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ABSTRACT
The majority of prior academic research into mixed criticality
systems assumes that if high-criticality tasks continue to execute
beyond the execution time limits at which they would normally
finish, then further workload due to low-criticality tasks may be
dropped in order to ensure that the high-criticality tasks can still
meet their deadlines. Industry, however, takes a different view of
the importance of low-criticality tasks, with many practical
systems unable to tolerate the abandonment of such tasks.

In this paper, we address the challenge of supporting genuinely
graceful degradation in mixed criticality systems, thus avoiding
the abandonment problem. We explore the Compensating Adaptive
Mixed Criticality (C-AMC) scheduling scheme. C-AMC ensures that
both high- and low-criticality tasks meet their deadlines in both
normal and degraded modes. Under C-AMC, jobs of low-criticality
tasks, released in degraded mode, execute imprecise versions that
provide essential functionality and outputs of sufficient quality,
while also reducing the overall workload. This compensates, at
least in part, for the overload due to the abnormal behavior of
high-criticality tasks. C-AMC is based on fixed-priority preemptive
scheduling and hence provides a viable migration path along which
industry can make an evolutionary transition from current practice.

CCS CONCEPTS
• Computer systems organization → Real-time systems;
Real-time systems; • Software and its engineering →

Real-time schedulability; Real-time schedulability.
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1 INTRODUCTION
There is a considerable body of research into mixed criticality
systems stemming from the model presented by Vestal in 2007[57],
see [21, 22] for a comprehensive survey and review. The majority
of prior academic research in this area assumes that if
high-criticality tasks continue to execute beyond the execution
time limits at which they would normally finish, then further
workload due to low-criticality tasks may be dropped in order to
ensure that the high-criticality tasks can still meet their deadlines.
Industry, however, takes a different view of the importance of
low-criticality tasks, with practical systems unable to tolerate their
abandonment. This disconnect has been discussed in a number of
previous papers [34], [30], [49] and [29].

From an industry perspective, criticality relates to the
functional safety of an application, see the IEC 61508, DO-178C,
DO-254 and ISO 26262 standards. Typical names for criticality
levels are ASILs (Automotive Safety and Integrity Levels), DALs
(Design Assurance Levels or Development Assurance Levels) and
SILs (Safety Integrity Levels). The criticality level of an application,
or system function implemented via both hardware and software,
is determined by a system safety assessment that involves Failure
Modes and Effects Analysis. The criticality level typically depends
on: (i) an evaluation of the consequences of a failure, (ii) the
probability that the failure occurs, and (iii) the provision of means
to mitigate or cope with the failure. Hence the criticality level of
an application may not necessary reflect the severity or
consequences of the failure. An example given by Esper et al. [30]
and Ernst and Natale [29] comes from ISO 26262. If the probability
of failure occurrence is very low, then the ASIL level assigned may
be low, despite severe consequences if a failure actually happens. A
different application with a high probability of failure may be
assigned a higher ASIL despite having lower severity
consequences in the event of failure. With this interpretation, the
idea of dropping low-criticality functionality in favour of
completing that of high-criticality does not hold; the consequences
would be more severe. ISO 26262 also permits high-criticality
applications to be composed from low-criticality components with
diverse implementations; dropping one of these low-criticality
components would remove the necessary diversity and undermine
the safety argument for the high-criticality function. The message
is that the criticality level is not the same as importance, and hence
functionality that has low criticality cannot simply be dropped.

The notion of importance is explored further by Bletsas et al. [16],
who draw a distinction between criticality as used for verification
and importance as used to control graceful degradation. A task may
have low criticality but high importance, or vice versa, though there
is often a correlation between the two. Sundar and Easwaran [56]
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take this idea further, with a context aware approach to choosing
which tasks to degrade based on the task or tasks that overrun.

In this paper, we take the view, prevalent in industry, that
completely abandoning new releases of low-criticality tasks is not
acceptable when system behavior diverges from what is normally
expected. Rather, we consider a mixed-criticality system model
where tasks of both high- and low-criticality must always meet
their deadlines. Specifically, we propose the Compensating
Adaptive Mixed Criticality (C-AMC) scheduling scheme that meets
these stricter requirements. C-AMC ensures that both high- and
low-criticality tasks meet their deadlines in both normal and
degraded modes. However, once degraded mode is entered, new
releases (jobs) of low-criticality tasks execute imprecise versions
that provide essential functionality and outputs of sufficient
quality, while reducing overall workload via their smaller
execution time budgets. This adaptive behavior compensates, at
least in part, for the longer execution times that may be exhibited
by jobs of high-criticality tasks, for example executing error
handling code that is not expected to execute during normal
operation [42]. A similar model was previously suggested in a
preliminary workshop paper at WMC 2013 [18]; however, the
model and analysis provided there did not ensure that every job of
a low-criticality task would meet its deadline, rather jobs that were
active when degraded mode was entered were immediately only
permitted a smaller execution time budget. Thus if such a job was
part way through executing its primary version, then that job
could end up being aborted due to an execution time overrun of
the reduced budget, or alternatively miss its deadline. The
imprecise mixed criticality model is also supported by the
dynamic-priority EDF-VD [46, 47] scheme and by a scheme based
on MC-fluid scheduling [10]. The research presented in this paper
differs from those prior works by focussing on fixed-priority
preemptive scheduling schemes, that can be adopted by industry
via an evolutionary transition from current practice [43, 44].

The main contribution of the research reported in this paper is
the Compensating Adaptive Mixed Criticality (C-AMC) scheme and
its associated schedulability analysis. The C-AMC scheme:

• Ensures that both high- and low-criticality tasks meet their
deadlines in both normal and degraded modes.

• Supports a form of degradation that is genuinely graceful,
while reducing low-criticality workload to compensate for
unexpected increases in high-criticality workload.

• Substantially improves schedulability compared to the single
criticality approach that is common practice in industry.

• Provides a viable migration path for industry to make an
evolutionary transition from current practice, based on fixed-
priority preemptive scheduling [2, 3].

• Addresses one of the key open issues identified in the
survey of research into mixed criticality systems [21]:
Adding “support for limited low-criticality functionality in
higher criticality modes, avoiding the abandonment problem.”

The remainder of this paper is organized as follows: Section 2
discusses related work. Section 3 introduces the system model,
terminology, and notation used. Section 4 presents schedulability
analysis for the C-AMC scheme, the performance of which is
evaluated in Section 5. Section 6 concludes with a summary and

directions for future research. Finally, the appendix considers task
allocation on a multi-core processor under the C-AMC scheme.

2 RELATEDWORK
In this section, we outline prior work on mixed criticality fixed-
priority scheduling schemes for single-core processors.

Since Vestal’s seminal work [57] in 2007, mixed criticality
systems have become a hot topic of real-time systems research.
Many of these papers focus on scheduling schemes that are based
on fixed priorities, most notably Static Mixed Criticality (SMC) [8]
and Adaptive Mixed Criticality (AMC) [9]. AMC is considered the
most effective fixed-priority scheme [38], and has been extended
to account for many additional aspects including: preemption
thresholds [59, 60], multiple criticality levels [31],
criticality-specific periods [11], changes in priority [7],
communications [19], deferred preemption [20], weakly-hard
timing constraints [33], probabilistic task models [48], design
optimization [62], context switch costs [25], robustness and
resilience [24], implementation overheads [44], and
semi-clairvoyant timing behavior [23, 61]. An exact analysis has
also been developed for periodic task sets [4, 50].

Various forms of degraded service have been proposed for
low-criticality tasks when system behavior departs from what is
normally expected. These include: abandoning all jobs; letting jobs
that have already started complete execution, but abandoning
newly released jobs [8]; extending periods and/or
deadlines [54, 55]; dropping jobs from specific tasks [1, 32, 39]; and
applying weakly-hard constraints, allowing some jobs to be
skipped [33]. Alternative approaches seek to delay the time at
which the system starts dropping new releases of low-criticality
tasks, and also to reduce the time that the system spends doing so.
Delaying the onset of degraded behavior can be achieved by using
off-line sensitivity analysis [51] to increase all low-criticality
execution time budgets while still retaining a schedulable
system [18, 52, 53, 58]. Online accounting for budget under and
overruns can also be used to delay switching to degraded
mode [37]. Further, the time spent in degraded mode can be
reduced via online budget accounting resulting in a faster
bailout [13, 14] and recovery. Alternatively, the amount of time
spent in degraded mode can be substantially reduced by triggering
mode change transitions based on response times rather than
execution times [15]. Also, by using a separate background priority
queue, low-criticality jobs that would have been dropped in
degraded mode can be run in what would otherwise have been idle
time, providing a last chance to meet their deadlines [40]. Finally,
we note that research into mixed criticality scheduling, including
that described in this paper, differs from research into operational
mode changes, due to the specific trigger conditions for the mode
change and, as a consequence, the form of analysis required [17].

3 SYSTEM MODEL
In this paper, we assume a mixed criticality system executing on a
single-core processor under fixed-priority preemptive scheduling.
The model and subsequent analysis are also applicable to multi-
core processors employing partitioned fixed-priority preemptive
scheduling with full isolation between cores.

2
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A mixed criticality system is assumed to have two criticality
levels: HI and LO . Each task τi is characterised by its criticality
level Li , which is either HI or LO . Each task τi has two execution
time budgets Ci (LO) and Ci (HI ) that bound its execution time in
normal and degraded mode respectively. For a HI -criticality task
τk , Ck (LO) and Ck (HI ) (with Ck (LO) ≤ Ck (HI )) are, respectively,
the low assurance and the high assurance estimates of the WCET
of its primary version, which is the only version that it executes.
By contrast, for a LO-criticality task τj , Cj (LO) and Cj (HI ) (with
Ck (LO) ≥ Ck (HI )) are low assurance estimates of the WCET of,
respectively, its primary version and its imprecise version.

Each task τi has a minimum inter-arrival time or period Ti
between releases of its jobs, and a constrained relative deadline Di ,
where Di ≤ Ti . Each task τi is assumed to have a unique priority,
with hp(i) (resp. hep(i)) used to denote the set of tasks with higher
(resp. higher than or equal) priority to task τi . The priority
assigned to each task is independent of its criticality level. All task
parameters are assumed to take integer values, for example
measured in processor clock cycles.

The Real-Time Operating System (RTOS) is required to provide
execution time monitoring and budget enforcement. The RTOS is
assumed to abort any job of a task that does not complete within
its execution time budget. For a LO-criticality task τj , this budget
is set to Cj (LO) for jobs released in normal mode and to Cj (HI ) for
jobs released in degraded mode. For a HI -criticality task τk , the
budget is set to Ck (HI ) for jobs released in either mode.

The RTOS is also responsible for transitioning the system
between normal and degraded modes. The system switches from
normal mode to degraded mode when a HI -criticality task τk
executes for Ck (LO) without signaling completion, and returns to
normal mode on an idle instant1. Jobs of a LO-criticality task τj
that are released in normal mode execute their primary version
and must complete within an execution time budget of Cj (LO),
whereas those jobs released in degraded mode execute their
imprecise version and must complete within an execution time
budget of Cj (HI ). By contrast, jobs of a HI -criticality task τk
always execute their primary version and must complete within an
execution time budget of Cj (HI ).

The decrease in workload due to LO-criticality jobs executing
imprecise versions in degraded mode compensates, at least in part,
for HI -criticality jobs that have overrun their low assurance
WCET budget. We therefore refer to the mixed criticality
scheduling scheme described above as Compensating Adaptive
Mixed Criticality (C-AMC). Schedulability analysis for C-AMC,
introduced in Section 4, provides the necessary guarantees that all
jobs of all tasks will meet their deadlines under this scheme.

4 C-AMC SCHEME
In this section, we present schedulability analysis for the C-AMC
scheme. This analysis builds on the existing analysis for AMC [9]
and also on the analysis sketched in a preliminary workshop
paper [18] for a similar model that did not provide schedulability
guarantees for all jobs of LO-criticality tasks.

1An idle instant occurs when there are no jobs released prior to that time that have
not completed.

In the original paper on AMC [9], two sufficient schedulability
tests were developed. The first approach, called AMC-rtb, takes
account of a response time bound on the duration over which
higher priority LO-criticality tasks can be released. The second,
more precise approach, called AMC-max, determines the worst-
case response time by taking into account all possible times at
which the transition from normal to degraded mode could occur. In
the following subsections, we derive corresponding schedulability
tests for C-AMC: (i) the C-AMC-rtb test based on a response time
bound, and (ii) the C-AMC-max test based on a consideration of
when the transition to degraded mode could occur.

4.1 C-AMC-rtb Schedulability Test
Considering the normal mode, where every task τi complies with
its Ci (LO) execution time budget, then schedulability can be
determined using standard response time analysis for
fixed-priority preemptive scheduling [6, 41]:

Ri (LO) = Ci (LO) +
∑

j ∈hp(i)

⌈
Ri (LO)

Tj

⌉
Cj (LO) (1)

Considering degraded mode, under C-AMC, all tasks are required to
meet their deadlines. An upper bound on the worst-case response
time Ri (HI ) for a task τi (of HI - or LO-criticality), accounting for
the transition to degraded mode, can be derived as follows:

Ri (HI ) = max(Ci (LO),Ci (HI )) +
∑

j ∈hp(i)

⌈
Ri (HI )

Tj

⌉
Cj (HI )

+
∑

j ∈hpL(i)

⌈
Ri (LO)

Tj

⌉
(Cj (LO) −Cj (HI )) (2)

where hp(i) is the set of tasks with priorities higher than that of
task τi , and hpL(i) is the set of LO-criticality tasks with priorities
higher than that of task τi .

The first term in (2) accounts for the larger of the two execution
time budgets for both HI - and LO-criticality tasks. The second
term assumes that jobs of each higher priority task τj may
contribute interference equating to Cj (HI ) throughout the entire
response time of task τi . Recall that for HI -criticality tasks this is
the larger value, since Cj (HI ) ≥ Cj (LO), while for LO-criticality
tasks, it is the smaller value, since in that case Cj (HI ) ≤ Cj (LO).
The third term adjusts for the fact that jobs of each higher priority
LO-criticality task τj released in normal mode, which extends for
at most Ri (LO), can contribute an extra Cj (LO) −Cj (HI ) over and
above the interference already accounted for from these jobs in the
second term. In other words, jobs released in normal mode (within
Ri (LO)) contribute at most Cj (LO) since they execute primary
versions, while the remaining jobs released at or after Ri (LO)
contribute at most Cj (HI ) since they execute imprecise versions.

The analysis embodied in (1) and (2) is referred to as the C-AMC-
rtb test. Observe that the C-AMC-rtb test reduces to the AMC-
rtb test if Cj (HI ) = 0 for every LO-criticality task τj , i.e. jobs of
LO-criticality tasks are not released in degraded mode, and the
C-AMC-rtb test is modified to not check the schedulability of LO-
criticality tasks in degraded mode, i.e. Ri (HI ) is not computed for
LO-criticality tasks. Thus, the AMC-rtb test dominates the C-AMC-
rtb test; however, this dominance comes at a cost of not providing

3
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any guarantees that jobs of LO-criticality tasks will meet their
deadlines in degraded mode. In contrast to the AMC-rtb test, the
C-AMC-rtb test guarantees the schedulability of all jobs of LO-
criticality tasks including those that are active in degraded mode.
Hence, if Cj (HI ) = 0 for every LO-criticality task τj , i.e. jobs of LO-
criticality tasks are not released in degraded mode, then the C-AMC-
rtb test guarantees schedulability of all of the jobs of LO-criticality
tasks that are released in normal mode, including those that are
active across the mode change transition and hence complete in
degraded mode. Ensuring schedulability of LO-criticality jobs that
complete in degraded mode is a key difference with respect to the
AMC-rtb test. For task sets schedulable according to the C-AMC-rtb
test, no job of any task misses its deadline.

4.2 C-AMC-max Schedulability Test
Considering the normal mode, where every task τi complies with
its Ci (LO) execution time budget, then schedulability is again
determined using the standard approach given by (1).

Considering degraded mode, under C-AMC, all tasks are
required to meet their deadlines. An upper bound on the
worst-case response time Ri (HI ) for a task τi (of HI - or
LO-criticality), accounting for the transition to degraded mode,
can be derived by computing the worst-case response time Rsi (HI )
of task τi , assuming a transition to degraded mode at time s , and
then taking the maximum of these values over all possible values
of s . The formula for Rsi (HI ) is constructed from the different
forms of interference that task τi can experience:

Rsi (HI ) = max(Ci (HI ),Ci (LO)) + IL(i, s,R
s
i (HI )) + IH (i, s,Rsi (HI ))

(3)
where IL(i, s, t) and IH (i, s, t) represent an upper bound on the
interference from higher priority LO-criticality and higher priority
HI -criticality tasks respectively, over a priority level-i busy period
of length t , with a transition to degraded mode at a time s , as
measured from the start of the busy period.

IL(i, s, t) is defined by considering the number of jobs of each
higher priority LO-criticality task τj that can execute in a priority
level-i busy period of length t , with the mode change taking place
at time s , with s < t . Jobs of a LO-criticality task τj that are released
before themode change at time s execute their primary versions and
so contributeCj (LO), while those jobs released at or after the mode
change execute their imprecise versions and so contribute Cj (HI ).
The total worst-case interference from higher priority LO-criticality
tasks is therefore upper bounded by:

IL(i, s, t) =
∑

j ∈hpL(i)

(⌈
t

Tj

⌉
Cj (HI ) +

(⌊
s

Tj

⌋
+ 1

)
(Cj (LO) −Cj (HI ))

)
(4)

where hpL(i) is the set of LO-criticality tasks with higher priority
than τi .

The first term in (4) accounts for the fact that every job of task
τj released in the busy period contributes at leastCj (HI ), while the
second term corrects for the fact that those jobs released by time s
contribute a larger amount Cj (LO).

Following the analysis derived for the AMC-max test [9], a
⌊
s
Tj

⌋
+

1 formulation is used for the second term in (4). This ensures that
IL(i, s, t) increases with increasing values of s with steps at values

of s corresponding to multiples of the periods of the higher priority
LO-criticality tasks. This property is used later to limit the number
of values of s that need to be checked. The use of

⌊
s
Tj

⌋
+ 1 is

preferred to
⌈
s
Tj

⌉
, since the former provides a valid upper bound

for IL(i, s, t), while also retaining compatibility with, and reduction
to, the original AMC-max test [9].

IH (i, s, t) is defined in the same way as in the analysis of AMC-
max [9], by considering the number of jobs of each higher priority
HI -criticality task τk that can execute in a priority level-i busy
period of length t , with the mode change taking place at time s ,
with s < t . Those jobs of a HI -criticality task τk that have some
part of their execution after time s can contribute interference of
Ck (HI ), with the remainder contributing the smaller value Ck (LO).

The maximum number of jobs of τk , with Dk ≤ Tk , that can be
released in a busy period of length t and have some part of their
execution in an interval of length t − s is upper bounded by:

min
{⌈
t − s + Dk

Tk

⌉
,

⌈
t

Tk

⌉}
(5)

The first term in (5) follows from the fact that the latest a job of task
τk can execute is at its deadline, while the earliest that subsequent
jobs can execute is at their release times. For small values of s , the
first term can be pessimistic; including more jobs than can actually
be released in an interval of length t . This is taken into account
by the second term, which limits the total number of jobs to the
maximum that could be released in an interval of length t . The total
worst-case interference from higher priority HI -criticality tasks is
therefore upper bounded by:

IH (i, s, t) =
∑

k ∈hpH(i)

⌈
t

Tk

⌉
Ck (LO) +

∑
k ∈hpH(i)

min
{⌈
t − s + Dk

Tk

⌉
,

⌈
t

Tk

⌉}
(Ck (HI ) −Ck (LO)) (6)

where hpH(i) is the set of HI -criticality tasks with higher priority
than τi .

Hence the worst-case response time of task τi , occurring in
degraded mode, with a mode change at time s is upper bounded by:

Rsi (HI ) = max(Ci (HI ),Ci (LO))+∑
j ∈hpL(i)

(⌈
Rsi (HI )

Tj

⌉
Cj (HI ) +

(⌊
s

Tj

⌋
+ 1

)
(Cj (LO) −Cj (HI ))

)
+

∑
k ∈hpH(i)

⌈
Rsi (HI )

Tk

⌉
Ck (LO) +

∑
k ∈hpH(i)

min
{⌈
Rsi (HI ) − s + Dk

Tk

⌉
,

⌈
Rsi (HI )

Tk

⌉}
(Ck (HI ) −Ck (LO))

(7)
An upper bound on the worst-case response time of task τi is then
given by the maximum over all possible values of s:

Ri (HI ) = max
∀s ,s<Ri (LO )

{
Rsi (HI )

}
(8)

Note that the terms in (5), (6) and (7) have been simplified or re-
arranged with respect to how they appear in the corresponding
analysis for AMC-max [9].
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Finally, it is necessary to limit the number of values of s that
are considered from the range of all possible values. In (7), the
first summation term, i.e. IL(i, s, t), increases as a step function
with increasing values of s , while the final summation term, from
IH (i, s, t), decreases with increasing values of s . The other terms
do not vary with s . It follows that Rsi (HI ) can only increase at
values of s corresponding to multiples of the periods of higher
priority LO-criticality tasks, hence these are the only values of s
that need to be considered. Further, the mode change must occur
by Ri (LO), otherwise either task τi completes or, in the case that
τi is a HI -criticality task, τi may itself be responsible for causing
the mode change at that time. Hence s is restricted in (8) to the
interval [0,Ri (LO))2. Finally, in the degenerate case where there are
no LO-criticality tasks, s = 0 is checked, which reduces (7) to the
standard analysis for fixed priority preemptive scheduling.

Note that the C-AMC-max analysis derived above does not
assume a synchronous arrival sequence for all tasks, as that would
not necessarily result in the worst-case response time. Rather, the
analysis accounts independently for the maximum interference
that can occur in two time windows, the first of length s
representing normal mode, and the second of length t − s
representing degraded mode.

Observe that the C-AMC-max test reduces to theAMC-max test if
Cj (HI ) = 0 for every LO-criticality task τj , i.e. jobs of LO-criticality
tasks are not released in degraded mode, and the C-AMC-max test
is modified to not check the schedulability of LO-criticality tasks
in degraded mode, i.e. Ri (HI ) is not computed for LO-criticality
tasks. Thus, the AMC-max test dominates the C-AMC-max test;
however, this dominance comes at a cost of not providing any
guarantees that jobs of LO-criticality tasks will meet their deadlines
in degraded mode. In contrast to the AMC-max test, the C-AMC-
max test guarantees the schedulability of all jobs of LO-criticality
tasks including those that are active in degraded mode. Hence, if
Cj (HI ) = 0 for every LO-criticality task τj , i.e. jobs of LO-criticality
tasks are not released in degraded mode, then the C-AMC-max
test guarantees schedulability of all jobs of LO-criticality tasks
that are released in normal mode, including those that are active
across the mode change transition and hence complete in degraded
mode. Ensuring schedulability of LO-criticality jobs that complete
in degraded mode is a key difference with respect to the AMC-max
test. For task sets schedulable according to the C-AMC-max test,
no job of any task misses its deadline.

Comparing the analysis for C-AMC-max and C-AMC-rtb, the
following hold. First, with the C-AMC-max analysis (7), the largest
possible contribution from higher priority LO-criticality tasks
occurs when s takes its largest value, in which case the overall
contribution from those tasks equates to that assumed by the
C-AMC-rtb analysis in (2). This can be seen by considering that for
each higher priority LO-criticality task τj , the largest value of s
considered must be in the range

[ ⌊
Ri (LO )−1

Tj

⌋
Tj ,Ri (LO) − 1

]
,

since the largest value of s corresponds to a multiple of the period
of some higher priority LO-criticality task such as τj and
s < Ri (LO). Further for any value of s in that range

2It is not required to check s = Ri (LO ), since any release of a LO -criticality task at
that time would have a budget of Cj (LO ).

⌊
s
Tj

⌋
+ 1 =

⌈
Ri (LO )
Tj

⌉
. Substituting

⌈
Ri (LO )
Tj

⌉
for

⌊
s
Tj

⌋
+ 1 in (7)

results in the same contribution from higher priority LO-criticality
tasks as in (2). Second, with the C-AMC-max analysis (7), the
largest possible contribution from higher priority HI -criticality
tasks occurs when s takes its smallest value s = 0, in which case
the overall contribution from those tasks equates to that assumed
by the C-AMC-rtb analysis in (2). Since s cannot take both its
smallest and largest possible values simultaneously, it follows that
the C-AMC-max analysis dominates the C-AMC-rtb analysis.

4.3 Priority Assignment
Tomaximize schedulability it is necessary to assign task priorities in
an optimal way [27]. For constrained-deadline mixed-criticality task
sets scheduled under AMC and analysed using AMC-max or AMC-
rtb, it is known [9] that Deadline Monotonic priority ordering [45]
is not optimal, but that an optimal priority ordering can be obtained
via Audsey’s Optimal Priority Assignment (OPA) algorithm [5].

It was proved in [26] that it is both sufficient and necessary to
show that a schedulability test meets three simple conditions in
order for Audlsey’s OPA algorithm to be applicable. These three
conditions require that schedulability of a task according to the test
is: (i) independent of the relative priority order of higher priority
tasks, (ii) independent of the relative priority order of lower priority
tasks, and (iii) cannot get worse if the task is moved up one place in
the priority order (i.e. its priority is swapped with that of the task
immediately above it in the priority order).

We observe that these three conditions hold for the C-AMC-rtb
and C-AMC-max analyses derived in Section 4, and thus Audsley’s
OPA algorithm is applicable and optimal with respect to these
schedulability tests.

5 EVALUATION
In this section, we present an evaluation of the C-AMC
schedulability tests introduced in Section 4.

5.1 Task Set Parameter Generation
The task set parameters used in the experiments were generated
using a similar approach to that previously taken for mixed
criticality systems, with the Dirichlet-Rescale (DRS) algorithm [36]
(open source Python software [35]) used to provide an unbiased
distribution of utilization values that sum to the target utilization
required subject to a set of individual constraints.

The number of tasks per task set was fixed, default N = 20. The
number of HI -criticality tasks NHI was set to N ·CP where CP is
the Criticality Proportion (default CP = 0.5), with the remaining
NLO = N − NHI tasks designated LO-criticality.

Task utilizations were generated using the DRS algorithm. First,
LO-criticality utilization values, Ui (LO), were generated for the
NHI HI -criticality tasks, such that the total LO-criticality
utilization,U LO

HI , of those tasks summed to CP ·U , whereU is the
overall target utilization required. Similarly, LO-criticality
utilization values, Ui (LO), were generated for the NLO
LO-criticality tasks, such that the total LO-criticality utilization,
U LO
LO , of those tasks summed to (1 −CP) ·U . In both cases, the task

utilization values were constrained to be in the range [0, 1.0].
Second, HI -criticality utilization values, Ui (HI ), were generated
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for the NHI HI -criticality tasks, such that the total HI -criticality
utilization,UHI

H I , of those tasks summed to CF ·CP ·U , where CF
is the Criticality Factor (default CF = 2.0) characterizing the ratio
between the total HI -criticality and total LO-criticality utilization
of the HI -criticality tasks (CF = UHI

H I /U
LO
HI ). Similarly,

HI -criticality utilization values, Ui (HI ), were generated for the
NLO LO-criticality tasks, such that the total HI -criticality
utilization,UHI

LO , of those tasks summed to XF · (1−CP) ·U , where
XF is the Compensating Factor (default XF = 0.5) characterizing
the ratio between the total HI -criticality and total LO-criticality
utilization of the LO-criticality tasks (XF = UHI

LO /U LO
LO ). For

HI -criticality tasks, the Ui (HI ) values were constrained to be in
the range [Ui (LO), 1.0], and for LO-criticality tasks, the Ui (HI )
values were constrained to be in the range [0.0,Ui (LO)]. Note that
the total utilization in normal mode is always equal to the target
utilization value, U LO

HI +U
LO
LO = U . Further, the total utilization in

degraded mode is UHI
H I + U

HI
LO = U · CP · CF + U · (1 − CP) · XF .

Hence, if CP · (CF − 1) = (1 − CP) · (1 − XF ), then the overall
utilization in degraded mode also equates to U . In that case, the
increase in the utilization of HI -criticality tasks in degraded mode
is compensated for by an equivalent decrease in the utilization of
LO-criticality tasks.

Task periods Ti were generated according to a log-uniform
distribution [28] with a factor of 100 difference between the
minimum and maximum possible period. This represents a spread
of task periods from 10ms to 1 second, as found in many real-time
systems. Task deadlines Di were set equal to their periods Ti . The
LO- and HI -criticality execution times of all tasks were given by
Ci (LO) = Ui (LO) ·Ti and Ci (HI ) = Ui (HI ) ·Ti respectively.

5.2 Experiments
The experiments considered systems with target utilization U
varied from 0.025 to 0.975 in steps of 0.025. For each target
utilization value examined, 1000 task sets were generated (100 in
the case of experiments using the weighted schedulability
measure [12]). The experiments investigated the performance of
the following schedulability tests and necessary conditions:

(1) AMC-valid: This is a necessary feasibility condition given
the basic requirements of the AMC scheme [9]. This upper
bound checks that the total LO-criticality utilization of all
tasks is feasible, i.e. U LO

HI + U LO
LO ≤ 1, and that the total

HI -criticality utilization of HI -criticality tasks is feasible,
i.e.UHI

H I ≤ 1.
(2) AMC-ubhl: This is a necessary condition for schedulability

given the basic requirements of the AMC scheme [9],
assuming fixed-priority preemptive scheduling. This upper
bound uses standard response time analysis for
fixed-priority preemptive scheduling [6, 41] to check: (i) if
all of the tasks are schedulable in normal mode, and (ii) if all
of the HI -criticality tasks are schedulable in degraded mode,
assuming that no releases of LO-criticality jobs take place in
that mode. It ignores the impact of the mode change
transition.

(3) AMC-max: Uses the AMC-max test [9] to determine task
set schedulability under the AMC scheme.

(4) AMC-rtb: Uses the AMC-rtb test [9] to determine task set
schedulability under the AMC scheme.

(5) C-AMC-valid: This is a necessary feasibility condition
given the basic requirements of the C-AMC scheme. This
upper bound checks that the total LO-criticality utilization
of all tasks is feasible, i.e. U LO

HI + U
LO
LO ≤ 1, and that the

total HI -criticality utilization of all tasks is feasible,
i.e.UHI

LO +U
HI
H I ≤ 1.

(6) C-AMC-ubhl: This is a necessary condition for
schedulability given the basic requirements of the C-AMC
scheme, assuming fixed-priority preemptive scheduling.
This upper bound uses standard response time analysis for
fixed-priority preemptive scheduling [6, 41] to check: (i) if
all of the tasks are schedulable in normal mode
(i.e. assuming Ci (LO) values), and (ii) if all of the tasks are
schedulable in degraded mode (i.e. assuming Ci (HI ) values).
It ignores the impact of the mode change transition.

(7) C-AMC-max: Uses the C-AMC-max test, see Section 4.2, to
determine task set schedulability under the C-AMC scheme.

(8) C-AMC-rtb: Uses the C-AMC-rtb test, see Section 4.1, to
determine task set schedulability under the C-AMC scheme.

(9) FPPS: Uses standard response time analysis for fixed-priority
preemptive scheduling [6, 41] to determine if all of the tasks
are schedulable assuming that the execution time of each task
τi is given by max(Ci (LO),Ci (HI )); in other words assuming
the worst-case single criticality behavior.

In each case, Audsley’s Optimal Priority Assignment
algorithm [5] was used to assign priorities, ensuring an optimal
priority assignment with respect to each schedulability test.

Observe that the following dominance relationships exist
between the schedulability tests, as discussed in Section 4, and
trivially extended to the upper bounds and FPPS: AMC-test →
C-AMC-test, where S → Z indicates that test S dominates test Z ,
and test is one of valid, ubhl, max, or rtb. Further,
SCHED-valid → SCHED-ubhl → SCHED-max →

SCHED-rtb → FPPS, where SCHED is the scheduling scheme,
either AMC or C-AMC.

5.3 Results
The figures illustrating the results are best viewed in color.

In the first experiment, we compared the performance of the
various schedulability tests using the default parameters given
in Section 5.1. The Success Ratio, i.e. the percentage of task sets
generated that were deemed schedulable, is shown for each of the
schedulability tests in Figure 1. The relative performance of the
various tests follows the dominance relations set out in the previous
section. Considering the C-AMC scheme, the C-AMC-max analysis
shows a small but useful advantage over C-AMC-rtb, while both
substantially outperform the single criticality approach to ensuring
that all deadlines are met, i.e. FPPS. Observe that under the C-AMC
scheme, with the default parameters (CP = 0.5,CF = 2.0,XF = 0.5),
the upper bound on task set feasibility (validity) occurs atU = 0.8,
compared to U = 1.0 for the AMC scheme. This is because under
C-AMC, the utilization in degraded mode includes contributions
from both HI - and LO-criticality tasks, i.e. UHI

H I +U
HI
LO =U · CP ·

CF +U · (1 −CP) · XF = 1.25U .
6
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In the second set of experiments, we used the weighted
schedulability measure [12] to assess schedulability test
performance while varying an additional parameter. In these
experiments, the other parameters were set to the default values
given in Section 5.1. In all of the weighted schedulability
experiments the relative performance of the different tests follows
the pattern illustrated in the first experiment, as dictated by the
dominance relationships.

The results of varying the Criticality Proportion CP , from 0.0 to
1.0 in steps of 0.05, are shown in Figure 2. Recall that the Criticality
Proportion determines the proportion of tasks that areHI -criticality.
Observe that with a smaller proportion of HI -criticality tasks, in
the range [0.1, 0.4] the C-AMC-max and C-AMC-rtb tests are able
to provide significant gains over the single criticality approach
(FPPS). This is a result of the substantial reduction in workload due
to executing imprecise versions of LO-criticality tasks in degraded
mode. Further, when CP = 0, i.e. there are no HI -criticality tasks,
or when CP = 1, i.e. there are no LO-criticality tasks, then the C-
AMC-ubhl, C-AMC-max, C-AMC=rtb, AMC-ubhl, AMC-max, and
AMC=rtb tests all reduce to the standard response time test for
FPPS. Notice also that the limit on all systems being feasible (valid)
is lower under C-AMC (CP = 0.333) than under AMC (CP = 0.5)
due to the increased utilization that is supported in degraded mode.

The results of varying the Criticality Factor CF , from 1.0 to 3.0
in steps of 0.1, are shown in Figure 3. Recall that the Criticality
Factor characterizes the ratio of total HI -criticality task utilization
in degraded mode to that in normal mode, i.e. CF = UHI

H I /U
HI
LO .

The form of this graph is similar to that for CP shown in Figure 2.
Akin to having a smaller proportion of HI -criticality tasks, having
a smaller Criticality Factor, in the range [1.1, 1.8] instead of 2.0
(the default), results in a smaller workload from HI -criticality tasks
in degraded mode and ensures that the reduction in workload from
LO-criticality tasks compensates sufficiently to provide
substantially better schedulability than assuming a single
criticality model, i.e. FPPS. Notice that when CF = 1.0, the
workload from HI -criticality tasks is no higher in degraded mode,
in fact that mode is never actually entered, and the C-AMC-ubhl,
C-AMC-max, C-AMC-rtb, AMC-ubhl, AMC-max, and AMC-rtb
tests all reduce to the standard response time test for FPPS. Notice
also that the limit on all systems being feasible (valid) is lower
under C-AMC (CF = 1.5) than under AMC (CF = 2.0) due to the
increased total utilization supported in degraded mode.

The results of varying the Compensation Factor XF , from 0.0 to
1.0 in steps of 0.05, are shown in Figure 4. Recall that the
Compensation Factor characterizes the ratio of total LO-criticality
task utilization in degraded mode to that in normal mode,
i.e. XF = UHI

LO /U LO
LO . Since the tests for the AMC model do not

consider the execution of LO-criticality tasks in degraded mode,
they are unaffected by the values of XF , hence the horizontal lines
on the graph. By contrast, with the C-AMC model, smaller
numeric values for XF correspond to a smaller workload due to
LO-criticality tasks in degraded mode and hence better
schedulability. Values for the Compensation Factor in the range
[0.0, 0.5] equate to a 2-fold or more reduction in workload, which
provides substantial gains in schedulability compared to assuming
a single criticality model, i.e. FPPS.

 

Figure 1: Success Ratio: Varying task set utilization.

 

Figure 2: Weighted Schedulability: Varying CP .

 

Figure 3: Weighted Schedulability: Varying CF .
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Figure 4: Weighted Schedulability: Varying XF .

 

Figure 5: Weighted Schedulability: Varying both XF andCF .

 

Figure 6: Weighted Schedulability: Varying both XF andCP .

 

Figure 7: Weighted Schedulability: Varying period range.

 

Figure 8: Weighted Schedulability: Varying deadlines.

 

Figure 9:Weighted Schedulability: Varying number of tasks.
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In Figure 4, observe that when XF = 0, meaning that
LO-criticality jobs are not released in degraded mode,
schedulability according to the C-AMC-max test remains below
that for the AMC-max test, and similarly schedulability according
to the C-AMC-rtb test remains below that for the AMC-rtb test.
This is because under the C-AMC model, LO-criticality tasks
released in normal mode, but completing in degraded mode are
afforded schedulability guarantees, whereas under the AMC model
they are not. Note, the steps in the line for feasibility (validity)
under the C-AMC scheme are due to the precise quantization of
the utilization of the generated tasks sets3.

The results of varying both the Compensation Factor XF , from
0.0 to 1.0 in steps of 0.05, and simultaneous varying the Criticality
Factor CF in opposition to it such that CF = 2.0 − XF , are shown
in Figure 5. The idea being to examine how schedulability changes
when the total utilization in degraded mode, i.e. UHI

H I + U
HI
LO , is

held constant at U , but the workload due to HI -criticality tasks
(controlled by CF ) is decreased fromU to zero, while the workload
from LO-criticality tasks (controlled by XF ) is increased from zero
toU . As expected, schedulability is maximized when CF = XF = 1
and the behavior reduces to that of a single criticality system with
no change in execution times between normal and degraded mode.
Observe that for decreasing values of XF and hence increasing
values of CF , schedulability degrades; however, the C-AMC-max
and C-AMC-rtb tests are still able to provide substantially
improved performance compared to a single criticality system,
i.e. FPPS. Notice that the upper bounds C-AMC-ubhl and
AMC-ubhl are almost horizontal lines in Figure 5, this is because
those upper bounds consider schedulability in normal and
degraded mode separately. Hence, they are unaffected by the
increased difficulty in ensuring schedulability across the mode
change transition when there are large changes in the execution
times of tasks between the two modes.

In Figure 5, as in Figure 4, observe that when XF = 0, meaning
that LO-criticality jobs are not released in degraded mode,
schedulability according to the C-AMC-max test remains below
that for the AMC-max test, and similarly for the C-AMC-rtb and
AMC-rtb tests. This is because under the C-AMC model,
LO-criticality tasks released in normal mode, but completing in
degraded mode are afforded schedulability guarantees, whereas
under the AMC model, they are not.

The results of varying the Compensation Factor XF , from 0.0 to
1.0 in steps of 0.05, and simultaneous varying the Criticality
Proportion CP in opposition to it, such that CP = 1.0 − XF , are
shown in Figure 6. Note that for this specific experiment, the
Criticality FactorCF was set to 1.5. The idea being to examine how
schedulability changes when the total utilization in degraded
mode, i.e.UHI

H I +U
HI
LO , is held constant atU , but the workload due

to HI -criticality tasks (controlled by CP ) is decreased from U to
zero, while the workload due to LO-criticality tasks (controlled by
XF ) is increased from zero to U . As expected, schedulability is
maximized when CP = 0 and XF = 1 and the behavior reduces to
that of a single criticality system with no change in execution
times between normal and degraded mode. As also expected
schedulability improves for increasing values of XF and hence

3Re-drawing this line for larger numbers of task sets makes no difference.

decreasing values of CP , corresponding to smaller differences
between the behavior in normal and degraded mode. At either
extreme, the system reduces to one of single criticality (either all
HI -criticality tasks or all LO-criticality tasks), hence C-AMC-ubhl,
C-AMC-max, and C-AMC-rtb, all reduce to the same performance
as FPPS. Nevertheless, for intermediate values of XF and CP ,
corresponding to mixed criticality systems, the C-AMC-max and
C-AMC-rtb tests are able to provide substantially improved
performance compared to a single criticality system, i.e. FPPS.

The results of varying the range of task periods, 10R , for R from
0.25 to 4 in steps of 0.25, are shown in Figure 7. This equates to the
range of task periods varying from 1.78 to 10,000. As expected with
scheduling policies based on fixed priorities, the general trend for all
of the schedulability tests is gradually increasing performance with
an increasing range of task periods. Observe that for the smallest
period ranges, e.g. R = 0.25, where the maximum and minimum
periods differ only by a factor of 1.78, the performance of both C-
AMC-max and C-AMC-rtb tends to that for FPPS. The reason for this
is that when all tasks have essentially the same periods, then both
the C-AMC-max and C-AMC-rtb analyses include interference due
to one job of each higher priority task at its larger execution value,
i.e. Cj (HI ) for a HI -criticality task and Cj (LO) for a LO-criticality
task, thus schedulability is effectively the same as for FPPS. (Note,
in the case of C-AMC-max, this can be seen by considering s = 0
as the mode change time in the analysis).

The results of varying the task deadlines as a fixed proportion of
their periods from 0 to 1.0 in steps of 0.05 are shown in Figure 8. As
expected, all of the schedulability tests show gradually increasing
performance with increasing deadlines, with the best performance
obtained in the implicit deadline case, i.e. when Di = Ti . The two
necessary feasibility (validity tests) exhibit different behavior, since
they check that the utilization does not exceed 1 in either normal
or degraded mode, and also that the execution time of each task
does not exceed its deadline, which may happen for very small
deadlines.

Finally, we also investigated varying the task set cardinality
from 8 to 128 in steps of 8. The results of this experiment are
shown in Figure 9. Observe that all of the schedulability tests exhibit
performance that is largely independent of the number of tasks.

6 CONCLUSIONS
Academic research into mixed criticality systems often assumes
that if high-criticality tasks continue to execute beyond the
execution time limits at which they would normally finish, then
further workload due to low-criticality tasks should be dropped in
order to ensure that the high-criticality tasks can still meet their
deadlines. Industry, however, takes a different view of the
importance of low-criticality tasks, with many practical systems
unable to tolerate the complete abandonment of such tasks.

The research presented in this paper focuses on the above issue
by introducing the Compensating Adaptive Mixed Criticality
scheduling scheme. The C-AMC scheme ensures that both high-
and low-criticality tasks meet their deadlines in both normal and
degraded modes. Under C-AMC, jobs of low-criticality tasks,
released in degraded mode, execute imprecise versions that are
able to provide outputs of sufficient quality, while also reducing
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the overall workload. This compensates, at least in part, for the
overload due to high-criticality tasks, which while always
executing their primary versions, may also run error handling
code that is not expected to execute during normal operation.

Two schedulability tests, C-AMC-max and C-AMC-rtb, were
derived for the C-AMC scheme and shown, via extensive
evaluation across a wide range of different parameter settings, to
provide substantially improvements in schedulability compared to
a single criticality baseline that reflects current industry practice.
Since C-AMC is based on fixed-priority preemptive scheduling, it
provides a viable migration path along which industry can make
an evolutionary transition to adaptive mixed criticality systems.

In future, we intend to build on earlier work with industry that
examined the application of research into mixed-criticality
systems to a DAL-A aircraft engine Full Authority Digital Engine
Controller (FADEC) [43]. While the standard AMC scheme was
initially prototyped as a solution, the new C-AMC scheme provides
significant advantages, not least the ability to provide genuine
graceful degradation by continuing to execute imprecise versions
of low-criticality tasks and ensuring that their deadlines are met.
In short, the C-AMC scheme provides engineers with significant
additional flexibility in the design of mixed criticality systems.

APPENDIX: TASK ALLOCATION
In this appendix we explore the improvements in schedulability
that can be achieved, for mixed criticality multi-core systems that
make use of partitioned C-AMC or partitioned FPPS scheduling, by
allocating tasks using Simulated Annealing. Note, here we make
the simplifying assumption that the multi-core hardware platform
provides full isolation between the different cores, and thus that
there is no cross-core contention or interference, hence
schedulability on each core depends only on the tasks allocated to
that core. The system model assumed is thus effectively the same
as that described in Section 3; however, instead of a single-core
processor, there is multi-core processor, with m homogeneous
cores, each of which independently executes the set of
mixed-criticality tasks assigned to it. The task allocation problem
considers how best to assign tasks to cores such that the tasks
allocated to each core are schedulable according to independent
(i.e. partitioned) C-AMC or FPPS scheduling on that core.

6.1 Simulated Annealing
Simulated Annealing relies on two key functions, a Cost_Function
that determines the quality of each possible solution, and a
Modify_Function that makes a randomly chosen, but valid
modification to the current solution, in order to create a new
solution that is close to it.

For Simulated Annealing to be effective, it is important that the
Cost_Function provides a smooth and continuous metric,
indicative of solution quality, that can drive the search towards an
optimal solution. In the context of task allocation, we use the
processor speed scaling factor F [51]. For a given allocation of
tasks to cores, the Cost_Function determines the smallest value
of F such that the execution times of all tasks can be scaled by a
factor of 1/F (alternatively, the periods and deadlines can be scaled
by a factor of F ) and the system remains schedulable. This metric

optimizes both schedulability and robustness, since F takes its
smallest value for the task allocation that can tolerate the
processor running at the lowest possible speed.

The processor speed scaling factor provides a continuous
metric, that is at or below 1.0 for schedulable task allocations, and
above that value for unschedulable allocations. The value of F is
calculated via a binary search, in conjunction with an appropriate
schedulability test. As a starting point, the binary search requires
minimum and maximum bounds. These can be determined as
follows: (i) the minimum bound is such that the scaled deadline for
one of the tasks is reduced to its execution time, (ii) the maximum
bound is such that the execution times of all tasks fit within the
smallest scaled deadline of any task. Any value of F smaller than
the minimum bound is guaranteed to result in an unschedulable
system, whereas a value of F equal to the maximum bound is
guaranteed to result in a schedulable system, given that the
deadlines are constrained (Di ≤ Ti ).

It is essential that the Modify_Function is able to span the
search space, otherwise the algorithm may be unable to ever find
the optimal solution. In the case of the task allocation problem, it
must be possible, via repeated application of the
Modify_Function to move from any valid task allocation to any
other one. Our implementation of the Modify_Function makes
one of two possible changes to an existing allocation: (i) it selects a
task at random and changes its allocated core to a randomly
selected different core, (ii) it selects two different tasks at random
that are allocated to different cores, and swaps their allocation
around4. The single task modification is randomly selected 20% of
the time, with swapping selected the remaining 80% of the time.

The Simulated Annealing algorithm operates via two nested
loops. The outer loop represents a series of reducing temperatures,
used in the choices that the algorithmmakes. In the experiments, the
initial temperature was set to 1.0, and the final min_temperature
to 0.01. Further, the cooling_factor was set to 0.95499, which
results in 100 iterations of the outer loop. The inner loop iterates
50 times at each temperature. Thus the algorithm explores 5000
allocations in all, starting from an initial allocation of tasks to cores.
In the experiments, the initial allocation was taken directly from
the system generation, with an equal number of tasks, with equal
total utilization, assigned to each core.

Simulated Annealing explores the search space by making
modifications to an existing allocation via the Modify_Function,
and then determining the quality of the new allocation formed via
the Cost_Function. If the new allocation is an improvement on
the best allocation seen so far then it is saved. If the new allocation
is an improvement on the current one, then it becomes the current
allocation, which the algorithm will continue searching from. If
the new allocation does not represent an improvement, then there
is still a chance that it will be accepted, and hence built upon. The
probability of acceptance depends on how much worse the
allocation has become, and the current temperature. Initially, when
the temperature is high, new allocations can be accepted that are
substantially worst than the current allocation. This helps to avoid
the search becoming stuck in a local optimum. As the temperature

4In the unlikely event that all tasks are allocated to the same core, then a null swap is
performed that does not modify the allocation.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Compensating Adaptive Mixed Criticality Scheduling RTNS ’22, June 7–8, 2022, Paris, France

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

 

Figure 10: Success Ratio: Simulated Annealing for 2 cores.

 

Figure 11: Success Ratio: Simulated Annealing for 4 cores.

decreases, only smaller negative steps are likely to be accepted,
until at very low temperatures, the algorithm effectively behaves
like a hill-climbing search, only accepting improved allocations.

6.2 Task Allocation Experiments
We compared the performance of the default initial assignment
of tasks to cores, which has task sets with the exact same target
utilizationU assigned to each core, with that obtained by Simulated
Annealing starting from the initial assignment. Since Simulated
Annealing involves many trial allocations, we reduced the number
of systems generated per utilization level from 1000 to 100. This
was done to ensure that the overall runtime remained manageable5.

Each system comprised NM tasks, with a different set of N
tasks, with total utilization U , initially allocated to each of theM
5The Simulated Annealing algorithm was configured to iterate 5000 times. On each
iteration the schedulability test was run approximately 10 times to determine the
processor speed scaling factor via binary search. Hence, to analyse 100 systems requires
approximately 5,000,000 schedulability tests.

cores. By default N = 10, hence each 2 core system had 20 tasks
in total, and each 4 core system 40 tasks in total. Task sets were
generated with the following parameter settings: (i) CP = 0.5, so
half of the tasks wereHI -criticality and half were LO-criticality, and
CF = 1.5 andXF = 0.5 so that the increase in workload in degraded
mode due to HI -criticality tasks was balanced by the reduction in
workload due to LO-criticality tasks. Other task parameters were set
as described in Section 5.1. Audsey’s Optimal Priority Assignment
(OPA) algorithm [5] was used with each of the schedulability tests,
since this was shown, in Section 4.3, to be optimal in each case.

The Simulated Annealing algorithm started from the initial
allocation and was able to re-allocate tasks to different cores in
order to improve overall system schedulability. For a system to be
schedulable, the task sets on each of its cores had to be schedulable.
While the initial allocation comprised task sets of equal utilization
on each core, this was not necessarily the case with the final
allocation obtained via Simulated Annealing.

We compared the effectiveness of the task allocations generated
by Simulated Annealing for three schedulability tests: C-AMC-
max, C-AMC-rtb, and FPPS as described in Section 5.2.

Figures 10 and 11 illustrate the effectiveness of the allocations
produced by Simulated Annealing for 2 cores and for 4 cores
respectively. The results for Simulated Annealing are labelled
C-AMC-max-SA-m, C-AMC-rtb-SA-m, and FPPS-SA-m
respectively, wherem denotes the number of cores, either 2 or 4,
and are compared to the results for the baseline allocation, labelled
C-AMC-max-m, C-AMC-rtb-m, and FPPS-m respectively.

Figures 10 and 11 show that Simulated Annealing is able to
improve schedulability, compared to the baseline, for each of the
schedulability tests and numbers of cores considered. Observe that
the improvement obtained is substantially larger for the C-AMC-
max and C-AMC-rtb tests than it is for FPPS. This is because when
used in conjunction with the C-AMC scheme, Simulated Annealing
is able to find allocations that minimize the additional interference
encountered across the mode change transition, hence improving
schedulability.

Table 1: Number of additional schedulable systems found
using Simulated Annealing for task allocation.

Test Extra with SA

2 cores
C-AMC-max 243 6.1%
C-AMC-rtb 198 5.0%

FPPS 145 3.6%

4 cores
C-AMC-max 272 6.8%
C-AMC-rtb 220 5.5%

FPPS 158 4.0%

The number of additional systems that were found schedulable
using the allocations determined by Simulated Annealing are listed
in Table 1, both as a number out of 4000 systems in total, and as
a percentage. Observe that the gains obtained by using Simulated
Annealing are slightly larger with 4 cores than with 2 cores. This
is because the larger systems present more opportunities for task
allocations that improve schedulability.
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