
ar
X

iv
:2

00
5.

03
46

8v
2

 [
cs

.D
B

]
 2

3
M

ay
 2

02
2

1

Indexing Metric Spaces for Exact Similarity Search

LU CHEN, College of Computer Science, Zhejiang University, China

YUNJUN GAO, College of Computer Science, Zhejiang University, China

XUAN SONG, College of Computer Science, Zhejiang University, China

ZHENG LI, College of Computer Science, Zhejiang University, China

YIFAN ZHU, College of Computer Science, Zhejiang University, China

XIAOYE MIAO, Center for Data Science, Zhejiang University, China

CHRISTIAN S. JENSEN, Department of Computer Science, Aalborg University, Denmark

With the continued digitization of societal processes, we are seeing an explosion in available data. This is
referred to as big data. In a research setting, three aspects of the data are often viewed as the main sources
of challenges when attempting to enable value creation from big data: volume, velocity, and variety. Many
studies address volume or velocity, while fewer studies concern the variety. Metric spaces are ideal for ad-
dressing variety because they can accommodate any data as long as it can be equipped with a distance notion
that satisfies the triangle inequality. To accelerate search in metric spaces, a collection of indexing techniques
for metric data have been proposed. However, existing surveys offer limited coverage, and a comprehensive
empirical study exists has yet to be reported.We offer a comprehensive survey of existing metric indexes that
support exact similarity search: we summarize existing partitioning, pruning, and validation techniques used
by metric indexes to support exact similarity search; we provide the time and space complexity analyses of
index construction; and we offer an empirical comparison of their query processing performance. Empirical
studies are important when evaluating metric indexing performance, because performance can depend highly
on the effectiveness of available pruning and validation as well as on the data distribution, which means that
complexity analyses often offer limited insights. This article aims at revealing strengths and weaknesses of
different indexing techniques to offer guidance on selecting an appropriate indexing technique for a given
setting, and to provide directions for future research on metric indexing.

CCS Concepts: • General and reference → Surveys and overviews; • Information Systems → Data

Management Systems; • Theory of Computation → Design and Analysis of Algorithms.

Additional Key Words and Phrases: Metric spaces, Indexing and Querying, Metric Similarity Search

ACM Reference Format:

Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen. 20XX. Indexing
Metric Spaces for Exact Similarity Search. J. ACM 1, 1, Article 1 (January 20XX), 41 pages. https://doi.org/10.1145/1122445.1122456

Authors’ addresses: Lu Chen, College of Computer Science, Zhejiang University, 38 Zheda Road, Hangzhou, China, 310027,
luchen@zju.edu.cn; Yunjun Gao, College of Computer Science, Zhejiang University, China, gaoyj@zju.edu.cn; Xuan Song,
College of Computer Science, Zhejiang University, China, xsong@zju.edu.cn; Zheng Li, College of Computer Science, Zhe-
jiang University, China, zhengli3401@zju.edu.cn; Yifan Zhu, College of Computer Science, Zhejiang University, China,
xtf_z@zju.edu.cn; Xiaoye Miao, Center for Data Science, Zhejiang University, 86 Yuhangtang Road, Hangzhou, China,
310058, miaoxy@zju.edu.cn; Christian S. Jensen, Department of Computer Science, Aalborg University, Aalborg, Denmark,
csj@cs.aau.dk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 20XX Association for Computing Machinery.
0004-5411/20XX/1-ART1 $15.00
https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

http://arxiv.org/abs/2005.03468v2
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

1:2 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

1 INTRODUCTION

Massive and increasing volumes of data are being generated. For example, as suggested in Fig. 1,
global navigation satellite systems, e.g., GPS, and communication-network based positioning tech-
nologies enable the generation of massive spatio-temporal data by in-vehicle devices and smart-
phones. Massive multimedia data are being generated by surveillance cameras, smart-assistant mi-
crophones, and smartphones. Further, massive volumes of social media data is being generated by
services such as Facebook, Twitter, and WhatsApp. This proliferation of data offers opportunities
for value creation, benefiting businesses as well as society. On the flipside, this state of affairs also
presents difficult challenges due to the sheer volume, velocity, and variety of the data. Here, vol-
ume refers to massive data, velocity refers to the phenomenon that the data arrives at a rapid rate,
and variety refers to the characteristic that the data stems from a wide range of sources and is di-
verse in terms of its structure and data type. Many studies and products address volume or velocity,
while variety is receiving less attention. More specifically, many platforms (e.g., MapReduce [52],
Hadoop1, Spark2, Flink3, and Storm4) address volume and velocity, while only few (notably Azure
Cosmos DB5 and GeminiDB6) focus on the variety aspect by supporting a range of models (such
as tables, graphs, and documents). The use of metric spaces enables addressing variety because
any type of data that can be associated with a distance notion that satisfies the triangle inequality
can be treated as metric data. Hence, by using metric spaces, unified solutions can be developed
that enable value creation from diverse data.

WhatsApp

TwitterFacebookSocial

Data

Variety of Big Data

Camera TV

Microphone

Multi

Media

Data

Car Sensors

GIS

Spatio-

Temporal

Data
Intelligent Transportation

Multimedia Retrieval

Personalized Recommendation

Real-life ApplicationsSimilarity Search

Fig. 1. Applications of Similarity Search on Variety of Big Data

Due to the generality of metric spaces, search in metric spaces plays an important role in many
real-life applications, with similarity search taking center stage [35, 115, 151]. Given a query object,
similarity search finds similar objects according to the definition of similarity. In intelligent trans-
portation, similarity queries can be used to find the nearest restaurant for a user. In multimedia
retrieval, similarity queries can be utilized to identify images similar to a specified image. In recom-
mender systems, similarity queries can be employed to generate personalized recommendations
for users. In addition, similarity queries can be used to accelerate data mining tasks. For example,
similarity search can be used as the first step in clustering [96] or outlier detection [1]. In the above
applications, metric spaces can accommodate a wealth of data types (e.g., locations, images, and
strings), and can be used to support a wide range of distance metrics that quantify the similarity
of objects, including the shortest path distance for locations, the !? -norm and earth mover’s dis-
tance [81] for images, and the edit distance for strings. Metric spaces require no assumptions on

1Apache Hadoop. http://hadoop.apache.org/ (2008)
2Apache Spark. http://spark.apache.org/ (2014)
3Apache Flink. http://flink.apache.org/ (2014)
4Apache Storm. http://storm.apache.org/ (2014)
5Microsoft. https://azure.microsoft.com/services/cosmos-db/ (2017)
6Huawei. https://www.huaweicloud.com/intl/product/geminidb.html (2019)

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:3

the representations of objects, and any distance notation satisfying the triangle inequality can be
accommodated.
A number of indexing techniques exist that aim to accelerate search in metric spaces. The main

goal of this article is to present a comprehensive survey that describes and analyzes existing met-
ric indexes. Although several studies [35, 66, 115, 151] offer valuable surveys of metric indexing
techniques, no study has yet offered comprehensive theoretical and experimental analysis. This
study extends a previous study [39] by the authors that covers on pivot-based metric indexing.
We extend that study as follows: (i) we cover existing metric indexes that support exact similarity
search; (ii) we summarize the partitioning methods, and improve the coverage of the pruning and
validation techniques used for exact similarity search; (iii) we cover the time and space complexity
related to index construction; and (iv) we provide empirical comparisons of the similarity search
performance achieved by metric indexes.
A key strength of metric space solutions is that they are applicable to a broad range of data types

found in real-world applications. While we can design specific indexes for different data types (R-
trees [16] for low-dimensional vectors, q-gram inverted indexes for strings [154], HI-tree [93] for
documents, etc.), metric indexing offers a wholesale solution that spans a broad range of data, the
key requirement simply being that a distance function is provided that satisfies the triangle inequal-
ity. Since the early 1980’s, major DBMS vendors have followed a “one-size-fits-all” approach, due
in part to the low maintenance cost and ease of use by customers. However, in today’s setting, the
“one-size-fits-all” approach is increasingly being abandoned [131, 132] due to a number of reasons
such as the availability of independent DB engines and better optimization techniques. Further,
some database vendors are developing multi-model database systems (notably Azure Cosmos DB
developed by Microsoft in 2017 and GeminiDB developed by Huawei in 2019) that aim to support
a range of models (e.g., tables, graphs, and documents) within a single system. Such systems easily
become very complex. Metric indexing offers an approach to reduce this complexity.
The rest of the article is organized as below. Section 2 presents the basic concepts of metric

indexes. Section 3 provides detailed categorizations of metric indexes. Section 4 summarizes the
techniques used by metric indexes. Section 5 describes each metric index in turn. Experimental
findings are reported in Section 6. Finally, Section 7 concludes and provides future research direc-
tions.

2 BASIC CONCEPTS

We provide the basic definitions of metric spaces and similarity search, and we introduce and
categorize the metric indexes. Table 1 summarizes notations used throughout this article.

2.1 Metric Space

A metric space is a two-tuple (",3), in which" is an object domain and 3 is a distance function
that measures the "similarity" between objects in" . In particular, the distance function 3 has four
properties: (i) Symmetry: 3 (@, >) = 3 (>,@); (ii) non-negativity: 3 (@, >) ≥ 0; (iii) identity: 3 (@, >) = 0
iff @ = > ; and (iv) triangle inequality: 3 (@, >) ≤ 3 (@, ?) + 3 (?,>).
Any type of data combined with a distance function that satisfies the above four properties

constitutes a metric space. Hence, the notation of metric space is very general. A typical example
of a metric space is a vector space associated with the !?-norm (? ≥ 1). Another example of
a metric space is a set of strings along with the edit distance. Note that vectors are easy and
efficient to process. Thus, vector spaces (including Euclidean spaces) often find use in real-world
applications. Vector spaces are also used by the different solutions for metric space. For example,
pivot mapping is used to represent objects as vectors of their distances to pivots (cf. Section 4.2).

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:4 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

Table 1. Notations used Throughout this Article

Symbol Description

O, C, P The sets of data, centers, and pivots
S The sample set of $
o, c, p An object, center, and pivot
M An object domain
3 (>, ?) The distance between objects > and ?
n, =B The cardinality of dataset $ and the cardinality of the sample set (
s The storage size of an object
m The tree arity or the capacity of a tree node
l, ;2 The number of pivots and the number of candidate pivots
g The number of pivots in a pivot group
=3 The number of values for a discrete 3 () or the maximum distance of a continuous 3 ()
MRQ(q, r) The metric range query with query object q and search radius r
MkNNQ(q, k) The k nearest neighbor query with query object q and result cardinality k
ND: The distance from @ to its nearest neighbor
#8 , �# (>) A tree node, the accessory nodes of >
MBB The minimum bounding box of a node
q (>) The mapped vector 〈3 (>, ?1), 3 (>, ?2), · · · , 3 (>, ?;)〉 using a pivot set % = {?1, · · · , ?; }
('(@) The mapped search region using %
'8 , �(?8) A particular partition obtained via different partitioning techniques, a partition corresponds to pivot ?8
3<43 The medium distance used to obtain two partitions of equal size
X , d , U Distance thresholds
`, f2 The mean and variance of distances between data objects
`?8 The expected value of 3 (>, ?8) (> ∈ �(?8))
(2) The so-called nearest neighbors for a node 2 defined in SAT

Unlike embedding techniques (e.g., word2vec [41]) that map other data types to vectors, pivot-
based solutions can ensure accurate (and thus explainable) results when given a specific metric.
This may be important in applications where liability is an issue. For example, although genes
can be embedded as vectors [133], embedding does not enable accurate and explainable results,
which are important in discovering the evolutionary relationship between species [147], genome
databases, and so on.
Various indexes exist that support particularmetric spaces, e.g., the R-tree [16], KD-tree [17], and

TV-tree [82] for low-dimensional vector spaces, where properties (e.g., the dimension information
of vector spaces) of the particular metric space are utilized to accelerate the search. However,
such specific properties are not available in general metric spaces, and thus, they cannot be used
for search space pruning in general metric spaces. For example, the specific properties of vectors
cannot be applied to strings. By using metric space properties, indexing solutions can be developed
for processing a wide variety of data. Nonetheless, due to the generality of metric spaces, we can
only use the four distance properties discussed above for pruning and hence accelerate search. In
Section 4, we detail the techniques that can be used in general metric spaces.
Intrinsic Dimensionality of Metric Space. The dimensionality is an important aspect of vec-

tor space data. The higher the dimensionality, the worse the search performance will generally
be. However, metric spaces are not limited to vector spaces, but also include other data types
such as strings and sets. Instead of dimensionality, we can use the more general notion of in-
trinsic dimensionality that applies to any data type in metric spaces. As discussed in previous
studies [18, 35, 47, 86, 112, 122, 145, 151], intrinsic dimensionality affects metric space search per-
formance just like dimensionality affects vector space search performance. Many methods exist to
compute intrinsic dimensionality. They can be classified into local and global methods. The local
methods [5, 70–73] provide different dimensionality estimates for each data object or each subset
of a dataset, while the global methods [99] provide a dimensionality estimate for an entire dataset.
A simple global estimate is introduced in a previous survey [35], i.e., intrinsic dimensionality is

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:5

calculated as `2/2f2, where ` and f2 are the mean and variance of the distances between data
objects. This simple notion of intrinsic dimensionality is found to be verified effective in an exper-
imental study [99]. Hence, we use this simple but effective definition of intrinsic dimensionality
of datasets in our experiments.

2.2 Similarity�eries in Metric Spaces

We proceed to define similarity search in metric spaces, including metric range query and metric k
nearest neighbor query.We focus on similarity queries because of their importance andwidespread
use, and because they are suitable for studying efficiency and effectiveness of the designed indexes.

Definition 2.1. (METRIC RANGE QUERY). Given an object set $, a query object @, and a
search radius A in a metric space, a metric range query returns the objects in$ that are within distance
A of @, i.e., "'& (@, A) = {> |> ∈ $ ∧ 3 (@, >) ≤ A }.

Definition 2.2. (METRIC Q NEAREST NEIGHBORQUERY). Given an object set$, a query
object @, and an integer : in a metric space, a metric : nearest neighbor query finds : objects in$ that
aremost similar to q, i.e.,"k##& (@, :) = {(|(⊆ $ ∧ |(| = : ∧ ∀B ∈ (,∀> ∈ $ − ((3 (@, B) ≤ 3 (@,>))}.
Consider theDNA set$ = {"ATAGCTTCA", "AATCTGA", "AATCTGT", "AAAACGG", "CATCTGT"},

where edit distance is employed. An example metric range query finds the DNAs from O within
edit distances no larger than 2 of the query DNA "CAATCTGT", i.e., MRQ("CAATCTGT", 2) =
{"AATCTGA", "AATCTGT", "CATCTGT"}. An example metric k (= 2) nearest neighbor query finds
the 2 DNAs from O closest to the query DNA "CAATCTGT", i.e., MkNNQ("CAATCTGT", 2) =
{"AATCTGT", "CATCTGT"}.

DeliveryDeliveryDelivery
WalkerWalker

RunnerRunnerRunner

BiclylistBiclylistBiclylist

ConfirmedConfirmed

Close
contact

Fig. 2. Illustration of Exact Similarity Search for COVID-19 Infected Person Detection
There are two kinds of “approximate” in similarity search. First, the user may request similar

results, i.e., results that are approximately equal to a query object. Second, to achieve higher effi-
ciency, a solution may compute a result that approximates the requested result. The survey covers
the computation of approximate queries, but it does not cover solutions that compute results that
approximate requested results. Hence, exact similarity search denotes the exact computation of
both exact results and approximate results.

(i) In terms of exact results, we provide a motivating example in public safety applications,
where accurate (and explainable) results are required. For example, Fig. 2 shows a set of
trajectories of moving objects (bicyclists, pedestrians, and runners) and a query trajectory
of a COVID-19 infected person (the red curve). In this example, obtaining exact results is
desirable to stop the spread of COVID-19. The example uses the !2-norm. This similarity
notion – which is also called the !2 metric – measures the distance between two points in
two-dimensional Euclidean space and is used widely in many contexts [151].

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:6 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

(ii) In terms of approximate results, exact similarity search is important in a wide range of
applications such as data cleaning [7], near-duplicate detection [79, 114], and bioinformat-
ics [114].

Strategies for Answering MkNNQ using MRQ. An MkNNQ can be answered by an MRQ, if
the distance from q to its :Cℎ nearest neighbor, denoted as #�: , is known. However, #�: is not
known when a query is issued. Three typical methods exist for computing MkNNQ [21, 69].

(i) Strategy 1: MRQs with incremental growing search radius. Specifically, an MRQ with a
small radius is performed first, and then the radius is increased gradually until : nearest
neighbors are found. Although this strategy tries to avoid visiting objects already verified,
it traverses the metric index multiple times, resulting in high cost.

(ii) Strategy 2: Setting the search radius to infinity, and verifying the objects in order while
tightening the radius using verification. To be described in Sections 3 and 5, MkNNQ pro-
cessing usually adopts this second strategy due to its better performance.

(iii) Strategy 3:Using the candidates to calculate the current#�: , and then performing anMRQ
using the current #�: as the radius to refine the result. The performance of this strategy
relies on the quality of the initial candidates.

Performance Metrics for Similarity Search in Metric Spaces.When evaluating the perfor-
mance of a similarity query, we use running time (i.e., response time) as the performance metric.
As metric spaces are general and support a broad range of data types, the associated distance
functions also range from being simple (e.g., the !? -norm for low-dimensional vectors and the
hamming distance) to being complex (e.g., edit distance, the !?-norm for high-dimensional vec-
tors, shortest-path distance, and earth mover’s distance [118]). Existing metric indexes and search
algorithms aim to reduce the number of distance computations to improve efficiency. Acknowl-
edging that the distance function may be simple in some applications, indicating that distance
computation is not the dominant cost, the survey provides different recommendations for simple
versus complex distance functions (cf. Section 7). Since external indexes are stored on disk, the IO
time can be estimated as the number of disk page accesses performed during search. In contrast,
metric indexes stored in main memory incur no IO time. To summarize, in order to evaluate the
performance of similarity search in metric spaces, we utilize three metrics: (i) the running time,
(ii) the number of distance computations (compdists), and (iii) the number of page accesses (PA).

3 DETAILED CATEGORIZATION OF METRIC INDEXES

We first provide the categorization of metric indexes for exact similarity search, and then cover
the detailed categorizations for compact-partitioning based methods and pivot-based methods.

3.1 Categorization of Metric Indexes for Exact Metric Similarity�eries

A rich set of indexes have been proposed that aim to support efficient metric similarity queries.
Table 2 provides an overview of existing metric indexes that support exact similarity search. They
can be classified into two board categories: compact-partitioning techniques (termed CP-Indexes)
and pivot-based techniques (termed P-Indexes). In addition, hybrid indexes combine compact-
partitioning and pivot-based methods (termed Hybrid). In the table, we provide the space and
the time cost for index construction. The space and time complexities of most in-memory metric
indexes and some secondary-memory metric indexes (such as the M-tree and LC) are already pro-
vided in previous surveys or in the original papers, but the time and space complexity results for
other in-memory indexes (such as the BU-tree, HC, and EPT(∗)) and most secondary-memory met-
ric indexes are not provided in the literature. Some indexes (e.g., the BST family, the GHT family,
TLAESA, and the M-index) are unbalanced trees. For these, we assume that the tree structure is

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:7

Table 2. Metric Indexes for Exact Similarity Search (Construction Cost includes the costs of distance com-

putations and other operations, and refers to the following parameters: the dataset cardinality =, the tree

arity or capacity< of a tree node, the number ; of pivots, the cardinality =B of a sample set, the number ;2
of candidate pivots, and the number : of nearest neighbors)

Index Category Space Cost Construction Cost

BST [78], MBST [106] CP-Index $ (=B) Ω(= log2 =)
VT [53, 54] CP-Index $ (=B) Ω(= log3 =)
BU-Tree [83] CP-Index $ (=B + =2) $ (=3)
GHT [139] CP-Index $ (=B) Ω(= log2 =)
GNAT [23], EGNAT [87, 105] Hybrid $ (=B + =<) Ω(=< log< =)
SAT [32, 97, 98] CP-Index $ (=B) $ (= log2 =/log log=)
DSAT [100–104] CP-Index $ (=B) $ (<= log< =)
DSACLT [15, 24] CP-Index $ (=B) $ (<= log< =/:)
kNNG [110] CP-Index $ (=B + =:) $ (=2)
M-tree [42, 46, 128] CP-Index $ (=B + =B/<) $ (=(<..<2) log< =)
PM-tree [130] Hybrid $ (=(B + ;) + =(B + ;)/< + ;B) $ (=(<..<2) log< = + =; log< =)
LC [33, 34], DLC [104] CP-Index $ (=B) $ (=2/<)
HC [62, 63] CP-Index $ (=B) $ (= log2 =/<)
D-index [55, 56, 150] Hybrid $ (=B + =; + ;B) $ (=;)
MB+-Tree [75] CP-Index $ ((= + =/<) (B + log2 =/< + log2 =3)) $ (= log2 =/< + =< log< =)
AESA [119], ROAESA [144], iAESA [58, 59] P-Index $ (=B + =2) $ (=2)
LAESA [91] P-Index $ (=B + ;B + =;) $ (=;)
TLAESA [90, 134] Hybrid $ (=B + ;B + =;) Ω(= log2 = + =;)
EPT [120] P-Index $ (=B + ;6B + =;) $ (=;6)
EPT∗ [39] P-Index $ (=B + ;2B + =;) $ (=;;2=B)
CPT [94] P-Index $ (=B + =B/< + ;B + =;) $ (=(<..<2) log< = + =;)
BKT [25], FQT [14] P-Index $ (=B + ;=3) $ (=;)
FHQT [13], FQA [35] P-Index $ (=B + =;) $ (=;)
VPT [138, 139, 149], DVPT [64] P-Index $ (=B) $ (= log2 =)
MVPT [20, 21] P-Index $ (=B) $ (= log< =)
Omni-family [22, 136] P-Index $ (=B + =; + =;/< + ;B) $ (=<; log< =)
SPB-tree [36, 37] P-Index $ (=B + = + =/< + ;B) $ (=(;2..;3) + =(< + ;) log< =)
M-index [107] Hybrid $ (=B + =; + = + =/< + ;B) Ω(=; log; =/<) +$ (=< log< =)
M-index∗ [39] Hybrid $ (=B + =; + = + =/< + =;/< + ;B) Ω(=; log; =/<) +$ (=< log< =)

balanced to obtain the optimal (i.e., lower bound) construction cost Ω(·). We omit the similarity
search complexity for the indexes, because it depends on the pruning ability that depends on the
data distribution. As stated in Section 2.2, we instead report on empirical studies that use three per-
formance metrics to quantify the similarity search performance. In Table 2, different background
colors are used to distinguish the families of indexes. For instance, BST, MBST, VT, and the BU-tree
belong to the BST family, while GHT, GANT, and EGNAT belong to the GHT family.
Compact-partitioning based Methods. Methods in this category divide the space as com-

pactly as possible, and try to prune unqualified partitions during search. TheBisector Tree (BST) [78]
is a binary tree that uses a center with a covering radius to represent a partition. Many variants
of the BST, including the Monotonous BST (MBST) [106], the Voronoi Tree (VT) [53, 54], and the
Bottom-Up Tree (BU-Tree) [83], are developed to improve the efficiency of the BST. The General-
ized Hyperplane Tree (GHT) [139] is similar to the BST, but does not store covering radius. The Spa-
tial Approximation Tree (SAT) [32, 97, 98] is based on Voronoi diagrams, and attempts to approx-
imate the structure of a Delaunay graph. Dynamic and secondary memory extensions of SAT in-
cludesDSAT [100–104] andDSACLT [15, 24]. In addition, k-Nearest-Neighbor Graph (kNNG) [110]
is another popular graph structure. Next, the M-tree [42, 46, 128] is a height-balanced tree opti-
mized for secondary memory. It is the first dynamic index that supports insertion and deletion.
Several variants of M-trees have been presented, including the MM-tree [113], Slim-tree [129, 135],
M+-tree [155], BM+-tree [156], and CM-tree [10], which use different split functions to reduce the
overlap among nodes; the MX-tree [77] and Onion-tree [29, 30] that aim to reduce the tree con-
struction cost; the DBM-tree [142, 143] that allows a controlled imbalance to better accommodate

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:8 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

the dataset density variations; the Antipole Tree [28] that aims to minimize the number of clusters;
and the BP-tree [2], M∗-tree [126], DF-tree [137], PM-tree [130], and PM∗-tree [126] that combine
multiple local or global pivots to further improve the pruning ability of the M-tree. More recently,
variants M#-tree and PM#-tree [116] are designed to avoid duplications of data. The List of Clusters
(LC) index [33, 34] employs a list of clusters to trade construction time for query time. Its dynamic
version is called Dynamic LC (DLC) [104]. The construction efficiency of LC can be improved by
constructing multiple layers (resulting in Hierarchy of Clusters HC [62, 63]) or by using cluster
reduction [9]. Next, the Metric B+-tree (MB+-tree) [75] uses relaxed generalized partitioning or
hash partitioning to recursively partition the dataset and build a binary tree, while each leaf node
denotes a cluster. In particular, each object can be represented as a fixed-length bit string after
partitioning and then can be indexed by a B+-tree.
Pivot-based Methods.Methods in this category store pre-computed distances from every ob-

ject in the database to a set of so-called pivots and then utilize these distances to prune unqualified
objects during search. The Approximating Eliminating Search Algorithm (AESA) [119] utilizes a
pivot table to preserve the distances from each object to other objects. To improve search efficiency,
the Reduced-Overhead AESA (ROAESA) [144] and iAESA [58, 59] adopt the same data structure as
AESA, but they sort the pre-computed distances during the search. To reduce the storage of AESA,
the Linear AESA (LAESA) [91] only keeps the distances from every object to selected pivots. Un-
like LAESA that uses a single set of pivots, Extreme Pivot Table EPT(∗) [39, 120] employs several
sets of pivots. Next, the Clustered Pivot-table (CPT) [94] clusters the pre-computed distances to
improve query efficiency. The Burkhard-Keller Tree (BKT) [25] is designed for discrete distance
functions. In contrast to BKT, where pivots at individual levels are different, the Fixed Queries Tree
(FQT) [14], Fixed Height FQT (FHQT) [13], and Fixed Queries Array (FQA) [35] use the same pivot
for all nodes at the same level of the tree. The Vantage-Point Tree (VPT) [138, 139, 149] is designed
for continuous distance functions and has been extended to a dynamic structure DVPT [64], and
generalized to an m-ary tree yielding the MVPT [20, 21]. The Omni-family [22, 136] employs se-
lected pivots together with existing structures (e.g., the R-tree) to index pre-computed distances.
The Space-filling curve and Pivot-based B+-tree (SPB-tree) [36, 37] utilizes a space-filling curve
to map pre-computed distances to integers, which are then indexed by the B+-tree. Note that, al-
though SFC used in the SPB-tree can well cluster the data, SPB-tree is not classified to hybrid
methods in this survey, as it does not use the partitioning techniques summarized in Section 4.1.
Hybrid Methods. These methods combine compact partitioning with the use of pivots. The

Geometric Near-Neighbor Access Tree (GNAT) [23] is an m-way generalization of GHT that uti-
lizes the generalized hyperplane partitionmethod to partition the dataset and also uses cut-regions [84]
defined by pivots to accelerate similarity search. A dynamic variant, the Evolutionary Geometric
Near-neighbor Access Tree (EGNAT), has also been proposed [87, 105]. By combining general-
ized partitioning and ball partitioning, the Tree LAESA (TLAESA) [90, 134] extends LAESA and
organizes the data in a tree. The D-index [55, 56, 150] combines hash partitioning and the pivot
mapping. It is a multilevel structure which hashes objects to buckets that are search-separable. The
PM-tree [130] also uses cut-regions defined by pivots to accelerate similarity queries on theM-tree.
The M-index(∗) [39, 107] generalizes the iDistance [76] technique for general metric spaces, which
compacts the objects by using pre-computed distances to their closest pivots.
Other Metric Indexes. This survey cover metric indexes that support exact similarity search;

thus, indexes that support other metric search are omitted. For example, to answer similarity joins,
the eD-index [57] which extends the D-index is designed. To answer probabilistic range query, the
UP-Index [6] and UPB-tree/UPB-forest [38, 40] are developed to index uncertain metric data. To

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:9

support indexing multiple metric spaces, the M2-tree [43], M3-tree [27], and Reference R∗/RR∗-
tree [61] are proposed. When the intrinsic dimensionality is high, exact similarity search rarely
outperforms sequential scan [112, 146]. In such cases, approximate similarity search (i.e., where
high-quality approximate answers instead of exact answers are returned) may be attractive. In
particular, approximate similarity search is able to offer increased efficiency over exact similarity
search, which is beneficial in cases where fast search is needed and where the metric is too expen-
sive, the dataset size is extremely large, etc. Many metric indexes are proposed that aim to support
approximate similarity search, including approximate M-tree variants [44, 80, 127, 152, 153], hash
based methods [11, 12, 89], permutation-based indexes [4, 31, 60, 92, 95, 140], and kNN graph
based methods [85, 109, 123, 124], to name but a few. The P-Shere tree [65] is built using a sam-
ple of query objects. The DAHC-tree [3] is optimized according to the global data distribution for
high-dimension space. In addition, metric indexes can use other techniques (e.g., short term mem-
ories [117], bit operations [50], regrouping [121], parallel computing [108], and cost-model-based
distance distribution [45]) to improve query efficiency. Different from an individual metric index,
an index framework that combines different metric indexes is also available [88].

3.2 Categorization of Compact-Partitioning based Metric Indexes

Compact partitioning methods can be divided into four categories according to the partitioning
technique used: generalized hyperplane partitioning based indexes, ball partitioning based indexes,
hash partitioning based indexes, and hybrid partitioning based indexes (see Table 3). Note that, hybrid
methods that use partitioning techniques are also discussed here.

Table 3. Compact-partitioning based Metric Indexes

Partitioning Technique Index Storage Scalability

GHT, GNAT Main-memory Static
EGNAT Secondary-memory Dynamic
kNNG Main-memory Dynamic

Generalized hyperplane
partitioning

M-index(∗) Secondary-memory Dynamic
M-tree and PM-tree Secondary-memory Dynamic

Ball partitioning
LC, DLC, HC Secondary-memory Dynamic
D-index Secondary-memory Dynamic

Hash partitioning
MB

+-tree Secondary-memory Dynamic
BST, MBST, VT, BU-tree Main-memory Static
SAT Main-memory Static
DSAT, DSACLT Secondary-memory Dynamic

Hybrid partitioning

TLAESA Main-memory Static

Indexes in the first category use the generalized hyperplane partitioning (as stated in Defini-
tion 4.2) to partition the data. Indexes in the second category use ball partitioning (as defined in
Definition 4.1) to partition the data. Indexes in the third category utilize the hash partitioning (as
defined in Definition 4.3) to organize the data. Indexes in the fourth category combine ball par-
titioning and hyperplane partitioning. In particular, they employ the hyperplane partitioning to
partition the data, but use ball partitioning for representing each partition.

3.3 Categorization Pivot-based Metric Indexes

Pivot-based methods can be classified into three categories, i.e., pivot-based tables, pivot-based trees,
and pivot-based secondary-memory indexes, depending on the structure they use for storing pre-
computed distances (see Table 4). Note that, hybrid methods that use pivot mapping techniques
are also discussed in this subsection.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:10 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

o7

o2 o3

o4

o5 o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

y

o9

o8
q

Ri.r

Ball partition

region Ri

r o7o2 o3

o4

o5 o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9

o8
q r

Hyperplane

partition region Ri

x

q’ r’
o7o2 o3

o4

o5 o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

y

o9

o8

q’
r’

x

q

r

q

r dmed

ρ

Hash partition

region R1

Hash partition

region R0

Hash partition

region R2ρ

(a) Ball partitioning (b) Hyperplane partitioning (c) Hash partitioning

Fig. 3. Illustration of Partitioning Methods

Table 4. Pivot-based Metric Indexes

Category Index Storage Scalability

AESA, ROAESA, iAESA Main-memory Dynamic
LAESA Main-memory Dynamic
EPT Main-memory Dynamic

Pivot-based tables

CPT Secondary-memory Dynamic
BKT Main-memory Dynamic
FQT, FHQT, FQA Main-memory Dynamic
TLAESA Main-memory static
GNAT Main-memory Static
VPT, MVPT Main-memory Static

Pivot-based trees

DVPT Main-memory Dynamic
PM-tree Secondary-memory Dynamic
EGNAT Secondary-memory Dynamic
D-index Secondary-memory Dynamic
Omni-family Secondary-memory Dynamic
M-index(∗) Secondary-memory Dynamic

Pivot-based
secondary-memory indexes

SPB-tree Secondary-memory Dynamic

Indexes in the first category utilize tables to store pre-computed distances. Indexes in the second
category use tree structures to store pre-computed distances. Indexes in the third category utilize
an secondary-memory index (e.g., an R-tree or a B+-tree) to store pre-computed distances. Accord-
ing to Table 4, although many of the pivot-based methods are dynamic, all the indexes need to
be re-built by re-computing all the stored distances when pivots are updated. However, the pivots
do not need to be real objects in the dataset; thus, pivots need not necessarily be updated when
inserting or deleting data objects. Among all the metric indexes, only two (BKT and FQT) are de-
signed for discrete distance functions that return a finite range of values. Nevertheless, they can
be extended to support continuous distance functions.

4 TECHNIQUES FOR METRIC INDEXING AND QUERYING

We summarize the partitioning methods for the compact-partitioning based metric indexes as well
as the pivot-based filtering and validation techniques for all the metric indexes.

4.1 Partitioning Methods

Three types of partitioning methods exist, i.e., ball partitioning, generalized hyperplane partition-
ing, and hash partitioning, as described below.

Definition 4.1. (BALL PARTITIONING). Given a center 2 and a radius A , the set of objects >
in ball partition '8 is defined as {> |> ∈ $ ∧ 3 (>, 2) ≤ A }.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:11

o7o2

o4

o1 o6

10

2

1

5 6

3

4

5

6

y

o9

x

Hash partition

region R1

Hash partition

region R0

o7
o2 o3

o4

o5 o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

y

o9

o8

x

Ball partition

region R0

Ball partition

region R1

o7o2

o4

o1 o6

10

2

1

5 6

3

4

5

6

y

o9

x

R0.r

Ball partition

region R1

Ball partition

region R0

R1.r

o3

dmed

o8

o5

2 3 4

o5
o3

o8

3 42

(a) Hash partitioning (center >3) (b) Ball partitioning (centers >3 and >9) (c) Ball partitioning (centers >2 and

>7)

Fig. 4. Comparison of Ball Partitioning and Hash Partitioning

In the example illustrated in Fig. 3(a), given the center >7 and radius 3 (>7, >6), we can obtain the
ball partition '8 = {>6, >7, >8}. The ball radius can be set to 28 (−∞ ≤ 8 ≤ +∞) at each tree level
8 [19, 74], to contend with the curse of high intrinsic dimensionality or to contend with the cases
when distance functions do not satisfy the triangle inequality.

Definition 4.2. (GENERALIZEDHYPERPLANE PARTITIONING). Given a set� of centers,
let 28 ∈ � be the center of partition region '8 . The set of objects > in generalized hyperplane partition
'8 is defined as

{
> |> ∈ $ ∧ ∀2 9 ≠ 28 (3 (>, 28) ≤ 3 (>, 2 9))

}
.

In Fig. 3(b), given the two centers>2 and>6, we can get two hyperplane partitions'1 = {>1, >2, >3,
>4, >5} and '2 = {>6, >7, >8, >9}. The generalized hyperplane partitioning can be relaxed by intro-
ducing a threshold X [48, 75], such that partition '8 , obtained by relaxed generalized hyperplane
partitioning, is defined as

{
> |> ∈ $ ∧ ∀2 9 ≠ 28 (3 (>, 28) ≤ 3 (>, 2 9) + X)

}
. This relaxed method can

be used in hyperplane partitioning based indexes (e.g., BST and GNAT).

Definition 4.3. (HASH PARTITIONING). Given a hash function ℎ, the set of objects > in hash
partition '8 , obtained by the hash partitioning, is defined as {> |> ∈ $ ∧ ℎ(>) = 8}.
A particular hash function, i.e., the d-split function 1?Bd (2, >) uses a center 2 and the medium

distance 3<43 to partition the data into three subsets as defined below. The median distance 3<43

is relative to 2 and is defined so that the number of objects with distances smaller than 3<43 is the
same as the number of objects with distances larger than 3<43 .

1?Bd (2, >) =

0 if 3 (2, >) ≤ 3<43 − d

1 if 3 (2, >) > 3<43 + d

− otherwise

(1)

Here, the result "−" denotes the last partition, the exclusion partition. In Fig. 3(c), given a center
>3, we get three hash partitions: '0 = {>3}, '1 = {>1, >6}, and '2 = {>2, >4, >5, >7, >8, >9}. Here,
'2 is the exclusion partition. The d-split function can be generalized to a set of centers. Given
a set of m centers C, the objects can be divided into 2< + 1 partitions. Specifically, 1?Bd (�,>) =

1?Bd (28 , >) ×
∑8

G=1 2
8−1(28 ∈ �, 1 ≤ 8 ≤ <) if 1?Bd (28, >) = 0 or 1; otherwise, 1?Bd (�,>) = 2< .

The hash partitioning used in metric spaces is mainly extended from ball partitioning (e.g., [56])
and hyperplane partitioning (e.g., [89]). This is natural because ball and hyperplane partitioning
make it easy to ensure the correctness of similarity search, and thus, to support exact similarity
search. However, hash functions can also be designed specifically for approximate similarity search
(e.g., [125]), which is a promising future direction for designing metric indexes.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:12 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

Given< centers, ball (or hyperplane) partitioning divides the data space into< subspaces, while
d-split hash partitioning divides the data space into 2< + 1 subspaces. Although d-split hash par-
titioning can be regarded as ball partitioning, it is not a good split for ball partitioning. Fig. 4
illustrates ball and hash partitioning. In Fig. 4(a), the hash function 1?B0(>3, >) (d = 0) divides the
space into two disjoint subspaces, including hash partition region '0 (the grey circular region)
and hash partition region '1 (the white region). The hash partitioning can be regarded as a ball
partitioning with centers >3 and >9, as shown in Fig. 4(b). However, the split is not good, as the
overlap between ball regions '0 and '1 is large, resulting in poor pruning capabilities. If we in-
stead use centers >2 and >7 for ball partitioning, as depicted in Fig. 4(c), we can obtain a better split.
Fig. 4 illustrates two differences between hash and ball partitioning: (i) Their representations are
different. Metric indexes that use ball partitioning to represent each region as a ball, while metric
indexes that use d-split hash partitioning to only represent some of regions as balls. (ii) How to
select the centers is different. Existing studies [26, 86, 111, 141, 148] focus mostly on how to select
high-quality pivots for pivot-based metric indexes, and only few studies [32, 46] consider how to
select high-quality centers for compact-partitioning based metric indexes.

4.2 Pivot Mapping

By using a set of pivots, the objects in a metric space can be mapped to data points in a vector
space. In particular, given a pivot set % = {?1, ?2, · · · , ?; }, a metric space (",3) can be mapped to
a vector space ('; , !∞). Specifically, an object @ in the metric space is mapped to a point q (@) =

〈3 (@, ?1), 3 (@, ?2), · · · , 3 (@, ?;)〉 in the vector space.
Consider the example in Fig. 5, where the!2-norm is used as the distance function. If % = {>1, >6},

the object set in the original metric space can be mapped to the data points in a two-dimensional
vector space, in which the x-axis denotes 3 (>8, >1) and the y-axis represents 3 (>8, >6) for any object
>8 . For example, object >5 is mapped to point 〈2, 4〉.

o7

o2 o3

o4

o5 o1 o6

1
0

2

2

1

3 4 5 6

3

4

5

6

x

y

o9

o8
q
r

(a) Original metric space

Pivot mapping

pivots o1 and o6 o7

o2

o3

o4

o8

o1

o6

1
0

2

2

1

3 4 5 6

3

4

5

6

y

o9o5
q

(b) Mapped vector space

Fig. 5. Pivot Mapping

4.3 Pivot-based Filtering and Validation

The triangle inequality is the only property that can be used to reduce the search space in general
metric spaces. Below, we summarize seven filtering and validation lemmas. In the case of both
compact-partitioning and pivot-based metric indexes, centers and pivots are combined with the
triangle inequality for pruning and validation. A center used for compact partitioning methods
can be regarded as a pivot of pivot-based methods. First, pivot-based filtering [36] based on the
pivot mapping is utilized to avoid unnecessary distance computations.

Lemma 4.1. (PIVOT FILTERING). Given a set % = {?1, ?2, · · · , ?; } of pivots, a query object @,
and a search radius A , let ('(@) = 〈[3 (@, ?1) − A ,3 (@, ?1) + A], · · · , [3 (@, ?;) − A ,3 (@, ?;) + A]〉 be a
mapped search region. If a mapped q (>) = 〈3 (>, ?1), 3 (>, ?2), · · · , 3 (>, ?;)〉 locates outside ('(@), the
original object > can be pruned safely.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:13

Proof 4.1. Assume, to the contrary, that an object > exists that satisfies 3 (@, >) ≤ A , but q (>) ∉
('(@) (i.e., ∃?8 ∈ % (3 (>, ?8) > 3 (@, ?8) + A ∨ 3 (>, ?8) < 3 (@, ?8) − A)). By the triangle inequality,
3 (@, >) ≥ |3 (@, ?8) − 3 (>, ?8) | > A , which contradicts our assumption, and completes the proof.

Since the pre-computed distances in q (>) are stored together with object > in a metric index, we
can avoid distance computations involving object > if q (>) ∉ ('(@), based on Lemma 4.1. Consider
the example in Fig. 5 where the dashed rectangle represents search region ('(@). Here, object >1
can be pruned as q (>1) ∉ ('(@). Also, Lemma 4.1 can be utilized to prune an entire region (i.e., a
minimum bounding box that contains multiple q (>)s) if it does not intersect ('(@). Next, based
on ball partitioning, we present a range-pivot filtering technique [151].

Lemma 4.2. (RANGE-PIVOT FILTERING). Given a ball partition region '8 with the center '8 .?
and radius '8 .A , a query object @, and a search radius A , if 3 (@, '8 .?) > '8 .A + A , '8 can be pruned.

Proof 4.2. For any object > in '8 , if 3 (@, '8 .?) > '8 .A + A , then 3 (@,>) ≥ 3 (@, '8 .?) −3 (>,'8 .?) >
'8 .A + A − 3 (>,'8 .?) due to the triangle inequality. As 3 (>, '8 .?) ≤ '8 .A by Definition 4.1, we can
derive that 3 (@,>) > A . Thus, no object > in '8 can be in the result set, and '8 can be pruned safely.

Consider Fig. 3(a), where the red dashed line denotes the search region, and the solid red circle
represents the ball region '8 = {>6, >7, >8} with center '8 .? = >7 and radius '8 .A = 3 (>7, >6). As
3 (@, '8 .?) > '8 .A +A ,'8 can be pruned due to Lemma 4.2. Note that, for an object> inside ball region
'8 , if we record its distance 3 (>, '8 .?) to the partition center '8 .? , Lemma 4.2 can be applied to
prune this object by replacing '8 .A with 3 (>, '8 .?). Hence, Lemma 4.2 can also be used for pruning
single objects. Next, based on the generalized hyperplane partitioning, a double-pivot filtering
technique [151] exists.

Lemma 4.3. (DOUBLE-PIVOT FILTERING). Given pivots ?8 and ? 9 , a query object @, and a
search radius A , if 3 (@, ?8) − 3 (@, ? 9) > 2A , '8 can be pruned, as ?8 is the corresponding pivot for '8 .

Proof 4.3. For every > in '8 , according to the definition of '8 , 3 (>, ?8) ≤ 3 (>, ? 9). Based on
the triangle inequality, we have 3 (@, ?8) ≤ 3 (>, ?8) + 3 (@, >) and 3 (@, ? 9) ≥ 3 (>, ? 9) − 3 (@,>).
Thus, we can derive that 3 (@, ?8) − 3 (@, ? 9) ≤ 3 (>, ?8) + 3 (@,>) − 3 (>, ? 9) + 3 (@,>) ≤ 23 (@,>) as
3 (>, ?8) ≤ 3 (>, ? 9). If 3 (@, ?8) − 3 (@, ? 9) > 2A , then 3 (@,>) > A . Therefore, no object > (∈ '8) can be
a result object, and '8 can be pruned.

Consider Fig. 3(b), where >2 and >6 are pivots. Since 3 (@,>6) − 3 (@, >2) > 2A , '8 = {>6, >7, >8, >9}
can be discarded safely according to Lemma 4.3.

Lemma 4.4. (EXCLUSIVE FILTERING). Given a d-split function 1?Bd (2, >), a query object @,
and a search radius A , if A ≤ d and 1?Bd−A (2, @) = ‘−’, objects in partitions '0 and '1 can be pruned
safely; if 1?BA−d (2, @) = 0, objects in partition '1 can be pruned; and if 1?BA−d (2, @) = 1, objects in
partition '0 can be pruned.

Proof 4.4. If A ≤ d and1?Bd−A (2, @) = ‘−’, we can get that3<43−d+A < 3 (@, 2) ≤ 3<43+d−A . For
objects> in'0 (i.e.,3 (2, >) ≤ 3<43−d),3 (@, >) ≥ 3 (@, 2)−3 (2,>) > 3<43−d+A−3<43+d = A , and thus,
objects in '0 can be pruned. For objects > in '1(8 .4., 3 (2, >) > 3<43 + d),3 (@,>) ≥ 3 (2, >) −3 (2,@) >
3<43 + d − 3<43 − d + A = A , and hence, objects in '1 can be pruned.

If 1?BA−d (2, @) = 0, we can get 3 (@, 2) ≤ 3<43 − A + d . For objects in '1 (i.e., 3 (2, >) > 3<43 +
d),3 (@, >) ≥ 3 (2, >) −3 (@, 2) > 3<43 + d −3<43 + A − d > A . Therefore, objects in '1 can be pruned.
If 1?BA−d (2, @) = 1, we can get 3 (@, 2) > 3<43 + A − d . For objects > in '0 (i.e., 3 (2, >) ≤ 3<43 −

d),3 (@, >) ≥ 3 (@, 2) − 3 (2, >) > 3<43 + A − d − 3<43 + d > A . Thus, objects in '0 can be pruned.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:14 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

Consider Fig. 3(c) and assume that the search region ('(@, A) is the dashed purple circle. Parti-
tions '0 and '1 can be pruned due to A ≤ d and 1?Bd−A (2, @) = ‘−’. Lemma 4.4 uses one center for
the d-split function to illustrate the exclusive filtering. However, Lemma 4.4 can also be extended
to multiple centers.
Lemmas 4.1 through 4.4 are pivot filtering techniques. A distance computation is still needed for

verifying each object that cannot be pruned. Consequently, validation techniques are introduced
to save unnecessary verifications.

Lemma 4.5. (PIVOT VALIDATION). Given a pivot set % , a query object @, and a search radius A ,
if there exists, for an object > in$, a pivot ?8 (∈ %) satisfying 3 (>, ?8) ≤ A − 3 (@, ?8), > is validated to
be a result object.

Proof 4.5. Given a query object@, an object> , and a pivot ?8 ,3 (@, >) ≤ 3 (>, ?8)+3 (@, ?8) because
of the triangle inequality. If 3 (>, ?8) ≤ A − 3 (@, ?8), then 3 (@,>) ≤ A − 3 (@, ?8) + 3 (@, ?8) = A . Thus,
> is guaranteed to belong to the search region, which completes the proof.

In Fig. 5(b), object >2 can be validated directly without computing the distance 3 (@, >2) due to
3 (>2, >1) = A − 3 (@, >1) according to Lemma 4.5.

Lemma 4.6. (RANGE-PIVOT VALIDATION). Given a ball partition region '8 with center '8 .?
and radius '8 .A , a query object @, and a search radius A , if 3 (@, '8 .?) ≤ A − '8 .A , objects in '8 are
validated as result objects.

Proof 4.6. For any object > contained in '8 (i.e., 3 (>,'8 .?) ≤ '8 .A), if 3 (@, '8 .?) ≤ A − '8 .A , then
3 (@, >) ≤ 3 (>, '8 .?) + 3 (@, '8 .?) ≤ A − '8 .A + '8 .A = A . Hence, > is in the search region according to
Definition 2.1, and all objects in '8 are validated as result objects.

Consider the example shown in Fig. 3(a), where the dashed green circle represents the search
region, and the solid red circle denotes the ball region '8 = {>6, >7, >8} with center '8 .? = >7 and
radius '8 .A = 3 (>7, >6). As 3 (@′, '8 .?) < A ′ − '8 .A , '8 is validated according to Lemma 4.6.

Lemma 4.7. (EXCLUSIVE VALIDATION). Given a d-split function 1?Bd (2, >), a query object @,
and a search radius A , if 1?Bd+A (2, @) = 0 (or 1), the query result must be contained in '0 (or '1).
Proof 4.7. If 1?Bd+A (2, @) = 0, we can get that 3 (@, 2) ≤ 3<43 − d − A . For any object o outside '0

(i.e., 3 (2, >) > 3<43 − d),3 (@, >) ≥ 3 (>, 2) −3 (@, 2) > 3<43 − d −3<43 + d +A = A , and thus, the query
result must be contained in '0. If 1?Bd+A (2, @) = 1, we can get that 3 (@, 2) > 3<43 + d + A . For any
object > outside '1 (i.e., 3 (2, >) ≤ 3<43 + d),3 (@, >) ≥ 3 (@, 2) −3 (2, >) > 3<43 + d + A −3<43 − d = A ,
and hence, the query result must be contained in '1.

In Fig. 3(c), let the dashed green circle be the search region. The search result must be contained
in the hash partition region '1 due to 1?Bd+A

′ (2, @′) = 1 according to Lemma 4.7. Consequently, we
only need to verify the objects in '1.
In addition to general pivot filtering principles applicable in all metric spaces, alternative fil-

tering approaches are proposed for exact metric search, such as Ptolemaic filtering [67, 68] and
Hilbert exclusion [49, 51]. These alternative filtering approaches use properties in addition to the
triangle inequality in order to accelerate search, while the additional properties hold for a series
of metrics.

5 METRIC INDEXES FOR EXACT SIMILARITY SEARCH

In order to illustrate different designs of the metric indexes, we index the dataset shown in Fig. 3
using each of the metric indexes. Sections 5.7 through 5.14 offer an extended presentation of pivot-
based indexes covered in our previous work [39].

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:15

o4 o5

o1 o6

o9

o7 o8

o2 o3

(a) GHT

o2 o4 o5 o7 o3 o8

o1 o6 o9
MBB11
MBB16
MBB19

MBB21
MBB26
MBB29

MBB31
MBB36
MBB39

(b) GNAT

d(o2,o1) d(o8,o9)

o2 o4 o5
d(o4,o1) d(o5,o1)

o7 o3
d(o3,o9)

o8
d(o7,o6)

o1 o6 o9
MBB11
MBB16
MBB19

MBB21
MBB26
MBB29

MBB31
MBB36
MBB39

(c) EGNAT

o7o2 o3

o4

o5
o1 o6

o9

o8R1

R2

R3

(d) Data Distribution

Fig. 6. Examples of GHT and its Variants

5.1 The GHT Family

The Generalized Hyperplane Tree (GHT) [139] is a binary tree built by using the generalized par-
titioning recursively. In the example of GHT depicted in Fig. 6(a), objects >1 and >6 in the node
denote the centers of two subtrees.
GHT canbe generalized tom-ary trees, yielding Geometric Near-neighbor Access Tree (GNAT) [23].

An example of GNAT is depicted in Fig. 6(b). When constructing GNAT,< centers 28 (1 ≤ 8 ≤ <)
are selected each time, and objects are assigned to the nearest center. In addition, GNAT stores
the minimum bounding box MBB8 9 = [mindist(>, 2 9),maxdist(>, 2 9)] (> ∈ '8) of each node with
respect to each centers 2 9 , as shown in Fig. 6(d), where red circles denote the MBB w.r.t. center >1,
the purple circles represent the MBB w.r.t. >6, while the blue circle denotes the MBB w.r.t. >9.
The Evolutionary Geometric Near-neighbor Access Tree (EGNAT) [87, 105] is a dynamic version

of GNAT. An example is shown in Fig. 6(c). It supports insertion and deletion, as well as extends
GNAT to be an external memory index. In addition, to improve the pruning ability, each entry in
the leaf nodes of EGNAT stores the distance from the entry to its parent entry.
MRQ and MkNNQ Processing. Query processing traverses the GHT in depth-first manner,

where Lemma 4.3 (i.e., double-pivot filtering) is used to filter unqualified nodes. In the case of
GNAT, the additional MBBs stored in non-leaf nodes enable pruning using Lemma 4.1. EGNAT leaf
nodes store their distances to their parent entry; thus, Lemma 4.2 is also employed for pruning leaf
entries. MkNNQ(@, :) processing based on GHT, GNAT, and EGNAT follows the second approach
introduced in Section 2.2.
Discussion. The storage cost of GHT is $ (=B), and its construction cost is Ω(= log2 =), while

GNAT has storage cost $ (=B + <=) and construction cost Ω(<= log< =), where = denotes the
total number of objects, B represents the size of an object, and < denotes the tree arity. In the
original study [23], GNAT has$ (<2==>34) MBB storage cost, where ==>34 denotes the number of
non-leaf nodes. Here, we use $ (=/<) to estimate ==>34 so that $ (<=) space is used to store the
MBB information. Note that, GHT, GNAT, and EGNAT are unbalance trees, meaning that their
worst construction cost is $ (=2). If we assume that the tree structure is balanced, we get optimal
construction costs of Ω(= log2 =) for GHT and Ω(<= log< =) for GNAT and EGNAT.

5.2 BST Family

Like GHT, the Bisector Tree (BST) [78] is a binary tree, which is constructed by inserting objects
one by one. However, unlike GHT, BST uses a ball (i.e., a center with a radius) to represent each
partition/node. To improve efficiency by obtaining a relatively balanced structure, BST can be built
recursively in a top-down manner using generalized hyperplane partitioning, yielding BST∗. Fig. 7
shows an example of BST∗, where #2 is represented by a ball with center >1 and radius A2 =

√
5.

In contrast, a variant called the BU-tree [83] builds the tree in a bottom-up manner instead of top-
down. In BST, a sub node may have a larger radius than its parent node. To avoid this, two variants
of BST, called MBST [106] and VT [53], are proposed, where VT nodes have arity 3.
MRQ and MkNNQ Processing. MRQ(@, A) processing using BST proceeds as for GHT. The

only difference is that BST uses Lemma 4.2 (i.e., the range-pivot filtering) instead of Lemma 4.3

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:16 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

o1 o6 o1 o6

o4 o5 o4 o5 o3 o9o3 o9

N1

N2 N3

N4 N5 N6

 5 13

o7o2

o3

o4

o5 o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9

o8
 13 r3= 13 r3=

 5 r2= 5 r2=

o2 o2
0

o2
0

o7 o7
0

o7
0

o8 o8
0

o8
0

1 0 2 1

Fig. 7. BST

o7
o2

o3
o4

o5 o1
o6

1
0

2

2

1

3 4 5 6

3

4

5

6

x

y

o9

o8

R= 0

o1

R=
o5

R= 0

o6

R= 0

o9

R=
o2

R=

o3

R= 0

o4

R=
o7

R=
o8

R 2 R 2
2 2

5 8

10

Fig. 8. SAT

to filter nodes. MkNNQ(@, :) processing based on BST follows the second strategy described in
Section 2.2.
Discussion. The storage costs of BST(∗) and MBST are$ (=B), and the corresponding construc-

tion costs are Ω(= log2 =). The degree of balance depends on the chosen centers and the data
distribution. If the centers used are chosen well, the BST and its variants can be balanced trees. As
the VT nodes have arity 3, its construction cost is Ω(= log3 =). However, the BU-tree repeatedly
forms a parent node from the two nodes with the minimum distance. Thus, its construction cost
is $ (=3).

5.3 SAT Family

In contrast to GNAT, the Spatial Approximation Tree (SAT) [97, 98] selects centers inspired by the
Delaunay graph. An example is shown in Fig. 8. For each node 2 , SAT chooses a set of so-called
nearest neighbors # (2) as the centers of its sub-nodes. More specifically, # (2) does not denote the
real nearest neighbors of 2 , but consists of the objects that are closer to 2 than to other objects in
(2), i.e.,> ∈ # (2) iff∀D ∈ # (2)−{>} , 3 (>, 2) < 3 (>,D). Next, SATuses the generalized hyperplane
partitioning to construct the tree, while each node in SAT also uses the ball representation. As an
optimization, the farthest outlier data is selected as the root node instead of a randomly chosen
root to maximize the hyperplane separation [32]. In addition, when dividing the dataset in each
iteration, the objects are sorted in ascending order of their distances to the parent entry. Another
typical index called the k nearest-neighbor graph (kNNG) is similar as SAT. The difference is that
while SAT uses # (2) as sub-nodes, kNNG uses real k nearest neighbors of 2 as its sub-nodes.

Dynamic SAT (DSAT) [100–104] extends SAT from being a static in-memory index to being a
dynamic secondary-memory index. DSAT is built by inserting objects one by one using generalized
hyperplane partitioning, and each object is associated with an insertion timestamp. The sub-nodes
are sorted in ascending order of their insertion times. To better cluster each page of DSAT, DSAT
with clusters (DSACLT) [15, 24] is proposed. Each node in DSACLT is stored as a single page in
secondary memory. In addition, DSACLT stores k nearest neighbors (kNNs) of the node center in
each node. Further, the distance from each kNN to the node center is stored. TwoDSACLT versions
exist, DSACLT+ and DSACLT∗, where DSACLT+ is tree structured, while DSACLT∗ is a list.
MRQ Processing using SAT. MRQ(@, A) processing using SAT proceeds as for GHT, using

depth-first search. In particular, Lemmas 4.2 and 4.3 are used to prune nodes. Instead of applying
Lemma 4.3 only once for each sub-node, all sub-nodes of the same parent node and accessory nodes
can be used for pruning. Here, the accessory nodes AN(>) of > are the nodes in the path from > to
the root. For each sub-node > ∈ # (2), if ∃D ∈ (# (2) − {>}) ∪ AN(>) st. 3 (@,>) − 3 (@,D) > 2 × A ,
the subtree of > can be pruned.
MRQ Processing using DSAT and DSACLT. Unlike MRQ(@, A) processing using SAT, DSAT

cannot prune a whole subtree using Lemma 4.3. To see why, assume that a node has two sub-nodes
28 and 2 9 (9 > 8), indicating that 28 is inserted before 2 9 . Then, objects > inserted before 2 9 in the
subtree of 28 might belong to the subtree of 2 9 . Therefore, we still visit older nodes when a newer

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:17

o7o2 o3

o4

o5

o1 o6

o9

o8

e3

e4

e5

e1
e2

e6

r6

r2

(a) Data distribution

e1 e2

o6 o7 o8 o9

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

o1 o2 o4 o3 o5

e2.RO e2.PDe2.ptre2.r
N2 o6

N6 o8 d(o8,o6)

o9.PDoidoj
9o9 r6

r6

r2

e6.RO e6.PDe6.ptre6.r

(b) The M-tree
Fig. 9. Example of the M-tree

center exists that satisfies the condition of Lemma 4.3. MRQ(@, A) processing using DSACLT pro-
ceeds as when using DSAT. The only difference is that, for unpruned nodes, DSACLT determines
whether the stored kNNs are in the final result by using Lemma 4.2.

MkNNQ Processing. MkNNQ(@, :) processing using SAT follows the second approach from
Section 2.2. Best-first traversal is used, so that nodes are visited in ascending order of their mini-
mum distances to the query object @. In the cases of DSAT and DSACLT, the nodes are visited in
ascending order of their insertion times, such that these indexes are traversed in depth-first order.
Discussion. The construction costs of SAT, DSAT, and DSACLT are$ (= log2 =/log log=),$ (=<

log< =), and $ (=< log< =/:), respectively, where< is the maximum tree-arity and : denotes the
number of nearest neighbors stored in each DSACLT node. The storage costs of SAT, DSAT, and
DSACLT are all $ (=B). Note that, the construction cost of kNNG is $ (=2) in the worst case and
its storage cost is $ (=B + =:). Unlike other indexes (e.g., the GHT family) that only use sibling
centers for pruning, the SAT family indexes can also use ancestor nodes for pruning, and thus,
offer improved pruning capabilities. Due to the dynamic insertions, the pruning of DSAT is weaker
than that of SAT. DSACLT stores more pre-computed distances in each node than those of SAT
and DSAT, which improves its pruning capabilities over these indexes. However, the height of
DSACLT is smaller than that SAT and DSAT, which reduces its pruning capabilities over these.
Consequently, the combined pruning enabled by DSACLT depends on the data distribution.

5.4 M-tree Family

The M-tree [42, 46, 128] is a dynamic tree that uses ball partitioning. Fig. 9 shows an M-tree,
where each non-leaf entry 4 records a center 4.'$, a covering radius 4.A , a parent distance 4.%�
that equals the distance from 4 to the center of its parent entry, and a pointer to the root of its
sub-tree. A leaf entry stores detailed object information with the parent distance. Many M-tree
variants exist (cf. Section 3.1) that aim to improve its construction or query efficiency. Here, we
only introduce a representative variant called the PM-tree [130]. The PM-tree combines the pivot
mapping and the M-tree, where the M-tree is used to cluster objects and the pivot mapping is
utilized to avoid unnecessary distance computations. Hence, unlike the M-tree, each leaf entry of
the PM-tree stores the mapped vector (i.e., the pre-computed distances to the pivots) with every
object. In each non-leaf entry, the PM-tree stores an MBB that contains all the mapped vectors in
its child leaf entries.
MRQ and MkNNQ Processing using the M-tree. In order to answer MRQ(@, A) using the M-

tree, the entries are traversed depth-first, and Lemma 4.2 is used for pruning. MkNNQ(@, :) using
the M-tree follows the second strategy from Section 2.2. The entries are traversed in best-first
manner, i.e., in ascending order of their minimum distances to the query object @, where Lemma
4.2 is employed to eliminate unqualified entries.

MRQ and MkNNQ Processing using the PM-tree. MRQ(@, A) and MkNNQ(@, :) using PM-
tree are similar as that using M-tree, the only difference is that Lemma 4.1 can also be used for
pruning entries due to pivot mapping technique.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:18 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

o7o2
o3

o4

o5 o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o8

o9

2 2

(a) Data distribution

I1 = {o2, o5} I2 = {o7, o8}

(o1, 2) (o3, 2) (o4, 29)

I3 = {o7, o8}

(b) LC structure

Fig. 10. Example of LC with Fixed Size

Discussion. The M-tree is a balanced tree, and thus, the storage cost of the M-tree is $ (=B +
=B/<), and its construction cost is$ (=< log< =) or$ (=<2 log< =), depending on the split strategy.
The tree-arity< of the M-tree depends on its disk page size to store each node. The PM-tree stores
pre-computed distances w.r.t. the pivots in the tree structure. Hence, the construction cost of the
PM-tree is$ (=(<..<2) log< =+=; log< =), and its storage cost is$ (=(B +;) +=(B +;)/<+;B), where
; denotes the number of pivots, and it needs $ (;B) space to store the pivots. The PM-tree costs
are relatively high compared with those of the M-tree. Note that, the M-tree and its variants (e.g.,
the PM-tree) store the data objects in its entries instead of in a separate file; thus, the page/node
size varies for different types of data. In particular, for complex objects (e.g., the 282 dimensional
vectors used in our experiments), the M-tree family indexes need a large page size.

5.5 LC Family

List of Clusters (LC) [33, 34] is a list of clusters, where each cluster is represented by a center and
a radius. Each cluster has a corresponding bucket, which contains objects whose distances to the
center are not larger than the radius. LC has two versions, i.e., fixed radius and fixed size. Fixed
radius means that the cluster radius is fixed, while fixed size indicates that the number of objects
in each bucket is fixed. Fig. 10 shows an example of LC with fixed size. Two variants Dynamic
LC (DLC) [104] and Hierarchy of Clusters [62, 63] (HC) are proposed, where DLC is a dynamic
version of LC, and HC utilizes a tree structure to store the list of clusters.

MRQ and MkNNQ Processing. MRQ(@, A) using LC, DLC, or HC visits the list of clusters
in sequel or visits the tree in depth-first order, where Lemma 4.2 is used for filtering buckets. If
the search region is contained in the ball cluster, the search stops, and the results are returned.
MkNNQ(@, :) using LC, DLC, or HC adopts the second strategy from Section 2.2, where Lemma
4.2 is used for pruning.

Discussion. The construction costs of LC and DLC are$ (=2/<), where< denotes the number
of objects in each bucket. The construction cost of LC is very high; however, it can achieve high
query efficiency due to its compact clusters. HC is built recursively in a binary way to reduce the
construction cost of LC, which yields a construction cost of $ (= log2 =/<). The storage sizes of
LC, DLC, and HC are all$ (=B).

5.6 D-index Family

The D-index [55, 56, 150] combines hash partitioning and the pivot mapping. The basic idea of
the D-Index is to create a multilevel structure that uses several d-split functions as defined in
Definition 4.3, one for each level, to create buckets for storing objects. Here, the d-split functions
of individual levels use the same d . In Fig. 11, a d-split function based on >7 is used at level 1, and
a d-split function based on >3 is used at level 2. Objects in the exclusion bucket ‘−’ (i.e., >3, >5, >9)
at level 1 are candidates to be divided at level 2, and the exclusion bucket of the last level forms
the exclusion bucket of the D-index.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:19

o7

o2 o3

o4

o5 o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9

o8

22

Level 1

Level 2
p2=o3

p1=o7

Separable buckets Exclusion bucket

d(p1, o6) d(p2, o6)o6

d(p1, o7) d(p2, o7)o7

d(p1, o8) d(p2, o8)o8 d(p1, o4) d(p2, o4)o4

d(p1, o2) d(p2, o2)o2

d(p1, o1) d(p2, o1)o1

d(p1, o5) d(p2, o5)o5

d(p1, o3) d(p2, o3)o3 d(p1, o9) d(p2, o9)o9

0 1

Fig. 11. Example of the D-index

o7o2

o3

o4

o5 o1 o6

1
0

2

2

1

3 4 5 6

3

4

5

6

x

y

o8

o9

0

dmed = 2

1

(a) Data distribution

00

0

o1 o2

dmed=

o1

o6 o7

10

dmed=2

o2

o3 o4 o5

01

dmed=

o6

0 1

1

o8 o9

11

0 1

(b) block tree

e1 e2

e13 e14 e15

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

e7 e8 e9 e11 e12

e16.ptr
o9

RAFo2 o3 o6 o7 o8 o9

e16

o1 o5 o4

11011

e16.key

B
+
-tree

(c) B+-tree

Fig. 12. Example of the MB
+-tree using Hash Partitioning

The MB+-tree [75] divides the dataset into two subsets by using either hash partitioning or
generalized hyperplane partitioning recursively. Fig. 12 gives an example of the MB+-tree using
hash partitioning, where d is set to 0. The MB+-tree includes two parts, i.e., block tree and B+-tree.
The block tree stores the partition information, where each internal node records the partition
center 2 and the medium distance 3<43 used for a d-split function. For each object > , the MB+-tree
generates a key that is formed by the partition key ?: and the distance key 3: . Finally, all keys are
indexed by the B+-tree, and objects are stored in a separate random access file RAF.
MRQ Processing using the D-index. The D-index is traversed top-down. At each level, we

use Lemma 4.4 to prune unqualified buckets. In addition, if the condition of Lemma 4.7 holds, we
can retrieve the final result in the corresponding bucket and terminate the search. Note that, when
searching a bucket, Lemma 4.1 is used for pruning to boost efficiency.
MRQ Processing using the MB

+-tree. MRQ(@, A) using the MB+-tree visits the block tree in
depth-first order, and Lemma 4.7 is employed to find sub-trees that needs to be visited. When a leaf
node is reached, it computes the distance key range for the query object @. Next, all the candidates
in the B+-tree that belong to this leaf node and fall in this distance key range are found, and it is
determined each candidate is in the final result.
MkNNQProcessing using theD-index.MkNNQ(@, :) using the D-index is complex. It adopts

the second solution from Section 2.2. However, instead of setting the search radius to infinity ini-
tially, we first set the search radius to d , and then search the k NNs. If the upper bound distance
between the current kNNs and the query object exceeds d (i.e., the initial search radius d is under-
estimated), we need to search the D-index again to refine the result.
MkNNQ Processing using the MB

+-tree. MkNNQ(@, :) using the MB+-tree adopts the third
strategy stated in Section 2.2. It first finds k candidate NNs according to the keys, i.e., finds k
candidates with keys nearest to the query object’s key, and then calculates the current k-th NN
distance ND: using the k candidates. Thereafter, MkNNQ(@, :) is transformed to a metric range
search MRQ(@, #�:) to find the final result.
Discussion. The construction cost of the D-index is $ (=;), as it depends on the number of

pivots (i.e., the number of hash functions) used. The storage cost of the D-index is$ (=B + =; + ;B),
where$ (=B) is the cost to store the dataset,$ (=;) is cost to store the pre-computed distances w.r.t.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:20 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

objects d(oi, o1) d(oi, o6)
o1

o2
o3

o4

o5

o6

o7

o8

o9

0 6

06

2 4

5

Fig. 13. Example of LAESA

d(o, pi)o1

p

o2 o5 o6o9 o7o8

o4

o3

p +p –

A(pi) A(pi)

i ii

Fig. 14. Illustration of �(?8)

objects (p1, d(oi, p1))
o1

o2

o3

o4

o5

o6

o7

o8

o9

(o1, 0)

(o6, 0)
(o1, 2)

(o1, 5)

(p2, d(oi, p2))

(o1,)

(o6,)
(o1,)

(o6,)
(o1,)

(o9, 5)
(o4, 1)

(o4, 0)

(o9, 0)
(o9, 1)
(o4,)
(o4,)
(o9,)

(o9,)

Fig. 15. Example of EPT

the pivots, and $ (;B) is the cost to store the pivots used for pivot mapping and hash partitioning.
The construction cost of the MB+-tree is$ (= log2 =/< +=< log< =), where it needs$ (= log2 =/<)
to build the block tree, and $ (=< log< =) to build the B+-tree, where < denotes the number of
entries in both the block tree leaf node and the B+-tree node. The storage cost of the MB+-tree is
$ ((= + =/<) (B + log2 =/< + log2 =3)), in which =3 represents the maximum distance value of 3 ().
This is because, the length of a partition key is $ (log2 =/<), while the length of a distance key is
$ (log2 =3). It needs$ ((= +=/<) (log2 =/< + log2 =3)) to store the B+-tree,$ (=B) to store the RAF,
and $ ((B + log2 =/<)=/<) to store the block tree.

5.7 AESA Family

AESA [119] uses a table to store the distances from every object to other objects. If = is the car-
dinality of a dataset, the storage cost of AESA is $ (=2), which is high for large datasets. As an
example, if = = 100, 000, the storage cost is 80G, which renders AESA a theoretical metric index.
To further improve the query efficiency, two variants ROAESA [144] and iAESA [144] are proposed,
where the pre-computed distances are visited in a particular order during the search. To reduce the
storage cost of AESA, Linear AESA (LAESA) [91] is developed. LAESA only stores the distances
from each object to the pivots in a pivot set % . Fig. 13 shows an example of LAESA when using
% = {>1, >6}. In addition, objects in LAESA can be organized in a binary tree TLAESA [90, 134]
instead of a table.
MRQ and MkNNQ Processing.MRQ(@, A) processing using LAESA visits objects one by one,

and prunes objects using Lemma 4.1. MkNNQ(@, :) processing based on LAESA follows the second
strategy covered in Section 2.2, and Lemma 4.1 is used for pruning.
Discussion. The construction costs of AESA, ROAESA and iAESA are all$ (=2), while the stor-

age costs of AESA, ROAESA, and iAESA are all $ (=B + =2), as they need $ (=B) to store the data
and$ (=2) to store the pre-computed distances. To reduce the cost of AESA, the construction cost
of LAESA is$ (=;), and its storage cost is$ (=B + =; + ;B), as LAESA needs$ (=B) to store the data,
$ (=;) to store the pre-computed distances, and$ (;B) to store pivots. Since TLAESA is a tree struc-
ture, the construction cost of TLAESA is$ (= log2 =+=;), but its storage cost is the same as LAESA.
For similarity search processing, although LAESA utilizes Lemma 4.1 to avoid certain unnecessary
distance computations, it still needs to scan the full table to find the result set, incurring additional
scanning cost.

5.8 EPT

Unlike LAESA that utilizes the same pivots for each object, Extreme Pivot Table (EPT) [120] selects
different pivots for different objects in order to achieve better search performance. EPT consists of
a set of pivot groups. Each group� contains 6 pivots ?8 (1 ≤ 8 ≤ 6), according to which the entire
dataset$ is partitioned into 6 parts�(?8), such that�(?8) ∩�(? 9) = ∅ (8 ≠ 9) and ∪?8 ∈��(?8) = $.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:21

An object > belongs to �(?8) iff |3 (>, ?8) − `?8 | ≥ U , where `?8 is the expected value of 3 (>, ?8). For
instance, in Fig. 14, �(?8) = {>1, >2, >7, >9, >6}. However, it is difficult to obtain U , so EPT tries to
maximize U . In order to further improve the efficiency of EPT, EPT* is equipped with a new pivot
selection algorithm (PSA) [39].
MRQ and MkNNQ Processing. Like LAESA, EPT, and EPT∗ use tables to store pre-computed

distances. The only difference is that EPT and EPT∗ utilize different pivots for different objects,
while LAESA uses the same pivots for every object. Consequently, MRQ and MkNNQ processing
on EPT or EPT∗ are the same as those on LAESA.
Discussion. The construction cost of EPT is $ (=;6), and its storage cost is $ (=; + =B + ;6B), as

EPT needs$ (=B) to store the data, $ (=;) to store the pre-computed distances, and$ (;6B) to store
the pivots. EPT has ; groups while each group contains 6 pivots, and thus, it needs$ (;6B) to store
all the pivots. For each object, we will select the best pivot among each pivot group, and hence,
it needs $ (=;) to store the pre-computed distances between objects and the best pivots. To get
high quality pivots, the construction cost of EPT∗ is$ (=;;2=B), where ;2 is the number of candidate
pivots and =B denotes the cardinality of the sample set. The storage cost of EPT∗ is$ (=B +=; + ;2B),
as EPT∗ needs $ (=B) to store the data, $ (=;) to store the pre-computed distances, and $ (;2B) to
store all the pivots. EPT∗ achieves better similarity search performance than EPT contributed by
the higher quality pivots selected by PSA. Nonetheless, the pivot selection is costly, and thus, the
construction cost of EPT∗ is very high.

5.9 CPT

LAESA and EPT store the distance table and the data in main memory, and similarity query pro-
cessing needs to scan the whole table. However, when the size of the dataset exceeds the capacity
of the main memory, it is necessary to store the dataset on disk, and it becomes attractive to cluster
the data to improve I/O efficiency. The CPT [94] uses an M-tree to cluster and store the objects
on disk. The CPT consists of two parts, i.e., the distance table (depicted in Fig. 16) and the M-tree
(depicted in Fig. 9). Note that, the distance table includes the pointers to the leaf entries in the
M-tree, in order to enable loading of the corresponding objects for verification.
MRQ and MkNNQ Processing.MRQ and MkNNQ processing using CPT is similar as LAESA.

The difference is when an object is not pruned by Lemma 4.1, the object must be read from disk.
Discussion. The construction cost of CPT is$ (=(<..<2) log< = + =;), as it needs$ (=;) to con-

struct the table and $ (=(<..<2) log< =) to build the M-tree. The storage cost of CPT is $ (=B +
=B/< + =; + ;B), as it needs $ (=B + =B/<) to store the M-tree, $ (=;) to store the pre-computed
distances, and $ (;B) to store the pivots. Using CPT, we can avoid loading the whole dataset into
main memory during query processing. However, CPT incurs the I/O cost to load objects from
disk. In addition, the distance table is stored in main memory, meaning that the applicability of
CPT is still limited to datasets for which the distance table fits in main memory.

pointer d(oi, o1) d(oi, o6)
o1

o2

o3

o4

o5

o6

o7

o8

o9

0 6

06

2 4

5

Fig. 16. CPT

o1 o8

o1

o7o4o2

1 2 3 4 50 6

o6o3

o4 o5 o8 o9

0 02 1

Fig. 17. BKT

o1 o6

o1

o7o6o2

1 2 3 4 50 6

o6o3

o5 o4

4 5

o8 o9

2 3

Fig. 18. FQT

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:22 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

5.10 BKT

BKT [25] is a tree structure designed for discrete distance functions. It chooses a pivot as the
root, and maintains the objects having the distance 8 to the pivot in its 8Cℎ sub-tree. Fig. 17 gives
an example BKT, constructed based on the objects from Fig. 3 and the discrete distance function
!∞-norm. However, for other metric index examples, Euclidean distance (!2-norm) is used. Note
that, the continuous distance range can be partitioned into discrete ranges used for indexing. For
example, if the continuous distance function range is [0, 30], we can divide it into three disjoint
ranges [0, 10), [10, 20), [20, 30] in order to simulate the discrete distance function. Hence, BKT can
be adapted to support both discrete and continuous distance functions.
MRQ andMkNNQ Processing. In order to computeMRQ(@, A), the nodes in BKT are traversed

in depth-first fashion, and Lemma 4.1 is used. In order to compute MkNNQ(@, :), the nodes in BKT
are traversed in best-first manner, i.e., in ascending order of their minimum distances to the query
object @, and Lemma 4.1 is again used to prune unqualified nodes. Here, MkNNQ(@, :) follows the
second strategy from Section 2.2.
Discussion. BKT is an unbalanced tree. The construction cost of BKT is$ (=;), where ; denotes

the height of BKT. To compare different pivot-based metric methods, we use the same number
of pivots, and thus, the height of BKT is set to ; in this paper, and the construction cost is $ (=;)
instead of $ (=;>6=). However, we cannot use the same set of pivots for BKT. Like in the case of
other pivot-based methods, BKT randomly selects the pivots for its sub-trees. If BKT uses the same
pivots as other pivot-based metric indexes, it produces FQT as discussed below. The storage cost
of BKT is $ (=B + ;=3), where =3 denotes the number of discrete values in the domain of distance
function 3 (). Here, we store the associated distances (e.g., 0, 1, 2, 3, 4, 5, 6 in Fig. 17) for each
sub-tree, which results in an additional storage cost of$ (;=3). To avoid empty sub-trees for large
distance domains, each sub-tree covers a range of distance values, which are stored together.

5.11 FQ Family

Unlike BKT, FQT [14] utilizes the same pivot at the same level. Fig. 18 shows an example of FQT,
where >1 is used for the first level, and >6 is used for the second level. FQT is an unbalanced tree.
Hence, FHQT [13] is proposed, where objects are stored in the leaves, and all the leaves are at
the same level. In addition, FHQT can also be stored as FQA [35] using a table. Note that, FQA
and LAESA are the same. Although FQT is designed for a discrete distance function, it can also be
extended to support a continuous distance function, as in the case of BKT.
MRQandMkNNQProcessing.MRQandMkNNQprocessing using FQT are the same aswhen

using BKT.
Discussion. Similar to BKT, the construction cost of FQT is$ (=;), and the storage cost of FQT

is $ (=B + =;), where ; is the height of FQT. This is because, in order to utilize the same set % of
pivots as other pivot-based metric indexes, the height of FQT is set to the number of pivots, and
?8 ∈ % is set as the pivot for the 8Cℎ level. With well-chosen pivots, FQT is expected to perform
better than BKT.

5.12 VPT Family

VPT [138, 139, 149] is a binary tree. It chooses a pivot ? as the root, and selects a medium value
3<43 so that the objects > with 3 (>, ?) ≤ 3<43 are put in the left sub-tree, while the remaining
objects are put in the right sub-tree. Fig. 19(a) depicts an example of VPT, where !∞-norm is used.
Note that, the pivots for the nodes at the same level can be different. In order to be able to compare
the efficiency of different indexes using the same set of pivots, nodes of VPT at the same level
share the same pivot. To support insertions and deletions of VPT, a dynamic version DVPT [64]

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:23

o6, 1

o1, 3

o6, 4

{o2, o4, o1}{o3, o5} {o6, o7}{o8, o9}

(a) VPT

o6

{o6, o7, o8}{o3, o5, o9}{o1, o2, o4}

2 4

(b) MVPT
Fig. 19. Example of the VPT Family

e1 e2

e13 e14 e15

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

e7 e8 e9 e11 e12

e6.ptr

N6

(o9)

e6.MBB

M6

e16.ptr

o9

o1 o92 8RAF o4 o3

id len obj
o2 o5 o6 o7 o8 o9

e16

Pivot table

id object
1
6

o1
o6 e16.MBB

Fig. 20. Example of the OmniR-tree

is designed. VPT can be generalized to m-ary trees, yielding MVPT [20, 21]. Each time, MVPT
selects< − 1 medium values 31, 32, · · · , 3<−1. Fig. 19(b) gives an example of MVPT, where< is 3.
In addition, MVPT can also use multiple pivots (instead of using only one pivot) to partition each
node.
MRQ and MkNNQ Processing. MRQ and MkNNQ processing using VPT are similar as the

processing using BKT.
Discussion. Unlike BKT and FQT, MVPT is a balanced tree. The construction costs of VPT

and DVPT are $ (= log2 =), while the construction cost of MVPT is $ (= log< =). As< grows, the
pruning ability first increases and then drops. This occurs because, with larger < values, more
compact sub-trees are obtained at every tree level. Nevertheless, larger< values result in lower
MVPT tree levels, indicating that fewer pivots are available for pruning. The storage costs of VPT,
DVPT, andMVPT are all$ (=B). MVPT only stores medium values to partition the sub-trees, which
incurs lower storage cost than BKT and FQT.

5.13 Omni-family

The Omni-family [22, 136] utilizes an existing secondary-memory index, e.g., a sequential file, a
B+-tree, or an R-tree, to index the vectors after the pivot mapping. A sequential file stores the
pre-computed distances of objects in the order of their identifiers; a B+-tree is used to index the
pre-computed distances for each pivot; or an R-tree is used to index the pre-computed distances
w.r.t. all the pivots. Fig. 20 depicts an example of the OmniR-tree, including the pivot table that
stores the pivots, the R-tree that indexes the pre-computed distances, and the random access file
(RAF) that stores the objects. Note that, unlike the M-tree family, the Omni-family uses a separate
RAF to store the objects. This is done to avoid the impact of the object size.
MRQ and MkNNQ Processing. To answer MRQ(@, A), entries in the R-tree are traversed in

depth-first fashion, and Lemma 4.1 is used for pruning. To answer MkNNQ(@, :), the second strat-
egy from Section 2.2 is used, and entries in the R-tree are traversed in best-first manner, i.e., in
ascending order of their minimum distances to the query object @. Lemma 4.1 is utilized for prun-
ing.
Discussion.TheOmni-family includes theOmni-sequential-file, theOmniB+-tree, and theOmniR-

tree. The Omni-sequential-file can be regarded as LAESA stored on disk, which incurs substantial
I/O during search as the data is unclustered. The OmniB+-tree needs one B+-tree for each pivot,
resulting in redundant storage and I/O during search. The OmniR-tree utilizes MBBs to cluster the
data, and uses pivot filtering to achieve high query efficiency. The construction cost of the OmniR-
tree is $ (=<; log< =), as it needs $ (=;) to do the pivot mapping and $ (=<; log< =) to build the
R-tree. The storage cost of the OmniR-tree is$ (=B + =; + =;/< + ;B), as it needs$ (=B) to store the
data in the RAF,$ (=; +=;/<) to store the pre-computed distances in the R-tree, and$ (;B) to store
the pivots in the pivot table.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:24 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

o7o2 o3

o4

o5 o1 o6

10 2

2

1

3 4 5 6

3

4

5

x

y

o9

o8

0 102 10+

d(oi, o1) d++d(oi, o6)

6

C1 C2

(a) Data partitioning

e1 e2

e13 e14 e15

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

e7 e8 e9 e11 e12

e6.ptr

e16.ptr
o9

RAFo2 o3 o6 o7 o8 o9

e16

Pivot table

id object
1
6

o1
o6

o1 o5 o4

e6.key
N6

e16.key

C1 C2

minkeyMBB
10

maxkey
M2 10+Cluster-tree

B
+
-tree

10+

10+

(b) M-index∗ structure

o7

o2
o3

o4

o8

o1

o6

1
0

2

2

1

3 4 5 6

3

4

5

6

x

y

o9o5

M2

M1

(c) MBB

Fig. 21. Example of the M-index∗

5.14 M-index

The M-index [107] combines generalized hyperplane partitioning and pivot mapping. Given a set
% of pivots, each object > is assigned to the partition of its nearest pivot ?8 (∈ %), and is mapped to
the real number :4~(>) = 3 (?8 , >) + (8 − 1) × =3 , where =3 is the maximum distance in a certain
metric space. In Fig. 21(a), if % = {>1, >6}, we obtain clusters �1 and �2. After the partitioning, a
cluster tree (as depicted in Fig. 21(b)) is used to maintain the information of the clusters, a B+-tree
is employed to index the mapped real numbers, and an RAF is used to store the objects with the
pre-computed distances to all the pivots. If more pivots are used, the cluster-tree can be extended
to a dynamic tree. To accelerate search using the M-index, the minimum and maximum mapped
numbers of MBBs are added to the cluster tree in the M-index, yielding the M∗-index [39].
MRQ and MkNNQ Processing using the M-index. To answer MRQ(@, A), the entries in the

cluster tree are traversed in depth-first fashion, where Lemma 4.3 is used to prune intermediate
entries and Lemma 4.1 is used to prune objects. To answerMkNNQ(@,:), by taking the first strategy
fromSection 2.2, a range querywith a small search radius is performedfirst. Then, the search radius
is increased gradually until : closest objects are found.
MRQ and MkNNQ Processing using the M-index∗. The M-index∗ includes MBB informa-

tion for each cluster in the M-index. Thus, the pivot filtering of Lemma 4.1 can be applied when
traversing the cluster-tree to filter unqualified clusters. In addition, Lemma 4.5 can be integrated
to validate the objects. To answer MkNNQ(@, :), the M-index∗ can use the second strategy instead
of the first strategy based on the MBBs. More specifically, the cluster-tree is traversed in best-first
manner, i.e., clusters are visited in ascending order of their distances to the query object @.
Discussion. The construction cost of the M-index is Ω(=; log; =/<) +$ (<= log< =). Here, we

need the optimal cost Ω(=; log; =/<) to construct the dynamic unbalanced cluster tree and cost
$ (<= log< =) to construct the B+-tree, where< denotes the number of entries in each cluster or
each B+-tree node. The storage cost of the M-index is$ (=B +=; +=+=/<+;B), as it needs$ (=B +=;)
cost to store the RAF, $ (= + =/<) cost to store the B+-tree, $ (=/<) cost to store the cluster tree,
and$ (;B) cost to store the pivot table. When integrating the MBB into the cluster tree, the storage
of the M-index∗ is increased to $ (=B + =; + = + =/< + =;/< + ;B). However, the efficiency of MRQ
and MkNNQ on the M-index∗ is improved. Since the M-index(∗) can use both Lemmas 4.1 and 4.3
for pruning, it can achieve high performance in terms of distance computations. Nonetheless, it
needs to visit B+-tree multiple times for all unpruned clusters, making the I/O cost relatively high.

5.15 SPB-tree

The SPB-tree [36, 37] utilizes the two-stage mapping, i.e., the pivot mapping and the space-filling
curve (SFC) mapping, to map objects into SFC values (i.e., integers) while (to some extent) main-
taining spatial proximity. Then, a B+-tree is used to store the SFC values. Fig. 22 depicts an example

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:25

e1 e2

e13 e14 e15

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

e7 e8 e9 e11 e12

e6.ptr e6.min

e16.ptr
o9

RAFo2 o5 o9 o8 o7 o6

e16

Pivot table

id object
1
6

o1
o6

o3 o1 o4

60

58

e6.key
N6

e16.key

56

e6.max

61

(a) SPB-tree structure

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

o1

o2

o4

o3 o9

o5

o6

o7

o8

M2
M1

(M3)

M4

M5

M6

(b) Hilbert mapping

Fig. 22. Example of the SPB-tree

of SPB-tree, where Fig. 22(b) illustrates the Hilbert mapping after the pivot mapping. Each non-leaf
entry 4 in the B+-tree stores the SFC values of the two corners of its MBB.
MRQ and MkNNQ Processing. To answer MRQ(@, A), the entries in the B+-tree are traversed

in depth-first fashion, and Lemmas 4.1 and 4.5 are used to prune and validate entries/objects. To
answer MkNNQ(@, :), by following the second strategy from Section 2.2, the entries in the B+-tree
are traversed in best-first manner, i.e., in ascending order of their minimum distances to the query
object @, and Lemma 4.1 is used for pruning.
Discussion. The construction cost of the SPB-tree is$ (=(;2 ..;3) +=(<+ ;) log< =). In particular,

the SPB-tree needs$ (=;2) or $ (=;3) to do the pivot mapping and the space filling curve mapping
($ (;) and $ (;2) time are used for the Z-order curve and Hilbert curve respectively to transform
each object), and takes $ (=(< + ;) log< =) in building the B+-tree with MBB. The storage cost of
the SPB-tree is$ (=B+=+=/<+;B), as it needs$ (=B) space to store the real data in RAF,$ (=+=/<)
to store the mapped values in the B+-tree, and $ (;B) to store the pivot table. We employ the SFC
mapping to reduce the storage cost and maintain spatial proximity, resulting in improved I/O
and index storage costs. However, for continuous distance functions, the continuous distances
are approximated by discrete ones to perform the SFC mapping, which decreases the pruning
power. In addition, during similarity search, we need to do the Hilbert transformation to get the
pre-computed distances; hence, additional CPU cost is incurred.

6 EXPERIMENTAL COMPARISION AMONG METRIC INDEXES

We detail the experimental setting and then cover experiments in main-memory and secondary-
memory settings in turn. In addition, we conduct a significance evaluation of the metric indexes.

6.1 Experimental Se�ings

As discussed in Section 2.2, analytical studies that do not take the effect of pruning into account
offer limited insight into the real-world search performance of metric indexes. Thus, we opt to
compare experimentally 19 representative metric indexes, including BST (belonging to the BST
family), GNAT and EGNAT (belonging to the GHT family), SAT and DSACLT (belonging to the
SAT family), M-tree and PM-tree (belonging to the M-tree family), LC (belonging to the LC family),
MB+-tree and D-index (belonging to the D-index family), LAESA (belonging to the AESA family),
EPT∗, CPT, BKT, FQT (belonging to the FQ family), MVPT (belonging to the VPT family), OmniR-
tree (belonging to the Omni-family), SPB-tree, and M-index∗. We implemented all indexes and
associated similarity search algorithms in C++, and experiments were conducted on an Intel Core
i7-7700 3.6GHz PC with 16GB memory. All code is publicly available7.

7Code is available at https://github.com/ZJU-DAILY/Metric_Index.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:26 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

We employ three real datasets, namely, LA, Words, and Color. LA8 consists of geographical lo-
cations in Los Angeles, and the !2-norm is utilized to measure similarity. Words9 contains proper
nouns, acronyms, and compound words taken from the Moby project, and the edit distance is
used to compute the distances between words. Color10 consists of standard MPEG-7 image fea-
tures extracted from Flickr, and the similarity between two features is measured by the !1-norm.
In addition, we generate a dataset Synthetic, where the values are integers and the !∞-norm is
employed. More specifically, in Synthetic, 5 of 20 dimension values are generated randomly, while
the remaining values are linear combinations of the previous ones. Table 5 summarizes statistics
of the datasets.

Table 5. Datasets used in the Experiments

Datasets Cardinality Dimensionality Intrinsic Dimensionality Measurement

LA 1,073,727 2 5.4 !2-norm
Words 611,756 1∼34 1.2 Edit distance
Color 1,000,000 282 6.5 !1-norm
Synthetic 1,000,000 20 6.6 !∞-norm

Table 6. Parameter Se�ing

Parameter Values Default

Number of pivots ; 3, 5, 10, 15, 20 5
Search radius A (selectivity of range queries) 2%, 4%, 8%, 16%, 32% 8%
Number of : 5, 10, 20, 50, 100 20

We investigate the similarity query performance using the indexes when varying the parameters
listed in Table 6.

• The number ; of pivots is an integer in [1, +∞), and we find that a small ; yields the best
performance for all four datasets. Hence, we chose five representative values (specifically 3,
5, 10, 15, 20) for ; .

• Following a previous study [136], we use the selectivity of metric range queries to set the
search radius A that controls the search region. In particular, the value of radius A denotes
the percentage of objects in the dataset that are result objects of a metric range query. As
different datasets have different distance ranges, it is difficult to use the same value across
different datasets. In addition, the data distribution might be skewed in real-life data, which
makes it possible for even a large radius to only cover few objects (and a small radius to
cover many objects). Thus, we use selectivity values (i.e., 2%, 4%, 8%, 16%, and 32%) instead
of fixed values (e.g., 1 km, 2 km, etc.) to better evaluate the performance of metric range
queries.

• The value : in the M:NN query is an integer in [1, +∞). In real-life applications, a small
number of result objects is usually retrieved by an M:NN query. For example, in recommen-
dation systems, we cannot provide too many recommendations for users. Thus, we vary :

from 5 to 100, which aligns with previous studies [35, 136].

8LA is available at http://www.dbs.informatik.uni-muenchen.de/∼seidl.
9Words is available at http://icon.shef.ac.uk/Moby/.
10Color is available at http://cophir.isti.cnr.it/.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:27

In each experiment, one parameter is varied, and the others are fixed at their default values. As
explained in Section 2.2, the main performance metrics include the number of page accesses (PA),
the number of distance computations (compdists), and the running time. Each reported measure-
ment is an average over 100 random queries. To facilitate a fair comparison, we use the same set
of random queries for all indexes
When comparing the performance of pivot-based methods, their use of different pivot selection

strategies renders the comparison challenging. For example, the OmniR-tree [136] utilizes the HF
algorithm to select outliers as pivots, while the SPB-tree uses the HFI algorithm to select pivots
that maximize the similarity between the original metric space and the vector space obtained by
using the pivots. Since the similarity query performance depends highly on the pivots used [8, 26],
we utilize the same pivot selection strategy for the pivot-based indexes. Specifically, we use the
HFI algorithm [36, 39]. This does, however, not apply to the EPT∗, BKT, and GNAT families. As
discussed in Sections 5.1, 5.8, and 5.10, GNAT uses centers in the same level as pivots, EPT∗ utilizes
different pivots for different objects, and BKT needs to select pivots randomly in its sub-trees.

6.2 Comparison among Main-memory based Metric Indexes

We compare the performance of the main-memory based metric indexes using MRQ and MkNN
queries, which includes compact-partitioning based indexes (i.e., BST and SAT), pivot-based in-
dexes (i.e., LAESA, EPT∗, BKT, FQT, and MVPT), and the hybrid index GNAT. When comparing
the pivot-based indexes and compact-partitioning based indexes, the index pruning ability depends
on the number of pivots and the number of centers, respectively. Hence, we set the number of piv-
ots used in the pivot-based indexes equaling to the height of compact-partitioning based methods.
Then, the number of pivots and the number of centers used for pruning each object in pivot-based
and compact-partitioning methods, respectively, are the same. GNAT and MVPT are multi-arity
trees. Here, we set arity to 5, which yields the best results across a range of values tested.
Fig. 23 and Fig. 24 show the MRQ andMkNN performance (compdists and running time) on four

datasets, respectively. The first observation is that, the query cost, compdists as well as running
time, first drops and then remains stable or increases when the number of pivots or the tree height
increase. On the one hand, the more pivots/the higher the tree, the stronger pruning ability. On the
other hand, using more pivots increases the CPU cost of filtering the search space. Hence, the best
number of pivots for an index depends on the distance distribution of the dataset and the structure
of the index. Table 7 summarizes the performance metric (including compdists and running time)
ranking of all main-memory based indexes on the four datasets using MRQ and MkNN queries.
Compdists Performance Analysis. As summarized in Table 7, SAT, EPT∗, and GNAT per-

form best in terms of distance computations, while BST and FQT perform the worst. The number
of distance computations depends on the selected pivots and the pivot based filtering and vali-
dation techniques used. However, to achieve a fair comparison among the index structures, we
use the same set pivots for all the metric indexes except EPT∗ and BST as explained earlier. Thus,
the reasons behind the distance computation performance observation are that: 1) EPT∗ selects
different pivots for each object in order to improve its pruning, while the other indexes use the
same set of pivots for all objects in the dataset; 2) GNAT is a hybrid index that uses two different
pivot-based filtering techniques, which improves its pruning ability; 3) SAT utilizes its ancestors
for pruning while the others use only the centers at the same level for pruning, which improves
the pruning ability of SAT; 4) BST uses random pivots, which yields relatively weak filtering; and
5) FQT is a unbalanced tree, indicating that relatively few pivots are used for pruning. As stated in
previous work, the pivot-based metric indexes can achieve better performance in terms of distance
computations when compared with compact-partitioning based methods [35]. However, if we use
the same set of pivots and the same pruning and validation techniques, the number of distance

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:28 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

computations across these two categories are similar. A key reason why the distance computation
performance of the pivot-based metric indexes better is that they (e.g., LAESA, EPT∗) can support
unlimited number of pivots, while the pivot number for compact-partitioning methods is limited
by the dataset size (i.e., if little data is left, no further partitions/no additional centers are needed
to build the index).
CPU Performance Analysis. As summarized in Table 7, MVPT, GNAT, and EPT∗ achieve the

best performance in terms of running time, while LAESA and FQT perform the worst. Although
LAESA needs few distance computations, the CPU performance is bad. This is because it needs to
scan the entire table to find the final result without opportunities for bulk pruning. Next, MVPT
and GNAT achieve better CPU performance as they are balanced trees while the others (SAT, BKT,
and FQT) are unbalanced. Although BST employs a balanced tree structure, its CPU cost is high
because its tree is a binary tree and is weak in terms of pruning. Hence, the CPU performance not

BST SAT GNAT FQT EPT* LAESA MVPT BKT

3 5 10 15 20

12

48

3Ru
nn

in
g

Ti
m

e
(m

s)

l

(a) LA

3 5 10 15 20

58

18

88

co
m

pd
is

ts
 (1

04)

l

(b) LA

3 5 10 15 20

2-1

2-4

R
un

ni
ng

 T
im

e
(s

)

l

(c) Words

3 5 10 15 20

52

42

62

co
m

pd
is

ts
 (1

04)

l

(d) Words

3 5 10 15 20

0.6

1

0.2

1.4

R
un

ni
ng

 T
im

e
(s

)

l
(e) Color

3 5 10 15 20

85

65

105

co
m

pd
is

ts
 (1

04)

l
(f) Color

3 5 10 15 20

2-4

2-2

2-5

20

R
un

ni
ng

 T
im

e
(s

)

l

(g) Synthetic

3 5 10 15 20

5

7.5

3

10

co
m

pd
is

ts
 (1

05)

l

(h) Synthetic

Fig. 23. Main-Memory based Metric Index Comparison Using MRQ�eries

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:29

BST SAT GNAT FQT EPT* LAESA MVPT BKT

3 5 10 15 20

1

0.01

35

Ru
nn

in
g

Ti
m

e
(m

s)

l
(a) LA

3 5 10 15 20

0.1

0.001

7

co
m

pd
is

ts
 (1

05)

l

(b) LA

3 5 10 15 20

0.2

0.05

0.75

R
un

ni
ng

 T
im

e
(s

)

l
(c) Words

3 5 10 15 20

4

2

6.25

co
m

pd
is

ts
 (1

05)

l
(d) Words

3 5 10 15 20

0.4

0.6

0.2

0.8

R
un

ni
ng

 T
im

e
(s

)

l
(e) Color

3 5 10 15 20

55

95

15

115

co
m

pd
is

ts
 (1

04)

l
(f) Color

3 5 10 15 20

4

40

0.4

90

Ru
nn

in
g

Ti
m

e
(m

s)

l
(g) Synthetic

3 5 10 15 20
0.1

1

10

0.03

100

co
m

pd
is

ts
 (1

04)

l
(h) Synthetic

Fig. 24. Main-Memory based Metric Index Comparison Using MkNN�eries
Table 7. Main-memory-based Metric Indexes Ranking

Main-memory based Metric Index
Compdists ranking Running time ranking

MRQ MkNN MRQ MkNN

BST 8 8 3 7
SAT 1 1 6 4

LAESA 4 4 7 8
EPT

∗ 2 2 2 4
BKT 5 6 4 3
FQT 6 7 7 6
MVPT 6 5 1 1
GNAT 3 2 4 2

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:30 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

Table 8. Secondary-memory based metric Indexes Ranking

Secondary-memory

based Metric Index

PA ranking Compdists ranking Running time ranking

MRQ MkNN MRQ MkNN MRQ MkNN

LC 1 1 1 5 1 1
DSACLT 7 9 5 8 2 8
M-Tree 9 5 9 9 4 2
MB

+-tree 4 7 10 11 10 11
OmniR-tree 5 4 8 2 7 3
SPB-tree 2 2 6 4 5 7
D-index 3 3 11 10 2 6
EGNAT 11 11 2 7 11 10
PM-tree 9 5 2 3 5 4
CPT 8 7 7 6 9 5

M-index∗ 6 10 4 1 8 9

only depends on the number of distance computations needed during the search, but also on the
index structure.

6.3 Comparison among Disk-based Metric Indexes

We proceed to compare the MRQ and MkNN query performance of all secondary-memory based
metric indexes. These indexes include compact-partitioning based methods (i.e., DSACLT, LC,
MB+-tree, and M-tree), pivot-based methods (i.e., OmniR-tree and SPB-tree), and hybrid methods
(i.e., D-index, EGNAT, PM-tree, CPT, andM-index∗). For the secondary-memory based indexes (the
B+-tree, R-tree, and M-tree, etc.), the tree height depends on the page/node size. We fix the page
size to 4KB. The index height can then be calculated based on the index structure and the data
distribution. However, CPT, the M-tree, the PM-tree, LC, DSACLT, and EGNAT all store the data
objects directly in their index structures. Thus, they need a large page size for high-dimensional
data, and they are configured to use 40KB pages when applied to Color and Synthetic datasets as
default. However, a 40KB page can be regarded as 10 4KB pages for one tree node or cluster. In
addition, the number of pivots is fixed to 5, and all the pivot-based methods and hybrid methods
(except EGNAT) use the same set of pivots for fair comparison. This is because, EGNAT uses the
centers in each tree-level as the pivots for this tree-level due to its design.
Fig. 25 and Fig. 26 show the MRQ and MkNN query performance of the secondary-memory

based metric indexes when applied to the four datasets, respectively. As expected, the query cost
(including PA, compdists, and running time) increases with the growth of : and A due to the result-
ing larger search spaces. Table 8 displays the performance metric (including PA, compdists, and
running time) ranking of the secondary-memory based metric indexes over four datasets using
MRQ and MkNN queries. In the following, we provide observations on the ranking with respect
to three different performance metrics.
I/O Performance Analysis. As summarized in Table 8, LC, the SPB-tree, and the D-index

achieve the best performance in terms of PA, followed by the OmniR-tree, the MB+-tree, the M-
tree, the PM-tree, and CPT, while EGNAT, DSACLT, and the M-index∗ perform the worst. The I/O
cost depends on whether the data is well clustered and on compdists needed during search. The
compact-partitioning based methods can achieve better I/O performance comparedwith the pivot-
based methods and the hybrid methods, because they are able to cluster the data well and because
the pivot-based and hybrid methods need to store additionally large number of pre-computed
distances. As LC is partitioning-based method that can cluster the data well, they achieve good

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:31

100
 !"#$% &'$()* +,-.// &,012/3)(+4* (5% 67108,-.// 5+,-.// +,012/3

 '54,-.//

2 4 8 16 32

2

8

0.5

32

PA
 (1

03)

r (%)
(a) LA

2 4 8 16 32

3

5

1

7

co
m

pd
ist

s (
10

5)
r (%)

(b) LA

2 4 8 16 32

0.01

0.1

1

0.002

7

Ru
nn

in
g

Ti
m

e
(s

)

r (%)

(c) LA

2 4 8 16 32

4

16

1

64

PA
 (1

03)

r (%)

(d) Words

2 4 8 16 32

30

48

12

66
co

m
pd

ist
s (

10
4)

r (%)

(e) Words

2 4 8 16 32

0.5

0.9

1.3

0.1

1.5

Ru
nn

in
g

Ti
m

e
(s

)

r (%)

(f) Words

2 4 8 16 32

50

15

232.5

PA
 (1

04)

r (%)

(g) Color

2 4 8 16 32

75

95

55

105

co
m

pd
ist

s (
10

4)

r (%)

(h) Color

2 4 8 16 32

1

4

0.3

7.2

Ru
nn

in
g

Ti
m

e
(s

)

r (%)

(i) Color

2 4 8 16 32

1

10

0.2

60

PA
 (1

04)

r (%)

(j) Synthetic

2 4 8 16 32

45

85

5

105

co
m

pd
ist

s (
10

4)

r (%)

(k) Synthetic

2 4 8 16 32

0.5

0.005

20

Ru
nn

in
g

Ti
m

e
(s

)

r (%)
(l) Synthetic

Fig. 25. Secondary-memory based Metric Index Comparison Using MRQ �eries

I/O performance. Although the M-tree, the MB+-tree, and DSACLT cluster the data in compact
partitions, their compdists during search are high (i.e., corresponding to low pruning ability). The
SPB-tree, a pivot-based method, uses a space-filling curve to cluster the data and reduce the storage
needed for pre-computed distances. Thus, it achieves good I/O performance.
Compdists Performance Analysis. As summarized in Table 8, the M-index∗, the OmniR-tree,

the PM-tree, and the SPB-tree achieve the best performance in terms of compidsts for MkNN
queries, while LC, EGNAT, the PM-tree, and the M-index∗ perform the best for MRQ queries. Thus,
the secondary-memory based index performance varies slightly across the two types of queries.
This is because the search radius for MkNN queries is very small, while the search radius for MRQ
is large in the experiments. More specifically, LC is constructed and searched in order of data oc-
currences, while the other indexes can search in best-first order to find NNs quickly and reduce
the search space quickly. Hence, LC is better for MRQ with large search radius when compared

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:32 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

100
 !"#$% &'$()* +,-.// &,012/3)(+4* (5% 67108,-.// 5+,-.// +,012/3

 '54,-.//

5 10 20 50 100

70

700

7

7000

PA

k

(a) LA

5 10 20 50 100

0.4

40

0.01

300

co
m

pd
ist

s (
10

3)

k

(b) LA

5 10 20 50 100

0.8

6.4

51.2

0.1

200

Ru
nn

in
g

Ti
m

e
(m

s)

k

(c) LA

5 10 20 50 100

4

16

1

64

PA
 (1

03)

k

(d) Words

5 10 20 50 100

39

9

63
co

m
pd

ist
s (

10
4)

k

(e) Words

5 10 20 50 100

0.7

0.1

1.3

Ru
nn

in
g

Ti
m

e
(s

)

k

(f) Words

5 10 20 50 1000.7

20

PA
 (1

05)

k

(g) Color

5 10 20 50 100

4

8

2

10

co
m

pd
ist

s (
10

5)

k

(h) Color

5 10 20 50 100

2

4

0

5

Ru
nn

in
g

Ti
m

e
(s

)

k

(i) Color

5 10 20 50 100

1

10

100

0.2

300

PA
 (1

03)

k

(j) Synthetic

5 10 20 50 100

7

0.07

100

co
m

pd
ist

s (
10

4)

k

(k) Synthetic

5 10 20 50 100

10

0.3

700

Ru
nn

in
g

Ti
m

e
(m

s)

k

(l) Synthetic

Fig. 26. Secondary-memory based Metric Index Comparison Using MkNN�eries

to MkNN queries with small search radius. Overall, the pivot-based and hybrid methods achieve
better compdists performance than the compact-partitioning methods. This is because we employ
high-quality pivots in pivot-based and hybrid methods, while the pruning ability of centers in
compact-partitioning methods is weak. Also note that the construction cost of LC, a compact-
partitioning method, is$ (=2), enabling it to cluster the data well to trade higher construction cost
for better query performance. However, the construction cost of LC is excessive when the cardinal-
ity of the dataset is very large. As a result, LC is not a practical choice. Next, although the D-index
is a hybrid method that uses pre-computed distances to prune the search space, the hashing par-
titioning makes it hard to control the quality of clusters, which depends on the split parameter d
and the search radius.
Running Time Performance Analysis. The running time depends on PA, compdists, and the

CPU cost of pruning, which is used to evaluate the overall performance. As summarized in Table 8,

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:33

BST SAT GNAT FQT EPT* LAESA MVPT BKT

3 5 7 9

101

102

103

100

104

co
m

p
d

is
ts

 (
1
0

2
)

num

(a) Compdists

3 5 7 9

10-1

100

101

10-2

102

R
u

n
n

in
g
 T

im
e

(m
s)

num

(b) Running Time

Fig. 27. MkNNQ Performance using Main-Memory based Metric Indexes vs num on Synthetic Datasets

100
 !"#$% &'$()* +,-.// &,012/3)(+4* (5% 67108,-.// 5+,-.// +,012/3

 '54,-.//

3 5 7 9

102

103

104

105

101

106

P
A

num

(a) PA

3 5 7 9

102

103

104

105

106

101

107

co
m

p
d

is
ts

num

(b) Compdists

3 5 7 9

100

101

102

103

10-1

104

R
u

n
n

in
g
 T

im
e

(m
s)

num

(c) Running Time

Fig. 28. MkNNQPerformance using Secondary-Memory basedMetric Indexes vs num on Synthetic Datasets

LC and the M-tree perform the best in terms of running time, followed by the OmniR-tree, the PM-
tree, the D-index, the SPB-tree, and DSACLT, while EGNAT, the MB+-tree, the M-index∗, and CPT
perform theworst. Here, LC has good running time performance, because it performswell in terms
of both PA and compdists. The M-index∗ and EGNAT, which have good compdists performance,
exhibit weak running time performance due to high I/O cost during search. Note that, although
the PM-tree achieve better compdists performance and similar PA performance compared with
the M-tree, the M-tree performs slightly better in terms of running time performance due to the
relatively high pruning CPU cost required by the PM-tree. Although the SPB-tree shows a very
good performance on PA, it incurs additional CPU cost (i.e., space filling curve transformation)
during the search, resulting in a relatively high CPU cost.

6.4 Effect of Intrinsic Dimensionality

In order to vary the intrinsic dimensionality (ID), we change the dimensionality of Synthetic dataset
(denoted as num) among 3, 5, 7, and 9. Specifically, num of the 20-dimension values in Synthetic
is generated randomly, while the remaining values are linear combinations of the previous ones.
The corresponding IDs are 3.7, 6.8, 10.5, and 14.1, respectively.

Fig. 27 plots the performance results of M:NN queries using main-memory metric indexes by
varying num, while all other parameters are set to their default values. As can be observed, the
running times of LASEA and EPT* are less sensitive to num. This is because, LASEA and EPT* are
stored as tables, while the others are stored as trees. We need to scan two entire indexes (LASEA
and EPT*) during search for any value of num. However, the performance of the tree structures
(BST, SAT, BKT, FQT, MVPT, and GNAT) degrades as num increases (i.e., more sub-trees are vis-
ited).
Fig. 28 illustrates the performance results of M:NN queries using secondary-memory metric

indexes. The first observation is that pivot-based indexes (i.e., the OmniR-tree, the SPB-tree, and

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:34 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

FQT MVPT

SAT

BSTBKT

LAESA

EPT*

GNAT

(a) Compdists of MRQ

FQT MVPT

SAT

BSTBKT

LAESA

EPT*

GNAT

(b) Running time of MRQ

FQT MVPT

SAT

BSTBKT

EPT*

GNATLAESA

(c) Compdists of M:NN

FQT MVPT

SAT

BSTBKT

LAESA

EPT*

GNAT

(d) Running time of M:NN

Fig. 29. Z-test on In-Memory Metric Indexes

the M-index*) are more sensitive to num when compared with the compact-partitioning methods.
The reason is that, the number of pivots is fixed in our experiments, which limits the pruning
capabilities when the intrinsic dimensionality increases. More pivots are required with the growth
of the intrinsic dimensionality. The second observation is that LC and theMB+-tree are most stable
across all performance metrics as num grows. This is because, (i) LC is a list of clusters, where the
query is performed by sequential scanning of clusters; and (ii) the query using the MB+-tree needs
to verify almost all data objects. The third observation is that the OmniR-tree and the SPB-tree
are the indexes that are most sensitive to num. The reason is that, the performance of the R-tree
(used by the OmniR-tree) and the spatial locality of spacing-filling curve (used by the SPB-tree)
degrades with the growth of the intrinsic dimensionality.

6.5 Significance Evaluation

Here, we report on statistical significance tests of the differences in findings across metric indexes.
Specifically, we run a Z-test with a ?-value of 0.05 to test whether the performance findings (in-
cluding compdists, running time, and PA) for different metric indexes when performingMRQ (with
A = 8%, ; = 5) or M:NNQ (with : = 20, ; = 5) are significantly different. Due to the space limita-
tion, we only report the Z-test on the Words dataset with all parameters being set to their default
values. Fig. 29 shows the results on the in-memory indexes, while Fig. 30 shows the results on the
secondary-memory indexes, where the indexes belonging to different categories are plotted as cir-
cles with different colors, i.e., compact-partitioning based indexes are orange squares, pivot-based
indexes are blue circles, and hybrid indexes are green triangles. Two indexes with insignificantly
different performance (i.e., ?-value smaller than 0.05) are connected with a solid line segment if
they belong to the same category, and they are connected with dotted line segments if they belong
to different categories. The resulting sparse connections between metric indexes indicate that the
performance of a pair of indexes is most often significantly different. In addition, the connections
for compdists are the densest, especially for the pivot-based and hybrid indexes. This is because,
compdists depends on the pivots, and because we use the same set of pivots for the pivot-based
and hybrid indexes.

7 SUMMARY AND RESEARCH DIRECTIONS

We have surveyed metric indexes that aim to accelerate exact similarity search, which can be clas-
sified into three categories, i.e., pivot-based methods, compact-partitioning based methods, and
hybrid methods. Pivot-based methods store pre-computed distances between well selected pivots
and data objects, utilizing one of three types of data structures (table, tree, and secondary-memory
based index). Thus, pivot-based indexes can be further divided into three types according to the
data structure used to store pre-computed distances. Then, compact-partitioning based methods

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:35

D-index

PM-tree

EGNAT

CPT

DSACL
+

MB
+

SPB-tree

M-tree

LC

OmniR-tree

M-index

(a) PA of MRQ

D-index

PM-tree

EGNAT

CPT

DSACL
+

MB
+

SPB-tree

M-tree

LC

OmniR-tree

M-index

(b) Compdists of MRQ

D-index

PM-tree

EGNAT

CPT

DSACL
+

MB
+

SPB-tree

M-tree

LC

OmniR-tree

M-index

(c) Running time of MRQ

D-index

PM-tree

EGNAT

CPT

DSACL
+

MB
+

SPB-tree

M-tree

LC

OmniR-tree

M-index

(d) PA of M:NN

D-index

PM-tree

EGNAT

CPT

DSACL
+

MB
+

SPB-tree

M-tree

LC

OmniR-tree

M-index

(e) Compdists of M:NN

D-index

PM-tree

EGNAT

CPT

DSACL
+

MB
+

SPB-tree

M-tree

LC

OmniR-tree

M-index

(f) Running time of M:NN

Fig. 30. Z-test on Secondary-Memory Metric Indexes

use one of four different types of partitioning techniques (ball partitioning, hyperplane partition-
ing, hash partitioning, and hybrid partitioning) to cluster the data. Thus, compact-partitioning
based methods can be further divided into four types according to the partitioning technique used.
Next, we have covered all pruning and validation techniques based on pivots or centers that are

employed to accelerate similarity search using metric indexes. In addition, we have covered time
and space complexities for metric index construction. Finally, we have reported on experimental
analyses of similarity search using the metric indexes. The resulting findings, as below, enable
users to select the indexes that best support the intended use cases:

1) For small datasets with little need for scalability, the main-memory based metric indexes can
be chosen.
a. For complex distance functions (i.e., the distance computation cost is the dominance CPU

cost), EPT∗, SAT, and GNAT are the best choices, among which SAT has the lowest con-
struction cost, followed by GNAT and EPT∗.

b. For simple distance functions, MVPT, GNAT, and EPT∗ are the best choices, where the
MVPT has lower construction cost than that of GNAT and EPT∗.

2) For large datasets that call for scalability, the disk-based metric indexes can be chosen.
a. For complex distance functions, the PM-tree, the SPB-tree and the OmniR-tree are the

best choices. They achieve good performance in terms of compdists and have relatively
good I/O performance. We not recommend LC due to its huge construction cost for large
datasets.

b. For simple distance functions, the M-tree, the PM-tree and D-index are the best choices.
They achieve relatively good performance in terms of PA and incur little additional CPU
cost for pruning.

Although many metric indexes have been proposed, a number of open issues require further
attention. Possible future directions of metric indexes are summarized below:

1) Search space pruning is based on pivots when using pivot-based methods while it is based
on centers for compact-partitioning based methods. To improve pruning performance, it

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:36 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

is of interest to study how to select high-quality pivots or centers, especially for compact-
partitioning based methods.

2) To further improve the performance of metric indexes, intelligent metric indexing can be
considered that exploits machine learning techniques. In addition, distributed platforms can
be leveraged, and new approximation optimizations can be pursued.

3) As metric spaces only utilize the triangle inequality to accelerate search, possible directions
for further work are how to improve the search efficiency by integrating specific character-
istics of metric data and how to achieve high search efficiency if the triangle inequality is
not fully satisfied by desirable distance functions.

4) As expectations of privacy increase, privacy concerns exist wherever personally identifiable
information is collected, stored, and used. Hence, the last but not the least direction for future
work is to offer privacy protection in metric indexing.

ACKNOWLEDGMENTS

This workwas supported in part by the NSFC under Grants No. (62102351, 62025206and 61972338),
the Zhejiang Provincial Natural Science Foundation under Grant No. LR21F020005 and the DIREC
center project. Yunjun Gao is the corresponding author of the work.

REFERENCES

[1] Charu C. Aggarwal and Philip S. Yu. 2001. Outlier detection for high dimensional data. In SIGMOD. 37–46.
[2] Jurandy Almeida, Ricardo da S Torres, and Neucimar J Leite. 2010. BP-tree: An efficient index for similarity search

in high-dimensional metric spaces. In CIKM. 1365–1368.
[3] Jurandy Almeida, Eduardo Valle, Ricardo da S Torres, and Neucimar J Leite. 2010. DAHC-tree: An effective index

for approximate search in high-dimensional metric spaces. Journal of Information and Data Management 1, 3 (2010),
375–390.

[4] Giuseppe Amato, Claudio Gennaro, and Pasquale Savino. 2014. MI-File: Using inverted files for scalable approximate
similarity search. Multimedia Tools and Applications 71, 3 (2014), 1333–1362.

[5] Laurent Amsaleg, Oussama Chelly, Michael E Houle, Ken-Ichi Kawarabayashi, Miloš Radovanović, andWeeris Treer-
atanajaru. 2019. Intrinsic dimensionality estimation within tight localities. In SDM. 181–189.

[6] Fabrizio Angiulli and Fabio Fassetti. 2012. Indexing uncertain data in general metric spaces. IEEE Transactions on

Knowledge and Data Engineering 24, 9 (2012), 1640–1657.
[7] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient exact set-similarity joins. In VLDB. 918–929.
[8] Luis G Ares, Nieves R Brisaboa, María F Esteller, Oscar Pedreira, and Angeles S Places. 2009. Optimal pivots to

minimize the index size for metric access methods. In SISAP. 74–80.
[9] Luis G Ares, Nieves R Brisaboa, Alberto Ordóñez Pereira, and Oscar Pedreira. 2012. Efficient similarity search in

metric spaces with cluster reduction. In SISAP. 70–84.
[10] Lior Aronovich and Israel Spiegler. 2007. CM-tree: A dynamic clustered index for similarity search in metric

databases. Data & Knowledge Engineering 63, 3 (2007), 919–946.
[11] Vassilis Athitsos, Jonathan Alon, Stan Sclaroff, and George Kollios. 2007. Boostmap: An embedding method for

efficient nearest neighbor retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1 (2007), 89–
104.

[12] Vassilis Athitsos, Michalis Potamias, Panagiotis Papapetrou, and George Kollios. 2008. Nearest neighbor retrieval
using distance-based hashing. In ICDE. 327–336.

[13] Ricardo Baeza-Yates. 1997. Searching: An algorithmic tour. Encyclopedia of Computer Science and Technology 37
(1997), 331–359.

[14] Ricardo Baeza-Yates, Walter Cunto, Udi Manber, and Sun Wu. 1994. Proximity matching using fixed-queries trees.
In CPM. 198–212.

[15] Marcelo Barroso, Nora Reyes, and Rodrigo Paredes. 2010. Enlarging nodes to improve dynamic spatial approximation
trees. In SISAP. 41–48.

[16] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. 1990. The R∗-tree: An efficient and
robust access method for points and rectangles. In SIGMOD Record, Vol. 19. 322–331.

[17] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9
(1975), 509–517.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:37

[18] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999. When is “nearest neighbor”meaningful?.
In ICDT. 217–235.

[19] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover trees for nearest neighbor. In ICML. 97–104.
[20] Tolga Bozkaya and Meral Ozsoyoglu. 1997. Distance-based indexing for high-dimensional metric spaces. In SIGMOD.

357–368.
[21] Tolga Bozkaya and Meral Ozsoyoglu. 1999. Indexing large metric spaces for similarity search queries. ACM Trans-

actions on Database Systems 24, 3 (1999), 361–404.
[22] Svein Erik Bratsberg and Magnus Lie Hetland. 2012. Dynamic optimization of queries in pivot-based indexing.

Multimedia Tools and Applications 60, 2 (2012), 261–275.
[23] Sergey Brin. 1995. Near neighbor search in large metric spaces. (1995), 574–584.
[24] Luis Britos, A Marcela Printista, and Nora Reyes. 2012. DSACL+-tree: A dynamic data structure for similarity search

in secondary memory. In SISAP. 116–131.
[25] Walter A. Burkhard and Robert M. Keller. 1973. Some approaches to best-match file searching. Commun. ACM 16, 4

(1973), 230–236.
[26] Benjamin Bustos, Gonzalo Navarro, and Edgar Chávez. 2003. Pivot selection techniques for proximity searching in

metric spaces. Pattern Recognition Letters 24, 14 (2003), 2357–2366.
[27] Benjamin Bustos and Tomáš Skopal. 2006. Dynamic similarity search in multi-metric spaces. InMIR. 137–146.
[28] Domenico Cantone, Alfredo Ferro, Alfredo Pulvirenti, DiegoReforgiato Recupero, andDennis Shasha. 2005. Antipole

tree indexing to support range search and k-nearest neighbor search inmetric spaces. IEEETransactions onKnowledge
and Data Engineering 17, 4 (2005), 535–550.

[29] Caio César Mori Carélo, Ives Rene Venturini Pola, Ricardo Rodrigues Ciferri, Agma Juci Machado Traina, Caetano
Traina Jr, and Cristina Dutra de Aguiar Ciferri. 2011. Slicing the metric space to provide quick indexing of complex
data in the main memory. Information Systems 36, 1 (2011), 79–98.

[30] Caio CÚsar Mori CarÚlo, Ives Renŕ Venturini Pola, Ricardo Rodrigues Ciferri, Agma Juci Machado Traina, Cristina
Dutra de Aguiar Ciferri, et al. 2009. The Onion-Tree: Quick indexing of complex data in the main memory. In ADBIS.
235–252.

[31] Edgar Chávez, Karina Figueroa, and Gonzalo Navarro. 2008. Effective proximity retrieval by ordering permutations.
IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 9 (2008), 1647–1658.

[32] Edgar Chávez, Verónica Luduena, Nora Reyes, and Patricia Roggero. 2016. Faster proximity searching with the distal
SAT. Information Systems 59 (2016), 15–47.

[33] Edgar Chávez and Gonzalo Navarro. 2000. An effective clustering algorithm to index high dimensional metric spaces.
In SPIRE. 75–86.

[34] Edgar Chávez and Gonzalo Navarro. 2005. A compact space decomposition for effective metric indexing. Pattern
Recognition Letters 26, 9 (2005), 1363–1376.

[35] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroquín. 2001. Searching in metric spaces.
ACM Computing Survey 33, 3 (2001), 273–321.

[36] Lu Chen, Yunjun Gao, Xinhan Li, Christian S Jensen, and Gang Chen. 2015. Efficient metric indexing for similarity
search. In ICDE. 591–602.

[37] Lu Chen, Yunjun Gao, Xinhan Li, Christian S Jensen, and Gang Chen. 2015. Efficient metric indexing for similarity
search and similarity joins. IEEE Transactions on Knowledge and Data Engineering 29, 3 (2015), 556–571.

[38] Lu Chen, Yunjun Gao, Xinhan Li, Christian S Jensen, Gang Chen, and Baihua Zheng. 2015. Indexingmetric uncertain
data for range queries. In SIGMOD. 951–965.

[39] Lu Chen, Yunjun Gao, Baihua Zheng, Christian S Jensen, Hanyu Yang, and Keyu Yang. 2017. Pivot-based metric
indexing. PVLDB 10, 10 (2017), 1058–1069.

[40] Lu Chen, Yunjun Gao, Aoxiao Zhong, Christian S Jensen, Gang Chen, and Baihua Zheng. 2017. Indexing metric
uncertain data for range queries and range joins. The VLDB Journal 26, 4 (2017), 585–610.

[41] Kenneth Ward Church. 2017. Word2Vec. Natural Language Engineering 23, 1 (2017), 155–162.
[42] Paolo Ciaccia and Marco Patella. 1998. Bulk loading the M-tree. In ADC. 15–26.
[43] Paolo Ciaccia and Marco Patella. 2000. The M2-tree: Processing Complex Multi-Feature Queries with Just One Index.

In DELOS workshop.
[44] Paolo Ciaccia and Marco Patella. 2002. Searching in metric spaces with user-defined and approximate distances.

ACM Transactions on Database Systems 27, 4 (2002), 398–437.
[45] Paolo Ciaccia and Marco Patella. 2017. The power of distance distributions: Cost models and scheduling policies for

quality controlled similarity queries. In SISAP. 3–16.
[46] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An efficient access method for similarity search in

metric spaces. In VLDB. 426–435.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:38 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

[47] Kenneth L Clarkson et al. 2006. Nearest-neighbor searching and metric space dimensions. Nearest-neighbor methods

for learning and vision: theory and practice (2006), 15–59.
[48] Richard Connor. 2016. Reference point hyperplane trees. In SISAP. 65–78.
[49] Richard Connor, Franco Alberto Cardillo, Lucia Vadicamo, and Fausto Rabitti. 2016. Hilbert exclusion: improved

metric search through finite isometric embeddings. ACM Transactions on Information Systems 35, 3 (2016), 1–27.
[50] Richard Connor and Alan Dearle. 2018. Querying metric spaces with bit operations. In SISAP. 33–46.
[51] Richard Connor, Lucia Vadicamo, Franco Alberto Cardillo, and Fausto Rabitti. 2019. Supermetric search. Information

Systems 80 (2019), 108–123.
[52] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Commun. ACM

51, 1 (2008), 107–113.
[53] FKHA Dehne and Hartmut Noltemeier. 1987. Voronoi trees and clustering problems. Information Systems 12, 2 (1987),

171–175.
[54] Frank Dehne and Hartmut Noltemeier. 1988. Voronoi trees and clustering problems. In Syntactic and structural

pattern recognition. 185–194.
[55] Vlastislav Dohnal. 2004. An access structure for similarity search in metric spaces. In EDBT. 133–143.
[56] Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and Pavel Zezula. 2003. D-index: Distance searching index

for metric data sets. Multimedia Tools and Applications 21, 1 (2003), 9–33.
[57] Vlastislav Dohnal, Claudio Gennaro, and Pavel Zezula. 2003. Similarity join in metric spaces using eD-index. In

DEXA. 484–493.
[58] Karina Figueroa, Edgar Chávez, Gonzalo Navarro, and Rodrigo Paredes. 2006. On the least cost for proximity search-

ing in metric spaces. In WEA. 279–290.
[59] Karina Figueroa, Edgar Chávez, Gonzalo Navarro, and Rodrigo Paredes. 2010. Speeding up spatial approximation

search in metric spaces. Journal of Experimental Algorithmics 14, 6 (2010), 3–6.
[60] Karina Figueroa and Nora Reyes. 2019. Permutation’s signatures for proximity searching in metric spaces. In SISAP.

151–159.
[61] Maximilian Franzke, Tobias Emrich, Andreas Züfle, and Matthias Renz. 2016. Indexing multi-metric data. In ICDE.

1122–1133.
[62] Kimmo Fredriksson. 2005. Exploiting distance coherence to speed up range queries in metric indexes. Information

processing letters 95, 1 (2005), 287–292.
[63] Kimmo Fredriksson. 2007. Engineering efficient metric indexes. Pattern Recognition Letters 28, 1 (2007), 75–84.
[64] Ada Wai-chee Fu, Polly Mei-shuen Chan, Yin-Ling Cheung, and Yiu Sang Moon. 2000. Dynamic vp-tree indexing

for n-nearest neighbor search given pair-wise distances. The VLDB Journal 9, 2 (2000), 154–173.
[65] Jonathan Goldstein and Raghu Ramakrishnan. 2000. Contrast plots and p-sphere trees: Space vs. time in nearest

neighbour searches. In VLDB. 429–440.
[66] Magnus Lie Hetland. 2009. The basic principles of metric indexing. In Swarm intelligence for multi-objective problems

in data mining. 199–232.
[67] Magnus Lie Hetland. 2015. Ptolemaic indexing. Journal of Computational Geometry 6, 1 (2015), 165–184.
[68] Magnus Lie Hetland, Tomáš Skopal, Jakub Lokoč, and Christian Beecks. 2013. Ptolemaic access methods: Challenging

the reign of the metric space model. Information Systems 38, 7 (2013), 989–1006.
[69] Gisli R Hjaltason and Hanan Samet. 2003. Index-driven similarity search in metric spaces. ACM Transactions on

Database Systems 28, 4 (2003), 517–580.
[70] Michael E Houle. 2013. Dimensionality, discriminability, density and distance distributions. In IEEE 13th International

Conference on Data Mining Workshops. 468–473.
[71] Michael E Houle. 2017. Local intrinsic dimensionality I: An extreme-value-theoretic foundation for similarity appli-

cations. In SISAP. 64–79.
[72] Michael E Houle. 2017. Local intrinsic dimensionality II: Multivariate analysis and distributional support. In SISAP.

80–95.
[73] Michael E Houle. 2020. Local intrinsic dimensionality III: Density and similarity. In SISAP. 248–260.
[74] Michael E Houle and Michael Nett. 2013. Rank cover trees for nearest neighbor search. In SISAP. 16–29.
[75] Masahiro Ishikawa, Hanxiong Chen, Kazutaka Furuse, Jeffrey Xu Yu, and Nobuo Ohbo. 2000. MB+ tree: A dynami-

cally updatable metric index for similarity search. In WAIM. 356–374.
[76] Hosagrahar V Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang. 2005. iDistance: An adaptive B+-tree

based indexing method for nearest neighbor search. ACM Transactions on Database Systems 30, 2 (2005), 364–397.
[77] Shichao Jin, Okhee Kim, andWenya Feng. 2013. M- -tree: A double hierarchical metric index with overlap reduction.

In International Conference on Computational Science and Its Applications. 574–589.
[78] Iraj Kalantari and Gerard McDonald. 1983. A data structure and an algorithm for the nearest point problem. IEEE

Transactions on Software Engineering 9, 5 (1983), 631–634.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:39

[79] Jongik Kim and Hongrae Lee. 2012. Efficient exact similarity searches using multiple token orderings. In ICDE.
822–833.

[80] Zineddine Kouahla. 2011. Exploring intersection trees for indexing metric spaces. In CIIA.
[81] Elizaveta Levina and Peter Bickel. 2001. The earth mover’s distance is the mallows distance: Some insights from

statistics. In ICCV. 251–256.
[82] King-Ip Lin, Hosagrahar V Jagadish, and Christos Faloutsos. 1994. The TV-tree: An index structure for high-

dimensional data. The VLDB Journal 3, 4 (1994), 517–542.
[83] Bing Liu, Wei Wang, Heping Yan, Baile Shi, et al. 2006. A bottom-up distance-based index tree for metric space. In

2006 2nd International Conference on Information & Communication Technologies, Vol. 2. 2929–2934.
[84] Jakub Lokoč, Juraj Moško, Přemysl Čech, and Tomáš Skopal. 2014. On indexing metric spaces using cut-regions.

Information Systems 43 (2014), 1–19.
[85] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. 2014. Approximate nearest neighbor

algorithm based on navigable small world graphs. Information Systems 45 (2014), 61–68.
[86] Rui Mao, Willard L Miranker, and Daniel P Miranker. 2012. Pivot selection: Dimension reduction for distance-based

indexing. Journal of Discrete Algorithms 13 (2012), 32–46.
[87] Mauricio Marin, Roberto Uribe, and Ricardo Barrientos. 2007. Searching and updating metric space databases using

the parallel EGNAT. In International Conference on Computational Science. 229–236.
[88] José Martinez and Zineddine Kouahla. 2012. Indexing metric spaces with nested forests. In DEXA. 458–465.
[89] Vladimir Mic, David Novak, and Pavel Zezula. 2017. Sketches with unbalanced bits for similarity search. In SISAP.

53–63.
[90] Luisa Micó, José Oncina, and Rafael C Carrasco. 1996. A fast branch & bound nearest neighbour classifier in metric

spaces. Pattern Recognition Letters 17, 7 (1996), 731–739.
[91] María Luisa Micó, José Oncina, and Enrique Vidal. 1994. A new version of the nearest-neighbour approximating and

eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern Recognition
Letters 15, 1 (1994), 9–17.

[92] Hisham Mohamed and Stéphane Marchand-Maillet. 2015. Quantized ranking for permutation-based indexing. In-
formation Systems 52 (2015), 163–175.

[93] AnirbanMondal, Ayaan Kakkar, Nilesh Padhariya, and MukeshMohania. 2021. Efficient indexing of top-: entities in
systems of engagement with extensions for geo-tagged entities. Data Science and Engineering 6, 4 (2021), 411–433.

[94] Juraj Moško, Jakub Lokoč, and Tomáš Skopal. 2011. Clustered pivot tables for I/O-optimized similarity search. In
SISAP. 17–24.

[95] Bilegsaikhan Naidan, Leonid Boytsov, and Eric Nyberg. 2015. Permutation search methods are efficient, yet faster
search is possible. PVLDB 8, 12 (2015), 1618–1629.

[96] Alexandros Nanopoulos, Yannis Theodoridis, and Yannis Manolopoulos. 2001. C2P: Clustering based on closest pairs.
In VLDB. 331–340.

[97] Gonzalo Navarro. 1999. Searching in metric spaces by spatial approximation. In SPIRE. 141–148.
[98] Gonzalo Navarro. 2002. Searching in metric spaces by spatial approximation. VLDB Journal 11, 1 (2002), 28–46.
[99] Gonzalo Navarro, Rodrigo Paredes, Nora Reyes, and Cristian Bustos. 2017. An empirical evaluation of intrinsic

dimension estimators. Information Systems 64 (2017), 206–218.
[100] Gonzalo Navarro and Nora Reyes. 2001. Dynamic spatial approximation trees. In SCCC. 213–222.
[101] Gonzalo Navarro and Nora Reyes. 2002. Fully dynamic spatial approximation trees. In SPIRE. 254–270.
[102] Gonzalo Navarro and Nora Reyes. 2003. Improved deletions in dynamic spatial approximation trees. In SCCC. 13–22.
[103] Gonzalo Navarro and Nora Reyes. 2009. Dynamic spatial approximation trees for massive data. In SISAP. 81–88.
[104] Gonzalo Navarro and Nora Reyes. 2016. New dynamic metric indices for secondary memory. Information Systems

59 (2016), 48–78.
[105] Gonzalo Navarro and Roberto Uribe-Paredes. 2011. Fully dynamic metric access methods based on hyperplane

partitioning. Information Systems 36, 4 (2011), 734–747.
[106] Hartmut Noltemeier, Knut Verbarg, and Christian Zirkelbach. 1992. Monotonous bisector∗ Trees—A tool for efficient

partitioning of complex scenes of geometric objects. Data Structures and Efficient Algorithms (1992), 186–203.
[107] David Novak, Michal Batko, and Pavel Zezula. 2011. Metric index: An efficient and scalable solution for precise and

approximate similarity search. Information Systems 36, 4 (2011), 721–733.
[108] David Novak and Pavel Zezula. 2016. PPP-codes for large-scale similarity searching. In Transactions on Large-Scale

Data-and Knowledge-Centered Systems XXIV. 61–87.
[109] Alexander Ocsa, Carlos Bedregal, and Ernesto Cuadros-Vargas. 2007. A new approach for similarity queries using

neighborhood graphs. In Brazilian Symposium on Databases. 131–142.
[110] Rodrigo Paredes and Edgar Chávez. 2005. Using the k-nearest neighbor graph for proximity searching in metric

spaces. In SPIRE. 127–138.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

1:40 Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Christian S. Jensen

[111] Oscar Pedreira and Nieves R Brisaboa. 2007. Spatial selection of sparse pivots for similarity search in metric spaces.
In SOFSEM. 434–445.

[112] Vladimir Pestov. 2012. Indexability, concentration, and VC theory. Journal of Discrete Algorithms 13 (2012), 2–18.
[113] Ives Rene Venturini Pola, Caetano Traina, and Agma Juci Machado Traina. 2007. The MM-tree: A memory-based

metric tree without overlap between nodes. In ADBI. 157–171.
[114] Jianbin Qin, Wei Wang, Yifei Lu, Chuan Xiao, and Xuemin Lin. 2011. Efficient exact edit similarity query processing

with the asymmetric signature scheme. In SIGMOD. 1033–1044.
[115] DA Rachkovskij. 2017. Distance-based index structures for fast similarity search. Cybernetics and Systems Analysis

53, 4 (2017), 636–658.
[116] Humberto Razente and Maria Camila Nardini Barioni. 2019. Storing data once in M-tree and PM-tree. In SISAP.

18–31.
[117] Humberto Razente, Régis Michel Santos Sousa, and Maria Camila Nardini Barioni. 2018. Metric indexing assisted by

short-term memories. In SISAP. 107–121.
[118] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. 2000. The earth mover’s distance as a metric for image retrieval.

International Journal of Computer Vision 40, 2 (2000), 99–121.
[119] Enrique Vidal Ruiz. 1986. An algorithm for finding nearest neighbours in (approximately) constant average time.

Pattern Recognition Letters 4, 3 (1986), 145–157.
[120] Guillermo Ruiz, Francisco Santoyo, Edgar Chávez, Karina Figueroa, and Eric Sadit Tellez. 2013. Extreme pivots for

faster metric indexes. In SISAP. 115–126.
[121] Khalil Al Ruqeishi and Michal Konečnỳ. 2015. Regrouping metric-space search index for search engine size adapta-

tion. In SISAP. 271–282.
[122] Uri Shaft and Raghu Ramakrishnan. 2006. Theory of nearest neighbors indexability. ACM Transactions on Database

Systems 31, 3 (2006), 814–838.
[123] Larissa Capobianco Shimomura and Daniel S. Kaster. 2019. HGraph: A connected-partition approach to proximity

graphs for similarity search. In DEXA. 106–121.
[124] Larissa Capobianco Shimomura, Marcos R. Vieira, and Daniel S. Kaster. 2018. Performance analysis of graph-based

methods for exact and approximate similarity search in metric spaces. In SISAP. 18–32.
[125] Eliezer Silva, Thiago Teixeira, George Teodoro, and Eduardo Valle. 2014. Large-scale distributed locality-sensitive

hashing for general metric data. In SISAP. 82–93.
[126] Tomáš Skopal and David Hoksza. 2007. Improving the performance of M-tree family by nearest neighbor graphs. In

ADBIS. 172–188.
[127] Tomáš Skopal and Jakub Lokoč. 2008. NM-tree: Flexible approximate similarity search in metric and non-metric

spaces. In DEXA. 312–325.
[128] Tomáš Skopal and Jakub Lokoč. 2009. New dynamic construction techniques for M-tree. Journal of Discrete Algo-

rithms 7, 1 (2009), 62–77.
[129] Tomš Skopal, Jaroslav Pokornỳ, Michal Krátkỳ, and Václav Snášel. 2003. Revisiting M-tree building principles. In

ADBIS. 148–162.
[130] Tomás Skopal, Jaroslav Pokornỳ, and Vaclav Snasel. 2004. PM-tree: Pivoting metric tree for similarity search in

multimedia databases. In ADBIS. 803–815.
[131] Michael Stonebraker and Uĝur Çetintemel. 2018. "One size fits all": An idea whose time has come and gone. In

Making Databases Work: the Pragmatic Wisdom of Michael Stonebraker. 441–462.
[132] Michael Stonebraker, Samuel Madden, Daniel J Abadi, Stavros Harizopoulos, Nabil Hachem, and Pat Helland. 2018.

The end of an architectural era: It’s time for a complete rewrite. In Making Databases Work: the Pragmatic Wisdom

of Michael Stonebraker. 463–489.
[133] Richard C Tillquist and Manuel E Lladser. 2019. Low-dimensional representation of genomic sequences. Journal of

Mathematical Biology 79, 1 (2019), 1–29.
[134] Ken Tokoro, Kazuaki Yamaguchi, and Sumio Masuda. 2006. Improvements of TLAESA nearest neighbour search

algorithm and extension to approximation search. In ACSC. 77–83.
[135] Caetano Traina, Agma Traina, Bernhard Seeger, and Christos Faloutsos. 2000. Slim-trees: High performance metric

trees minimizing overlap between nodes. In ICDE. 51–65.
[136] Caetano Traina, Agma JM Traina, Marcos R Vieira, and Christos Faloutsos. 2007. The omni-family of all-purpose

access methods: A simple and effective way to make similarity search more efficient. The VLDB Journal 16, 4 (2007),
483–505.

[137] Caetano Traina Jr, Agma Traina, Roberto Santos Filho, and Christos Faloutsos. 2002. How to improve the pruning
ability of dynamic metric access methods. In CIKM. 219–226.

[138] Jeffrey K Uhlmann. 1991. Metric trees. Applied Mathematics Letters 4, 5 (1991), 61–62.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

Indexing Metric Spaces for Exact Similarity Search 1:41

[139] Jeffrey K Uhlmann. 1991. Satisfying general proximity/similarity queries with metric trees. Inform. Process. Lett. 40,
4 (1991), 175–179.

[140] Lucia Vadicamo, Richard Connor, Fabrizio Falchi, Claudio Gennaro, and Fausto Rabitti. 2019. Splx-perm: A novel
permutation-based representation for approximate metric search. In SISAP. 40–48.

[141] Reinier H Van Leuken and Remco C Veltkamp. 2011. Selecting vantage objects for similarity indexing. ACM Trans-

actions on Multimedia Computing, Communications, and Applications 7, 3 (2011), 1–18.
[142] Marcos R Vieira, Caetano Traina Jr, Fabio JT Chino, and Agma JM Traina. 2004. DBM-tree: A dynamic metric access

method sensitive to local density data. In SBBD. 163–177.
[143] Marcos R Vieira, Caetano Traina Jr, Fabio JT Chino, and Agma JM Traina. 2010. DBM-tree: A dynamic metric access

method sensitive to local density data. Journal of Information and Data Management 1, 1 (2010), 111–111.
[144] Juan Miguel Vilar. 1995. Reducing the overhead of the AESA metric-space nearest neighbour searching algorithm.

Inform. Process. Lett. 56, 5 (1995), 265–271.
[145] Ilya Volnyansky and Vladimir Pestov. 2009. Curse of dimensionality in pivot based indexes. In SISAP. 39–46.
[146] RogerWeber,Hans-Jörg Schek, and Stephen Blott. 1998. A quantitative analysis and performance study for similarity-

search methods in high-dimensional spaces. In VLDB. 194–205.
[147] Xiaojing Xie, Jihong Guan, and Shuigeng Zhou. 2015. Similarity evaluation of DNA sequences based on frequent

patterns and entropy. In BMC Genomics, Vol. 16. 1–10.
[148] Yuki Yamagishi, Kazuo Aoyama, Kazumi Saito, and Tetsuo Ikeda. 2018. Pivot generation algorithm with a complete

binary tree for efficient exact similarity search. IEICE Transactions on Information and Systems 101, 1 (2018), 142–151.
[149] Peter N Yianilos. 1993. Data structures and algorithms for nearest neighbor. In SODA, Vol. 66. 311.
[150] Peter N Yianilos. 1999. Excluded middle vantage point forests for nearest neighbor search. In ALENEX.
[151] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. 2006. Similarity search: The metric space ap-

proach. Springer Science & Business Media.
[152] Pavel Zezula, Pasquale Savino, Giuseppe Amato, and Fausto Rabitti. 1998. Approximate similarity retrieval with

M-trees. The VLDB Journal 7, 4 (1998), 275–293.
[153] Ming Zhang and Reda Alhajj. 2010. Effectiveness of NAQ-tree as index structure for similarity search in high-

dimensional metric space. Knowledge and Information Systems 22, 1 (2010), 1–26.
[154] Zhenjie Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, and Divesh Srivastava. 2010. Bed-tree: An all-purpose index

structure for string similarity search based on edit distance. In SIGMOD. 915–926.
[155] Xiangmin Zhou, Guoren Wang, Jeffrey Xu Yu, and Ge Yu. 2003. M+-tree: A new dynamical multidimensional index

for metric spaces. In ADC. 161–168.
[156] Xiangmin Zhou, Guoren Wang, Xiaofang Zhou, and Ge Yu. 2005. BM+-tree: A hyperplane-based index method for

high-dimensional metric spaces. In DASFAA. 398–409.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 20XX.

	Abstract
	1 Introduction
	2 BASIC CONCEPTS
	2.1 Metric Space
	2.2 Similarity Queries in Metric Spaces

	3 DETAILED CATEGORIZATION OF METRIC INDEXES
	3.1 Categorization of Metric Indexes for Exact Metric Similarity Queries
	3.2 Categorization of Compact-Partitioning based Metric Indexes
	3.3 Categorization Pivot-based Metric Indexes

	4 TECHNIQUES FOR METRIC INDEXING AND QUERYING
	4.1 Partitioning Methods
	4.2 Pivot Mapping
	4.3 Pivot-based Filtering and Validation

	5 METRIC INDEXES FOR EXACT SIMILARITY SEARCH
	5.1 The GHT Family
	5.2 BST Family
	5.3 SAT Family
	5.4 M-tree Family
	5.5 LC Family
	5.6 D-index Family
	5.7 AESA Family
	5.8 EPT
	5.9 CPT
	5.10 BKT
	5.11 FQ Family
	5.12 VPT Family
	5.13 Omni-family
	5.14 M-index
	5.15 SPB-tree

	6 EXPERIMENTAL COMPARISION AMONG METRIC INDEXES
	6.1 Experimental Settings
	6.2 Comparison among Main-memory based Metric Indexes
	6.3 Comparison among Disk-based Metric Indexes
	6.4 Effect of Intrinsic Dimensionality
	6.5 Significance Evaluation

	7 SUMMARY AND RESEARCH DIRECTIONS
	References

