is the
first experiment to yield overall negative results with the median
value with a loss of about -1.6% and a bulk of the distribution in the
negative range. Increasing the simulation time (boxplots #2 and #4)
and randomizing the node start offsets (boxplots #3 and #4) allows
to change this trend into the positive direction. However, the gain
remains modest whatever the experimental settings explored: e.g.
a 0.4% improvement of the median with 120 seconds simulations
in the non-synchronized case (boxplot #4). It should be noted that
the number of flows that perform better with long simulation on
average decreases from 58.6% to 45.7% for EX9 (synchronized, 30
seconds) and EX10 (non-synchronized, 30 seconds), respectively.
For the 120 second variant of the experiment, these values decrease
from 50.0% to 44.2% for EX11 (synchronized, 120s) and EX12 (non-
synchronized, 120s), respectively.

Figure 9: Automotive topology results with only priori-
ties (EX9, EX11, EX10 and EX12). The difference between
short and long simulations is small here, as all medians are
around zero. A small increase in the relative performance
of short simulations can be observed across the four experi-
ments.

5 RELATEDWORK
In this section, we discuss previous works that belong to two main
research areas related to the objectives of this paper. These ar-
eas are network simulation parallelization and assessment of the
pessimism of WCRT analysis. To the best of knowledge, no exist-
ing work covers directly the optimization of simulation for WCRT
approximation in TSN Ethernet networks.

Approximation of WCRT via simulation. A closely related work
is [20] by Samii et al.. The objectives of their work is to approxi-
mate the WCRT of tasks as efficiently as possible. They apply their
proposals to applications distributed over CAN and FlexRay net-
works. To that end, they propose a method to reduce the search
space combined with a genetic-algorithm-based exploration strat-
egy. This approach is different from ours as it relies on extensive
domain-specific knowledge, and the system model is different from
the one in this paper. For instance, they do not account for clock
drifts and they target different networking technologies.

Parallelization of network simulation. There are two main types
of parallelization for networking simulation that are discussed in
the literature: spatial and temporal parallelization. Also, hybrid
approaches, that combine both approaches, exist.

Spatial parallelization aims at subdividing the network and
running simulation of the sub-networks in parallel before aggregat-
ing the results. An early notable work in this area by Riley et al. [18]
proposes a generic framework for spatial parallelization, including
its integration into the ns simulation software package [5].

Temporal parallelization. The approach proposed in our pa-
per belongs to this latter category. In temporal parallelization, the
aim is to subdivide the simulation in the time domain, running
the simulation splits from certain temporally-spaced simulation
states. A precise temporal parallelization is hard to achieve because,
in discrete event simulation, each simulation step depends on the
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previous. Thus, as Wang et al. [23] describe, the starting conditions
for the later simulation states have to be predicted or approximated,
which may produce results that are different from those obtained
with a single long simulation.

Hybrid parallelization. One of the more closely related works
belongs into the hybrid, or temporal-spatial, category. In their work,
Gupta et al. [10] propose a hybrid approach based on the combina-
tion of spatial and temporal parallelization. The objective of their
work is to maximize the parallelism, with the objective of process-
ing very large networks on heavily parallel infrastructures. A main
difference with our work is that our focus is on optimizing the
observed WCTT using constant computational resources, not on
maximizing parallelism.

Pessimism of schedulability analysis. While by construction a
WCRT analysis is generally pessimistic, the extent of the pessimism
is unknown in most cases. Additionally, the pessimism may differ
significantly depending on the input data and the analysis, as some
have been more optimized in terms of accuracy than others.

Important and useful results on that topic were proposed in [2]
where the authors develop an analysis to determine a lower bound
on the WCTT. This analysis was then used in [3] to estimate the ac-
curacy of the network-calculus-based analysis for AFDX networks
that is implemented in RTaW-Pegase. Unfortunately, deriving lower-
bound on the WCTT requires extensive domain expertise, and, to
the best of our knowledge, similar results do not exist for TSN QoS
mechanisms and for traffic models beyond the sporadic streams
used in AFDX.

Navet et al. [17] explain the limitations of WCRT analysis in the
context of complex industrial networking architectures, including
pessimism. They also present simulation experiments that suggest
the efficiency of clock drifts and node offsets.

Charara et al. [6] conduct an experiment to evaluate the pes-
simism of their network calculus analysis approach using simu-
lation in the context of an AFDX network. They point out the
shortcomings of simulation for precise evaluation of the pessimism,
which this work aims to improve.

6 CONCLUSIONS
We here summarize the outcomes of the experiments that are rele-
vant to the research questions stated in Section 1.

RQ1: The hypothesis behind RQ1 is that aggregating short sim-
ulations can yield improvements over a single long simulation in
terms of the maximum latencies observed. Our experiments give
empirical evidence that supports this hypothesis. Indeed the me-
dian of the maximum latencies1, in the experiments without node
offsets, increases from 1.6% up to 21.3% (with an average of 10.5%).

We conclude that aggregation of short simulations can be a
valuable alternative to long single simulations, as it shows sig-
nificant increases in efficiency. Furthermore, it offers a relevant
and simple approach to parallelization as it transforms the usually
non-parallelizable discrete event simulation into a "embarrassingly
parallel" problem, allowing to make use of highly parallel comput-
ing facilities such as HPC platforms.

1We disregard EX9 whose simulation time was insufficient for the complexity of the
systems, which led us to perform EX11 (see also the conclusions on RQ3 in Section 6
and Section 7).

RQ2: The hypothesis is that aggregation of short simulations
combined with randomization of node start offsets can yield perfor-
mance improvements beyond aggregation with synchronized node
start offsets. Our experiments conclusively support this hypothesis,
as the medians increase from 0.82% up to 4.8% (with an average of
3.27%) in comparison to the experiments without randomized node
start offsets.

We conclude that modifying node start offsets yields substantial
additional optimization potential beyond pure aggregation of short
simulations with synchronous node start offsets. This approach
may yield even higher benefits when combined with advanced
optimization techniques instead of random sampling.

RQ3: The last research question is based on the hypothesis that
adjusting the short simulation time is an important factor to enable
improvements in efficiency with the aggregation of short simula-
tions. As the experiment results show, a short simulation duration
of 30 seconds can already yield significant improvements in most
cases. Experiments EX9 and EX11 further show that there is no
single optimal simulation time for all systems, and that choosing
an adequate simulation time is important. Choosing the optimal
simulation time is a question that should be addressed in further
research.

7 DISCUSSION AND FUTUREWORK
Short simulations have shown in EX9 mediocre performance on the
automotive architecture using only priorities. Upon closer inspec-
tion, this configuration possesses many low-priority flows with
very large traversal times. It turns out that the observed maximum
traversal times of low-priority flows are usually less with shorter
simulations. Indeed, as can be seen in Figure 10, for the automotive
network, the flows that lose the most with short simulations (in
terms of maximum observed latencies) all belong to the two lowest
priority classes. On the other hand, as seen in Figure 11, the flows
that benefit the most from short simulations are the higher priority
flows with much shorter traversal times.

This phenomenon suggests that there might not be a single
optimal simulation duration for short simulations that maximize
the performance gain across all flows, but rather a per-priority or
per-flow based optimal simulation duration. Additional research
on using a mix of different simulation times, and how to set them,
might enable further improvements.

The experiments in this work suggest that the combination and
careful adjustment of the explored parameters - node start offsets,
offset range and simulation duration - offer further significant opti-
mization potential and merit further investigation. In that regard,
optimization techniques, such as simulated annealing or genetic
algorithms, could be used to set the parameter values and increase
the performance.

This work bears a number of limitations:

• Generalizability: Our findings might be limited to the spe-
cific types of architectures and applications considered in the
paper. Pre-tests run on each unseen network configuration
could help determine the suitability of this approach and,
possibly, adequate parameter values.

• Applicability: Simulation engines have a certain initial-
ization overhead, which may render the use of very short
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Figure 10: Relative performance details for bottom 20 flows
on automotive topology with only priorities in the non-
synchronized case and 120s simulation time (EX12). It can
be observed from the flow names that Video (VD, second-
lowest priority), Best Effort (BE, lowest priority) and TFTP
(lowest priority) flows performed the worst with aggregated
short simulations.

Figure 11: Relative performance details for top 20 flows
on automotive topology with only priorities in the non-
synchronized case and 120s simulation time (EX12). It can be
observed from the flow names that Command and Control
(CC, highest priority) and Audio (AD, second-highest pri-
ority) flows gained the most performance with aggregated
short simulations.

simulations unpractical. It should be noted that this overhead
depends on the size of the system under study. As this ini-
tialization overhead depends on the specific implementation
of the simulator, it was not accounted for in this study as the
aim was to compare the effects on equal amounts of simu-
lation time. However, a practitioner needs to set the short
simulation duration in such a way that the initialization cost
does not outweigh the performance gains.

7.1 Future work
As shown in this work, splitting simulations into many shorter
simulations combined with randomized node start offsets can be a
viable optimization approach without even tapping into the poten-
tial of more advanced optimization techniques.

A potential avenue for future research would thus be the appli-
cation of advanced optimization techniques to adjust node start
offsets in a controlled manner that might further increase the ob-
served traversal times, or optimizing the start offset range and other
configuration parameters.

As generalizability is a concern, an important area to explore
could be to investigate how specific configuration parameters af-
fect the effectiveness of the approach. These parameters include
simulation duration, network topology, flow number, flow offsets,
network load, frame size, routing, additional QoS mechanisms, and
many more.

Furthermore, as we have discussed, there seem to be complex
relationships between several key parameters, such as node start
offsets, offset range and short simulation duration, that are not
understood at this time. This suggests the application of machine
learning, which has proven its ability to capture relations between
variables in an efficient and effective manner beyond human un-
derstanding. As shown in [12], deep learning techniques are able
to learn network structures and predict certain properties, such as
feasibility, with high accuracy and reduced computation cost. In
this context, a potentially interesting avenue to pursue could be
training a reinforcement learning algorithm to optimize the sim-
ulation parameters in order to achieve higher traversal times. A
possible addition could be the use of transfer learning ([22],[24]) to
apply the benefits to other network configurations not seen during
training.

If such algorithms prove to be successful to significantly in-
crease the efficiency of WCTT approximations with simulation, it
would open the door to a new class of "push-button" verification
techniques, relying on simulation and machine learning, and little
domain expertise, offering a new tradeoff between simulation and
worst-case schedulability analysis.
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