
6

Cache Abstraction for Data Race Detection in

Heterogeneous Systems with Non-coherent Accelerators

MAY YOUNG, ALAN J. HU, and GUY G. F. LEMIEUX, University of British Columbia, Canada

Embedded systems are becoming increasingly complex and heterogeneous, featuring multiple processor cores

(which might themselves be heterogeneous) as well as specialized hardware accelerators, all accessing shared

memory. Many accelerators are non-coherent (i.e., do not support hardware cache coherence) because it re-

duces hardware complexity, cost, and power consumption, while potentially offering superior performance.

However, the disadvantage of non-coherence is that the software must explicitly synchronize between accel-

erators and processors, and this synchronization is notoriously error-prone.

We propose an analysis technique to find data races in software for heterogeneous systems that include

non-coherent accelerators. Our approach builds on classical results for data race detection, but the challenge

turns out to be analyzing cache behavior rather than the behavior of the non-coherent accelerators. Accord-

ingly, our central contribution is a novel, sound (data-race-preserving) abstraction of cache behavior. We

prove our abstraction sound, and then to demonstrate the precision of our abstraction, we implement it in a

simple dynamic race detector for a system with a processor and a massively parallel accelerator provided by

a commercial FPGA-based accelerator vendor. On eleven software examples provided by the vendor, the tool

had zero false positives and was able to detect previously unknown data races in two of the 11 examples.

CCS Concepts: • Software and its engineering → Software verification and validation; • Computer

systems organization→ Heterogeneous (hybrid) systems; Embedded software;

Additional Key Words and Phrases: Data race, hardware accelerator, memory coherence, caching

ACM Reference format:

May Young, Alan J. Hu, and Guy G. F. Lemieux. 2022. Cache Abstraction for Data Race Detection in Hetero-

geneous Systems with Non-coherent Accelerators. ACM Trans. Embedd. Comput. Syst. 22, 1, Article 6 (Decem-

ber 2022), 25 pages.

https://doi.org/10.1145/3535457

1 INTRODUCTION

Embedded systems are becoming increasingly complex and heterogeneous, with multiple proces-
sor cores and diverse accelerators [10, 25]. Common accelerators include GPUs, TPUs, specialized
processors for software-defined networking, and FPGAs to allow acceleration of arbitrary user-
specified computations. With the rise of open ISAs like RISC-V and agile hardware development,

This work was supported by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada

(NSERC).

Authors’ addresses: M. Young and A. J. Hu, Department of Computer Science, University of British Columbia, Canada;

emails: {youngmay, ajh}@cs.ubc.ca; G. G. F. Lemieux, Department of Electrical and Computer Engineering, University of

British Columbia, Canada; email: lemieux@ece.ubc.ca.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).

1539-9087/2022/12-ART6

https://doi.org/10.1145/3535457

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

https://orcid.org/0000-0001-5980-2233
https://orcid.org/0000-0002-4276-0169
https://orcid.org/0000-0002-7924-8695
https://doi.org/10.1145/3535457
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3535457
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3535457&domain=pdf&date_stamp=2022-12-13

6:2 M. Young et al.

even processor cores will increasingly be customized and heterogeneous, with custom instructions
for specific computations.

Accelerators and processors commonly communicate via shared memory, creating the prob-
lem of memory coherence: how to prevent processors and accelerators from accessing stale data.
One solution is to require all processors and all accelerators to support a common, hardware
cache-coherence protocol. Non-coherent accelerators, however, offer several advantages: simpler
hardware, lower cost, and lower power consumption. Non-coherent accelerators can also achieve
higher performance (e.g., up to 3x [9]) by performing coherence actions only when necessary and
by using the higher throughput of large DMA bursts. Furthermore, even if we wish to support
hardware cache coherence in an accelerator, the computational patterns within the accelerator
can be very different from those in CPUs, necessitating different cache coherence protocols [22],
and creating the possibility of mutually non-coherent coherence domains.

Thus, the burden of coherence shifts to software, which must insert cache flushing and synchro-
nization instructions into application programs (or into library code that tries to hide this com-
plexity). Too much flushing or synchronization results in poor performance. Too little or incorrect
synchronization results in bugs, often notoriously hard-to-find, irreproducible, non-deterministic,
concurrency bugs.

Data races are a major source of concurrency bugs. A data race occurs when there are two (or
more) operations affecting a memory location, of which at least one is a write, whose order of
occurrence isn’t fixed by the program [3]. The importance of data race detection has spawned an
extensive and highly impactful body of research on their detection (briefly surveyed in Section 5),
and manifested in widely deployed tools like Thread Sanitizer [20] and TSVD [12].

All prior work, however, has neglected the problem of data races arising from the interaction of
caching and non-coherent memory accesses. This omission is understandable — the whole point of
cache coherence is to maintain the abstraction of an atomic shared memory, which allows software
(and data race analysis of software) to ignore caching altogether. Unfortunately, heterogeneous sys-
tems mixing coherent and non-coherent memory accesses break this abstraction, and this problem
has become important with the proliferation of non-coherent accelerators. For example, GPUs are
generally non-coherent with host CPUs and require that caching be disabled or explicit coherence
operations be performed if an application requires a memory operation to be visible across all
processors and accelerators [22].

Although the importance of the problem is due to non-coherent accelerators, the root cause of
the problem is actually the caches. Uncached memory accesses behave exactly as existing data race
theory expects: as explicit reads, writes, and synchronizations through a shared atomic memory.
Even (non-cached) accesses to a local memory shared among parts of an accelerator can be handled
this way. The problem with caching is that caches can generate reads or writes to shared memory
at unpredictable times, due to cache line allocations, evictions, pre-fetching, writebacks, etc. To em-
ploy existing data race analyses, one could conceivably emulate the caches using software threads
that model all possible behaviors of the specific caches in a heterogeneous system, and then ana-
lyze the resulting software combination. However, such an ad hoc approach is labor-intensive and
error-prone, with no guarantee of soundness.

In this paper, we introduce the first systematic approach to find data races arising from the
interaction of cached memory accesses and non-coherent memory accesses (or accesses from a
different coherence domain), as arise in heterogeneous systems with non-coherent accelerators.
Because the analysis of cache behavior is the root problem, our central contribution is a novel
abstraction of cache behavior, which we prove to be sound (i.e., any data race in an execution is
guaranteed to be detected). To demonstrate the precision of our abstraction, we implement it in
a simple, proof-of-concept dynamic race detector for a commercial, FPGA-based accelerator, and

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:3

find zero false positives while discovering two previously unknown races in code published by the
vendor.

2 EXAMPLE

For a concrete example, consider the code in Figure 1, for a simple, heterogeneous system con-
sisting of a single scalar CPU and a single vector accelerator (Figure 2). (Details are in the figure
captions.)

This is actual code from a test/demonstration program formerly supplied with the SDK for the
VectorBlox MXP FPGA-based matrix accelerator.1 The VectorBlox API is conveniently simple, but
it captures all of the issues that arise in more complicated APIs like CUDA or OpenCL: cached
and uncached accesses to memory from CPU or accelerator, as well as synchronization and cache
management instructions. We will use this code and this API as a running example throughout
this paper.

It is important to note that VectorBlox API functions are non-blocking and therefore execute
asynchronously to the CPU program order. Internally, the MXP hardware places vector-compute
requests and vector-DMA requests in separate queues and executes each queue in FIFO order.
Between queues, it detects read-after-write hazards and uses interlocks to maintain program order.

Even this simple code uses two types of synchronization to avoid data races. The vbx_sync() on
line 27 stalls the CPU until the accelerator has completed all outstanding requests. It is necessary
to prevent a data race between when the DMA engine writes vector_out on line 26 and when the
CPU reads vector_out on line 29, because otherwise, the CPU might (or might not) reach line 29
before the accelerator completes the DMA requested in line 26. The other type of synchronization
happens because the vbx_shared_malloc calls on lines 5–7 specifies that the vector_ variables
require uncached accesses. If they had been allowed to be accessed via cached reads and writes
(which would improve performance in lines 14, 17, and 19), the cached values for vector_in1 and
vector_in2 might not be written back to memory in time for the DMAs on lines 23–24. An alter-
native to specifying the uncached memory accesses would be to insert flush instructions before
line 23. Getting the synchronization correct to eliminate data races is notoriously hard — in fact,
our analysis discovered a previously unknown data race even in this simple example (described in
Section 4.4).

3 THEORETICAL FRAMEWORK

This section presents the main theoretical results of this paper. Sections 3.1 and 3.2 present prelim-
inaries: the classic happens-before relation that underpins data race detection, and why the classic
analysis fails when there are non-coherent accesses to memory. Section 3.3 introduces our basic
abstraction, which makes data races resulting from cache behavior visible, yet hides details about
the cache implementation. Directly applying this abstraction, though, would result in an exponen-
tial blow-up in the number of happens-before graphs that would need to be analyzed. Section 3.4
provides a set of theorems that eliminate this combinatorial blow-up, while still guaranteeing that
the analysis is sound (i.e., it does not miss data races). Finally, Section 3.5 provides techniques to
prune the happens-before graph, making the analysis tractable, while still preserving the existence
of data races. Put together, these results create an abstract model of caches that exposes all possible
data races in a heterogeneous system with non-coherent components, that hides as much of

1The code presented here has been modified slightly for brevity and clarity. VectorBlox was acquired by Microchip

Technology in late 2019. Although the original SDK is no longer online, a copy of the SDK can be found at http://

www.github.com/ubc-guy/mxp.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

http://www.github.com/ubc-guy/mxp

6:4 M. Young et al.

Fig. 1. Example code for CPU with vector accelerator. This code is part of a test program in the SDK of the

VectorBlox MXP.2 The CPU (with cache) and the vector accelerator (with non-coherent scratchpad memory)

communicate via shared memory. The code performs the same vector addition twice, once on the CPU and

once on the vector accelerator, to demonstrate the programming model and speedup. Lines 1–3 allocate three

vectors in main memory. The names start with scalar_ because they are intended for the scalar CPU to per-

form the vector addition. Lines 5–7 allocate three more vectors, also in main memory. These are intended

for communication with the vector accelerator, and the vbx_shared_malloc directive tells the compiler to

require the CPU to use uncached reads and writes when accessing these locations. Lines 9–11 allocate three

vectors in the accelerator’s private scratchpad memory. Lines 13–19 initialize the input and output vectors in

the main memory. Line 21 calls a function for the scalar CPU to iterate through its vectors, performing the

vector addition. Lines 23–26 perform the same vector addition using the accelerator. This entails the CPU

requesting the accelerator to use DMA to copy the input vectors into its scratchpad memory (lines 23–24),

perform the vector addition in the scratchpad (line 25), and use DMA to copy the result back into shared mem-

ory (line 26). Requests from the CPU to the accelerator are non-blocking, so the CPU continues to execute

instructions while the accelerator performs the requested actions. The sync on line 27 stalls the CPU until

the accelerator finishes. Line 29 compares the results from the scalar CPU and vector accelerator to check for

errors. The code appears to be properly synchronized to avoid data races between the CPU and accelerator.

2https://github.com/ubc-guy/mxp/blob/master/examples/software/bmark/vbw_vec_add_t/test.c.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

https://github.com/ubc-guy/mxp/blob/master/examples/software/bmark/vbw_vec_add_t/test.c

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:5

Fig. 2. Example heterogenous system with accelerator. The code in Figure 1 was written for an embedded

system with a VectorBlox MXP [21] accelerator (with non-coherent scratchpad) and scalar CPU with caches

(configurable with VectorBlox ORCA (RISC-V), Altera Nios II, or Xilinx MicroBlaze soft cores, or ARM Cortex-

A9 or A53 hard cores), connecting to main memory through an AXI interconnect. The CPU sends the accel-

erator requests through a custom instruction port, but data transfers occur through main memory.

the implementation details of the caches as possible, and that can be efficiently used for data race
detection.

3.1 Happens-Before Graph

A data race is defined as two (or more) operations on a memory location, of which at least one is
a write, whose order of occurence isn’t determined. Therefore, any data race analysis must reason
about when two operations must be or might not be ordered, and hence we start with Lamport’s
happens-before relation [11]. The happens-before relation, which we’ll denote by x → y, is a strict,
partial order on the events in a system’s execution. It captures all ordering that must occur between
the events in the execution. So, if x → y, it means event x must occur before event y, regardless of
any possible reordering of concurrent actions, non-determinism, etc. We can define the happens-
before relation as the transitive closure of the program order for each thread of execution (i.e., the
order of the instructions as they are executed by a CPU or accelerator3) and any causal ordering,
where one event causes or enables the other event.

For example, in the code listing in Section 2, the program order on the CPU says that line 1 hap-
pens before line 2, which happens before line 3, etc. An example of causal ordering is that on line 23,
the CPU executes an instruction (which is ordered in program order on the CPU), which requests
the accelerator to perform a DMA operation at some later time. So, the CPU request happens be-
fore (causally) the DMA operation. However, the request is non-blocking, so the DMA operation
itself is unordered with respect to the next CPU operation on line 24. The VectorBlox MXP accel-
erator performs operations in-order, so there would also be a program order relationship between
when the accelerator performs the two DMA operations. Figure 3 shows the Hasse diagram for
these four operations. For convenience, we will refer to “graphs” and “edges” interchangeably with
partial order terminology.

3This definition assumes sequential consistency. The soft CPU cores and VectorBlox accelerator are in-order, so they meet

this assumption. With a relaxed memory model, defining happens-before is more subtle, but essentially, entails removing

program order edges as allowed by the memory model (e.g., [4] for the ARM). Alternatively, we can use the order in which

operations appear at the memory interface of the CPU.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

6:6 M. Young et al.

Fig. 3. Example graph of happens-before relation. The do_dma_read nodes are CPU operations requesting

that the accelerator perform a DMA read, and the dma_r nodes are when the accelerator actually does the

read. The two do_dma_read nodes are ordered by CPU program order. The two dma_r nodes are ordered

because the VectorBlox DMA engine is in-order. The diagonal edges are causal edges.

3.2 Breaking the Abstraction of Invisible Caching

Data race detection reduces to building the happens-before graph (or an efficient abstraction
thereof) and checking for two unordered nodes that access the same memory location, of which at
least one is a write. In the classical literature on data race detection, the nodes correspond to mem-
ory reads and writes, which are assumed to happen atomically. The correctness of this assumption
relies on the elegant abstraction that caching (and coherent memory systems in general) provide:
the caches are invisible.4 Unfortunately, modern heterogeneous systems, with different types of
potentially non-coherent memory accesses, break this long-held assumption.

For example, Figure 4 shows an archetypal pattern by which a CPU requests computation from
an accelerator. Without caching (or with coherent, and therefore invisible caches), there are no data
races. When sending data from CPU to accelerator, the CPU writes data to shared memory, which
happens before it requests that the accelerator act, which happens before the accelerator can read
this data. Similarly, when sending results from the accelerator back to the CPU, the accelerator
writing the results to shared memory happens before the CPU can pass the sync, which happens
before the CPU reads the results from shared memory.

However, non-coherent accelerators break the abstraction that caching is invisible. The problem
is that caches can allocate (or even pre-fetch) cache lines from memory, and later write data back
to memory, at unpredictable times, and these memory operations are visible to the non-coherent
accelerators. This creates new, subtle, and hard-to-detect data races.

3.3 Shared Memory with Visible Abstract Caches

Accordingly, if the classical assumption that caching is invisible is broken, then we need to model
memory operations more precisely: memory operations to/from the caches must be visible.

In systems that communicate with non-coherent accelerators via shared memory, shared mem-
ory accesses fall into just a few idiomatic categories: CPUs make cached and uncached reads and
writes, and non-coherent accelerators access main memory via DMA or other uncached trans-
fers. Also, CPUs make requests to accelerators, and there are sync or barrier instructions to stall
a thread until completion of requested actions. Cache flushing instructions can be used to force
writebacks. For all of these operations except cached reads/writes, the rules for modeling their be-
havior in the happens-before graph are straightforward. Uncached reads and writes create nodes
in the happens-before graph exactly as in classical data race analysis. DMA reads and writes do
too, except that there is an additional causal edge from the node requesting the DMA to the node
performing the DMA (e.g., Figure 3). Program order edges connect consecutive operations per-
formed by a single thread or by an in-order accelerator. Synchronization/barrier instructions relate

4They are invisible from a correctness or functionality perspective. Obviously, they can be very visible from a performance

perspective!

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:7

Fig. 4. Archetypal pattern of a CPU requesting computation from an accelerator. The lefthand side shows the

happens-before graph under the assumption that caching is invisible (e.g., if the entire system is coherent),

as in classical data race analysis. There are no data races, because the CPU’s write to memory (node 1)

happens before the CPU sends requests to the accelerator (node 2), which happens before the accelerator

reads the data (node 3(a)). Similarly, the accelerator’s write to memory (node 3(c)) happens before the CPU’s

wait (node 4), which happens before the CPU’s read from memory (node 5). The righthand side shows the

same graph, except that a non-coherent accelerator breaks the abstraction that caching is invisible. Now,

there are multiple data races. For example, the write in node 1 doesn’t really reach memory until the cache

writeback, which is in a data race with the accelerator DMA read in node 3(a) (and even with the accelerator

DMA write in node 3(c)). The writeback may or may not happen before the accelerator reads or writes the

same memory. Similarly, the CPU read in node 5 depends on data being in the cache. This data might be the

same data (if it’s still valid in the cache) that was written in node 1, or cache line might have been evicted,

in which case there is a cache allocation that reads from memory, and that node is in a data race with the

accelerator DMA write in node 3(c). The main point is that modern systems with non-coherent accelerators

break the classical abstraction that caching is invisible, creating new data races.

different program orders: they take their place in the program order of the thread that executes
them, but they have causal edge from all operations they depend on. Table 1 lists the types of
nodes in our happens-before graphs for the simple VectorBlox API. (The cache-related nodes are
explained more below.)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

6:8 M. Young et al.

Table 1. Operations Tracked for the VectorBlox Happens-Before Graph

Type of Node Meaning Edges

cached_read CPU tries to read data from cache. Out to a new cr node.

cr Cache returns data to CPU. In from cached_read. In from a new al-
loc node. Out to next CPU instruction
(or relaxed if memory model allows,
e.g., if reads from different addresses
are allowed to complete out-of-order).

alloc Cache allocates cache line and reads
data from main memory.

In from most recent alloc or wb to the
same address. Out to the cr node that
created it.

cached_write CPU tries to write data to cache. Out to a new cw node.

cw Cache accepts data from CPU. In from cached_write. Out to a new
wb node. Out to next CPU instruction
(or relaxed if memory model allows,
e.g., if writes to different addresses are
allowed to complete out-of-order).

wb Cache writes back data to main
memory.

In from the cw node that created it. In
from most recent alloc or wb to the
same address.

cache_flush CPU tells cache to remove data, per-
forming wb if dirty.

In from the most recent wb nodes for
the flushed cache lines.

uncached_read CPU reads data from main memory,
bypassing cache.

(Nothing extra. Program order edges
only.)

uncached_write CPU writes data to main memory,
bypassing cache.

(Nothing extra. Program order edges
only.)

do_dma_read CPU asks accelerator to read from
main memory.

Out to a new dma_r node.

dma_r Accelerator reads data from main
memory.

In from the do_dma_read. In from
most recent dma_r or dma_w.

do_dma_write CPU asks accelerator to write to
main memory.

Out to a new dma_w node.

dma_w Accelerator writes data to main
memory.

In from the do_dma_write. In from
most recent dma_r or dma_w.

sync CPU waits for outstanding DMA op-
erations to complete.

In from the most recent dma_r or
dma_w.

All operations (except sync) are parameterized with the addresses affected. The column “Edges” indicates the edges

added to the happens-before graph when the specified node is added to the graph, using our basic abstraction in

Section 3.3. These edges are in addition to the usual program-order edges in a classical happens-before graph (which

might be relaxed if using a relaxed CPU memory model).

The challenge for data race analysis with mixed coherent and non-coherent memory accesses is
how to model the caches and the unpredictable memory traffic they can generate. One could imag-
ine modeling the behavior of a specific cache precisely, but such an approach is labor-intensive,
error-prone, and brittle. Instead, a broadly applicable data race analysis should avoid modeling ex-
cessive details of specific caches, e.g., associativity, eviction and replacement policies, pre-fetching,
etc. These details might change in different hardware configurations, are not reasonable for

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:9

Fig. 5. Basic modeling of cached writes and reads in happens-before graph.

programmers to depend on, and are hard to model accurately. On the other hand, an excessively
conservative abstraction will result in too many false data race detections. We do make the as-
sumption of writeback caches, which are typical in multiprocessing systems, although our theory
could be modified to handle writethrough caches. Also, we do require knowledge of the cache line
size and writeback granularity, so that our analysis can correctly compute the memory addresses
touched by cache allocations and writebacks.

Accordingly, as the first layer of our modeling of caches, we create a very simple, very general
model of cache behavior that suppresses most details (Figure 5). Caches are modeled similarly to
accelerators: just as the do_dma_write CPU operation generates a causal edge to the correspond-
ing dma_w operation on the accelerator, the cached_write CPU operation generates a causal edge
to the corresponding cw node in the cache, which denotes the cache accepting the written data.
The cache, in turn, would have a causal edge to a wb writeback node, because the cache line is dirty
and will eventually be written back to memory. It is this wb operation that accesses main memory
and must be checked for data races (Figure 5(a)). Similarly, a cached_read operation has a causal
edge to its cr node in the cache, which denotes the cache supplying the requested data, and which
has a causal edge to the next instruction in that thread (because the thread must stall until receiv-
ing data). The cr node has a causal edge from the alloc node that allocated this cache line from
main memory, and it is the alloc node that is checked for data races (Figure 5(b)). Clearly, this
model is general enough to encompass the behavior of any cache, regardless of its details — data
must enter a cache somehow before it can be read, and dirty data must be written back eventually.
Therefore, any data race that could happen with a specific cache architecture can also happen with
this abstract cache model. Flushing is similar to sync: the cache_flush node takes its place in the
program order, but has causal edges from all wb nodes for prior cw nodes, and to all alloc nodes
for subsequent cr nodes, to the same address. Multiple threads/CPUs in a single cache-coherent
domain can be modeled as if accessing a single, shared cache.

3.4 Avoiding Combinatorial Explosion of Happens-Before Graphs

The preceding abstract cache model captures memory operations that must occur in some form.
However, in a real system, each memory read doesn’t produce a separate cache line allocation,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

6:10 M. Young et al.

Fig. 6. Two possible happens-before graphs for a cached read followed by a cached read.

and each memory write doesn’t produce a separate writeback. The abstract cache model provides
no guidance as to what did or did not happen, so we add a second layer of abstraction, to prevent
a combinatorial blow-up in the number of happens-before graphs to analyze.

Specifically, the challenge is that without modeling excessive details, it is unknowable when
(or even if) certain cache line allocations or writebacks occur. For example, for a cached read, the
CPU’s cached_read node generates a causal edge to a cr node, which has a causal edge from an
alloc node, because the cache line must have been allocated before the value can be returned to
the CPU. But maybe that particular alloc didn’t happen, because the cache line was already in
the cache and might not have been evicted (e.g., Figure 6).

There are four cases to consider:

(1) The first case, a cached read followed later by a cached write to the same address, requires
no special handling, because the basic cache abstraction for the read does not interact with
the basic cache abstraction for the write. (An allocate-on-write cache can be easily modeled
by simply inserting a read of the entire cache line before performing the write, which then
triggers the second case below.)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:11

Fig. 7. Two possible happens-before graphs for a cached write followed by a cached write.

(2) The second case is a cached read followed by another cached read (to the same address)
(Figure 6). Because we don’t know whether the cache line had been evicted after the first
alloc, we don’t know whether the second alloc happened or not. Which nodes/edges do
we add to the happens-before graph? For efficiency, we must avoid case-splitting, which
would create an exponential (in the number of memory operations) number of happens-
before graphs to analyze. Fortunately, Theorem 3.1 (below) establishes that it is safe (i.e.,
data-race preserving) to build only the graph with both alloc nodes.

(3) A cached write followed by a cached write produces an analogous situation (Figure 7). Did
the first write’s wb happen? Theorem 3.2 establishes that it is safe to build only the graph with
both wb nodes. As with the preceding case, we preserve data races and avoid a combinatorial
explosion in happens-before graphs.

(4) The most interesting case is a cached write followed by a cached read (Figure 8). Did the
writeback happen before the cached read occurs? If so, then the cached read needs an alloc

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

6:12 M. Young et al.

Fig. 8. Two possible happens-before graphs for a cached write followed by a cached read.

node; if not, then the cache line is still dirty, and the cr node happens before the wb node.
In this case, unlike in the preceding cases, neither graph is a safe abstraction of the other.
Our solution is to create a graph that is a safe abstraction of both situations, even though it
doesn’t correspond to actual cache behavior (Figure 9). Theorem 3.3 establishes that Figure 9
is a safe abstraction of both graphs in Figure 8. Again, we preserve data races and avoid a
combinatorial explosion in happens-before graphs.

We now formalize the above intuition and state and prove the theorems. We will assume
happens-before graphs with operation nodes as shown in Table 1.

For notational convenience, we define predicate datarace(x ,y,G) to mean that x and y are ver-
tices in directed graphG, and they are in a data race, i.e., x andy are reads/writes to shared memory
and at least one is a write, and there is no directed path in G from x to y or vice-versa. We also
define datarace(G) to mean that there exist two vertices x and y in G such that datarace(x ,y,G).

For a given execution of a heterogeneous system with non-coherent accelerator, letT be the true
happens-before graph for this execution, modeled using the node types in Table 1 and the basic
visible abstract cache constructions as in Section 3.3. Let F be the happens-before graph after fully
applying the abstractions in this section. We seek to establish that datarace(T) ⇒ datarace(F),

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:13

Fig. 9. A safe abstraction of the happens-before graphs for a cached write followed by a cached read.

Theorem 3.3 says that this is a safe abstraction of all graphs in Figure 8. The intuition is that assuming

the writeback happened means adding the alloc node, which, unlike the earlier proofs, does create new

ordering between nodes, specifically that wb→ alloc→ cr. This means that adding the alloc node might

eliminate a race with the original wb node, if the race node happens after the cr node. However, any such

node would now have a race with the newly created, second wb node that happens after the cr node. So,

this construction is also race-preserving. Because of the second wb node (dashed), the cached read should

be treated as a cached write when the next memory operation to the same address is added to the happens-

before graph. The second wb node can be thought of as an abstract flag indicating that the cache line may

be dirty.

i.e., if there is a data race in the true happens-before graph, then there is still a data race in the
happens-before graph after fully applying the abstractions in this section.

The overall proof that datarace(T) ⇒ datarace(F) is established by defining a sequence of
happens-before graphs T0, . . . ,Tn , with T = T0 and Tn = F . We generate Ti+1 by applying one
of the abstractions from Figures 6–9 to any of the earliest cached memory operations in Ti that
has not yet had an abstraction applied. The crux of the argument is proving the invariant that
datarace(Ti) ⇒ datarace(Ti+1), which we do below. A trivial induction on i completes the proof
that datarace(T) ⇒ datarace(F).

Suppose we are given happens-before graph Ti such that datarace(Ti). For some arbitrary ad-
dress a, we pick the earliest cached memory operation on a that hasn’t been abstracted yet. The
intuition given above described the four cases as {read,write} followed by {read,write}. However,
it will be cleaner to formalize this as {possibly-dirty, not-dirty} followed by {read,write}. In the
possibly-dirty case, there is a wb node in the graph from the last abstracted cache node (cr or cw)
on a; in the not-dirty case, there is no such node.

The first case — where the cache is not dirty (clean or invalid) for address a just before the
earliest unabstracted cached memory operation on a, which is a write — is trivial. No abstraction
is performed, so Ti = Ti+1 and therefore datarace(Ti) ⇒ datarace(Ti+1).

The second case (not-dirty followed by a cached read, as shown in Figure 6) corresponds to
Theorem 3.1.

Theorem 3.1. Let Ti be defined as above. If the last abstracted cached memory operation in Ti on
some memory address a does not have a wb node (which means it’s not-dirty), the earliest unabstracted
cached memory operation inTi on address a is a read, andTi+1 is created by replacing the nodes inTi

for this operation with nodes as shown in Figure 6(a), then datarace(Ti) ⇒ datarace(Ti+1).

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

6:14 M. Young et al.

Proof. The unabstracted read operation either did or did not have an alloc node in the true
happens-before graph T .

If it did have an alloc node inT , then it also has one inTi (because it hasn’t been abstracted yet),
and the construction in Figure 6(a) keeps this alloc node and makes no other changes. Therefore,
Ti = Ti+1 and datarace(Ti) ⇒ datarace(Ti+1).

On the other hand, if it did not have an alloc node in T , then it also doesn’t have one in Ti

(because it hasn’t been abstracted yet), and the construction in Figure 6(a) adds an alloc node and
makes no other changes. If datarace(Ti), then there are two nodes x and y in Ti such that x �→ y
and y �→ x in Ti . Neither x or y can be the new alloc node, because that node doesn’t exist in Ti .
Can the introduction of this alloc node create a new path from x to y or vice-versa? The answer
is no: the new node only connects an earlier alloc node to the new cr node, but they were already
connected via transitivity throught the program order. Therefore, x �→ y and y �→ x in Ti+1, so
datarace(x ,y,Ti+1), which means datarace(Ti) ⇒ datarace(Ti+1) in this case as well. �

The third case (possibly-dirty followed by a cached write, as shown in Figure 7) corresponds to
Theorem 3.2.

Theorem 3.2. Let Ti be defined as above. If the last abstracted cached memory operation in Ti on
some memory address a has a wb node (which means it’s possibly-dirty), the earliest unabstracted
cached memory operation in Ti on address a is a write, and Ti+1 is created by replacing the nodes in
Ti for this operation with nodes as shown in Figure 7(a), then datarace(Ti) ⇒ datarace(Ti+1).

Proof. The wb node from the last abstracted cached memory operation either did or did not
happen before the unabstracted cw node in the true happens-before graph T .

If it did happen before the unabstracted cw node in T , then it also happened before the unab-
stracted cw node in Ti (because it hasn’t been abstracted yet), and the construction in Figure 7(a)
keeps this wb node in the same order and makes no other changes. Therefore, Ti = Ti+1 and
datarace(Ti) ⇒ datarace(Ti+1).

On the other hand, if it did not happen before the unabstracted cw node inT , then it also did not
happen before the unabstracted cw node inTi (because it hasn’t been abstracted yet), soTi will have
a structure like Figure 7(b), where the same wb node serves multiple cw nodes. The construction
says to substitute the structure in Figure 7(a) instead, which would add an extra wb node to Ti+1.
If datarace(Ti), then there are two nodes x and y in Ti such that x �→ y and y �→ x in Ti . Neither x
nor y can be the new wb node, because that node doesn’t exist in Ti . Can the introduction of this
wb node create a new path from x to y or vice-versa? Just as in the preceding proof, the answer
is no: the new node only connects the earlier cw node (or cr node, see the next case) to the new
cw node, but they were already connected via transitivity through the program order. Therefore,
x �→ y and y �→ x in Ti+1, so datarace(x ,y,Ti+1), which means datarace(Ti) ⇒ datarace(Ti+1) in
this case as well. �

The last case (possibly-dirty followed by a cached read, as shown in Figure 8) corresponds to
Theorem 3.3.

Theorem 3.3. Let Ti be defined as above. If the last abstracted cached memory operation in Ti on
some memory address a has a wb node (which means it’s possibly-dirty), the earliest unabstracted
cached memory operation inTi on address a is a read, andTi+1 is created by replacing the nodes inTi

for this operation with nodes as shown in Figure 9, then datarace(Ti) ⇒ datarace(Ti+1).

Proof. This is the most complex case, but the reasoning is similar to the preceding proofs. The
configuration inTi must be as in Figure 8(a) (either with or without the alloc node) or Figure 8(b).

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:15

If the situation is Figure 8(a) with the alloc node, then Ti+1 adds only a single wb node. This
can’t eliminate any races, so datarace(Ti) ⇒ datarace(Ti+1) in this case.

If the situation is Figure 8(a) without the alloc node, thenTi+1 adds the same wb node as in the
preceding case, with the same inability to eliminate data races. It also adds an alloc node, which
does add ordering constraints toTi+1, specifically that wb→ alloc→ cr. The only new paths this
might introduce to the graph (and hence the only data races that might be lost) are from the wb
node to the cr node and any nodes reachable from there. However, any node x that is reachable
from the cr node, but unreachable from the wb node, in Ti will be unreachable from the newly
added wb node in Ti+1. Thus, any data races that were lost will be replaced by new ones, and we
still have datarace(Ti) ⇒ datarace(Ti+1) in this case.

If the situation is Figure 8(b), the newly added wb and alloc nodes do not create any new paths
between other nodes, since the cw nodes was already connected to the cr node. This can’t eliminate
any races, so datarace(Ti) ⇒ datarace(Ti+1) in this case as well. �

With these three theorems for the three non-trivial cases in the invariant proof, we can con-
clude that if there is a data race in the true happens-before graphT , then there is guaranteed to be
a data race in the happens-before graph F , in which the abstractions have been fully applied. The
preceding subsection made data races resulting from cache behavior visible; this subsection guar-
antees that any data races are preserved even though we construct only a single happens-before
graph.

3.5 Active Frontier

There is one more challenge for our theoretical framework. Even a few seconds of execution might
generate billions of memory operations, meaning the full happens-before graph can be intractably
large. To make our analysis scalable, it must be “on-the-fly”, building the graph incrementally as
it reads the trace file of memory operations, and just as importantly, deleting older nodes when
they become irrelevant. So, rather than building the entire happens-before graph, the analysis
maintains only an “active frontier” of nodes that might matter for data races.

For node creation, we maintain an as-soon-as-possible property: no node is created in the graph
until the earliest point in time when that operation could execute (i.e., when all nodes that happen
before it have already been created), and the value being read or written is known to be visible to the
CPU or accelerator. The first part of this property is natural and the same as in classical data race
analysis: no node should be added to the happens-before graph until every node that it depends
on (that must have happened before it) has already been added to the graph. The italicized part
is new to our abstractions, and means that an alloc node is created only when the correspond-
ing cached_read node is created. Note that even though the alloc node is created late, it has a
happens-before edge to the cr node created along with the cached_read node, so even though
the alloc node isn’t created until the cr node that needs it, the alloc node still captures in the
happens-before graph all relevant executions in which this cache line allocation happened before
this read, e.g., it might be allocated just before the cr due to a cache miss, or it might have been
pre-fetched long before. So, the late creation of the alloc node does not eliminate any observable
data races. What the late creation of the alloc node does eliminate are many spurious “data races”
in which the racy value loaded into the cache is never observed. For example, without the italicized
part of this property, every program would have data races as soon as any variable is initialized: an
alloc node could have been created for that variable’s location at the beginning of execution (be-
cause the alloc node has no in-edges), which might or might not have loaded the pre-initialization

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

6:16 M. Young et al.

Fig. 10. Illustration of Lemma 3.4. Node x is a write node newly added to the active frontier, and node y is a

memory operation to the same address that was already in the active frontier. If we delete y from the active

frontier, might we miss a race between y and a node z added later? The answer is that we will still detect a

race (between x and z instead of between y and z): z �→ x because x was added before z, and x �→ z or else

y → x → z, which contradicts that y and z are in a race.

value of the variable into cache. However, such “races” are meaningless because those values are
overwritten before the CPU uses them.

The policy for node deletion is more complex. We maintain a set of “marked” nodes, which is a
set of operations that read or write shared memory, checking against which is sufficient to detect
a race if the full graph had any races. When we add a new node to the graph, we check for any
races with the newly added nodes, then update the set of marked nodes according to the following
rules:

(1) If a newly added node x is a write to shared memory, mark node x , and unmark any other
read or write node y to the same address.

(2) If a newly added node x is a read to shared memory, mark node x , and unmark any other
read node y to the same address with y → x .

Next, any node that is not either marked or reachable from a marked node via happens-before
edges is deleted.

To have a sound data race analysis, the crucial result we need to establish is that the active fron-
tier created via our node creation and deletion policies preserves data races. Formally, letT be the
true happens-before graph, and let F be the happens-before graph after fully applying the abstrac-
tions, as defined in Section 3.4. We have already established that datarace(T) ⇒ datarace(F). Now,
let A0,A1, . . . be the sequence of active frontier happens-before graphs as the online algorithm
processes the execution log. Our main result is to show that datarace(F) ⇒ (∃i .datarace(Ai)). In
other words, if there is a data race, then there will be a data race in at least one active frontier (and
hence we will detect it).

Node deletion is the central problem for proving the theorems. Without node deletion, the se-
quence of active frontier graphsA0,A1, . . . becomes the full happens-before graph F when the trace
file of memory operations has been completely processed. Therefore, we first establish lemmas for
the node marking and deletion rules.

Lemma 3.4. If a newly added node x is a write to shared memory, we can mark node x , and unmark
any other read or write node y to the same address and not lose the ability to detect races in the
execution.

Proof. (Figure 10 illustrates the intuition behind this proof.) Suppose x is newly added to active
frontierAi , andy is any other node already inAi . First, if neither x → y nory → x , then x andy are
in a race, which we would detect immediately upon adding x , and hence we do not lose the ability
to detect races in the execution, because datarace(Ai). Now, is it possible that x → y? The answer
is no, by the as-soon-as-possible property: the edges from x → y can’t be program order edges

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:17

(because y was already in the graph before x) and can’t be causal edges (because y couldn’t have
happened without x in the graph). Therefore, the only remaining case is when y → x . Suppose
that later in the memory trace, we add a memory operation z to a new active frontier Aj , and
that datarace(y, z, F), i.e., there’s a data race between y and z in the full happens-before graph F .
The fear is that since we unmarked y when creating Ai , it may have been deleted before Aj , in
which case ¬datarace(y, z,Aj) and we miss this data race. But fortunately, by the same as-soon-as-
possible property, we know that z �→ x , even in the full graph F . On the other hand, if x → z, then
we have y → x → z, which contradicts the fact that datarace(y, z, F). Hence, x �→ z and z �→ x ,
which means x and z are in a race. Therefore, we will still detect a race in Aj (between x and z),
even if we deleted y from the active frontier. �

For read nodes, the ordering relationships are weaker, so we have a weaker result.

Lemma 3.5. If a newly added node x is a read to shared memory, we can mark node x , and unmark
any other read node y to the same address with y → x , and not lose the ability to detect races in the
execution.

Proof. Similar to the proof above, suppose that in a later active frame Aj , we add a memory
operation z (which must be a write) that’s in a race with a node y that we unmarked when con-
structing Ai . By the same arguments as above, we know that z �→ x (because x was already in the
graph) and x �→ z (else y → x → z which contradicts that y and z are in a race), which means x
and z are in a race. So, we will still detect a race. �

Lemma 3.6. We can delete any unmarked node y and not lose the ability to detect races in the
execution.

Proof. If y is a read or write to shared memory, we have already established that if it’s un-
marked, it’s safe to delete: reads and writes to shared memory are always marked upon entry to
an active frontier, and they only become unmarked via the processes in Lemmas 3.4 and 3.5. If y
is not a read or write to shared memory, then it can’t be part of a race itself. Deleting y therefore
can only reduce the amount of ordering in the happens-before relation, so the set of races can only
stay the same or increase. �

With these lemmas, we can easily establish the main theorem of this subsection:

Theorem 3.7. If there is a data race in the full happens-before graph, then there will be a data
race in at least one active frontier (and hence we will detect it), i.e., datarace(T) ⇒ datarace(F) ⇒
(∃i .datarace(Ai)).

Proof. The result follows directly from Lemma 3.6, since we always preserve the existence of
races as we maintain the active frontier by deleting unmarked nodes. �

The preceding theorem states that our method is sound (guaranteed to find races if they exist),
even if we delete all unmarked nodes from the active frontier. However, our analysis also keeps
in the active frontier the nodes that happen after the marked nodes. Doing so let’s us establish a
completeness result, that our active-frontier simplification does not lose precision:

Theorem 3.8. If the online algorithm flags a data race, then the same race exists in the full happens-
before graph. (This implies that (∃i .datarace(Ai)) ⇒ datarace(T).)

Proof. (Figure 11 illustrates the intuition behind this proof.) Let node z be a newly added mem-
ory operation that triggers a race, and let node y be the pre-existing shared memory operation
in the active frontier that it is in a race with. By definition, z �→ y and y �→ z in the active fron-
tier, and we need to prove that z �→ y and y �→ z in the full happens-before graph. By the same

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

6:18 M. Young et al.

Fig. 11. Illustration of Theorem 3.8. Node z is a newly added memory operation, and the analysis detects

a race between z and existing node y in the active frontier. Could it be that y and z are not in a race if we

considered the full happens-before graph? The answer is no. It’s easy to see that z �→ y in the full graph,

because y was added to the graph before z. In the other direction, if y → z in the full graph but not in the

active frontier, there must be a node x not in the active frontier, with y → x → z. However, x must have

been added before z, because x → z, and x could not have been deleted from the active frontier, because

y → x . Thus, any race detected in the active frontier is also a race in the full happens-before graph.

as-soon-as-possible argument we’ve used already, we know that z �→ y in the full graph, because
if z → y, then y couldn’t have been created before z. To establish that y �→ z in the full graph,
assume the opposite, that y → z in the full graph. By Lemma 3.6, we can assume without loss of
generality that y is marked. Now, we know that y �→ z in the active frontier, so if y → z in the full
graph, there must be a node x in the full graph such that y → x → z in the full graph. Because
x → z, the node x must have been added to the active frontier before z. Because y is marked and
y → x , the node x cannot have been deleted from the active frontier. Therefore, y → x → z in the
active frontier as well, which contradicts that y and z are in a race in the active frontier. Therefore,
both z �→ y and y �→ z in the full graph, and the same race exists in the full graph as in the active
frontier. �

Combining all of the results in Section 3, these theorems allow us to abstract away cache details
like associativity, eviction and replacement policies, and pre-fetching; to build and analyze a single
happens-before graph instead of case-splitting on possible cache behaviors; to prune the happens-
before graph down to tractable active frontiers; and yet still be guaranteed to detect any possible
races.

4 EXPERIMENTAL RESULTS

4.1 A Dynamic Race Detector

As proof-of-concept for our theory, we built a simple prototype dynamic race detector. A dynamic
race detector (e.g., Eraser [19], FastTrack [8], SPD3 [18]) detects any possible data race (even if it
didn’t execute in an unexpected order) in a single execution of a program. It represents a practical
compromise between fully formal static verification, which detects any possible data race in all
possible executions of a program, and conventional software testing, which detects only data races
which went the “wrong way” and produced observably incorrect results in a single execution of a
program. Compared to static formal verification, dynamic race detection is more scalable (unless
the static formal verification is highly abstracted), and avoids the need to perform complicated
(and generally imprecise) alias analysis, because the actual trace of memory accesses is known.
However, like conventional software testing, attention must be paid to code coverage, to exercise

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:19

as many program paths as possible. From an experimental perspective, dynamic race detection
is a pure and direct evaluation of the precision and effectiveness of our abstraction, without the
confounding influences of which formal verification algorithms we use to enumerate program
paths, what other abstractions we might employ, and how lossy we make the joins in our analysis.

Note that our race detector is rather rudimentary, being a straightforward tracking of the
happens-before graph. We do not pretend that it is state-of-the-art. The novelty is that it imple-
ments our model of abstracted cache behavior, so that it can soundly detect data races in the
heterogeneous system with mixed cached and uncached memory accesses. Our analysis is proven
sound, so the main empirical question is whether the analysis is precise enough to avoid excessive
false positives. Another important question is whether real code has data races caused by the in-
teraction of cached and uncached memory accesses. We built the tool only to answer these two
questions.

Our race detector is for the CPU/accelerator system in Figure 2. The race detector processes
a trace of the memory accesses from a program execution. How to derive such traces is well-
established (e.g., in debuggers and other analysis tools), but is labor-intensive to implement, so
for our proof-of-concept, we instrumented our test programs manually to print out each memory
operation as it executes.5 To improve efficiency, we condense sequences of identical operations on
consecutive addresses into a single operation on a memory range. When each memory operation
is added, it is checked to see whether it is ordered with respect to all other memory operations that
touch the same address range. If two operations are unordered, and at least one is a write, then
the tool flags the data race and exits.6

4.2 Experimental Setup

To test our tool on real-world examples, we selected eleven open-source examples from the
VectorBlox MXP SDK. The examples in the GitHub repository were chosen to be used in our exper-
iments if they were non-trivial and were written in C. As is typical of compute kernels, the example
programs are loop/vector-heavy, but have minimal branching structure and no input-dependent
behavior. Therefore, the examples do not stress the weakness of dynamic data race detection —
which might not cover all CPU program paths — and let us focus on the proven soundness of our
analysis over a single CPU program path. Table 2 summarizes the examples.

All the examples were executed using the VectorBlox MXP simulator; it models a single-core
CPU with one MXP vector accelerator. We analyzed each program in its original form, and also,
because the examples were provided in the vendor’s SDK and presumably race-free, we introduced
races by removing necessary synchronization (e.g., sync statements, allowing shared variables to
be cached with flushing, etc.). Because our analysis is sound, these race-injection examples were
just sanity checks of our code and were done in an ad hoc manner. The primary questions in our
experiments were whether the runtime was prohibitively large, and the rate of false positives, i.e.,
detected data races that were not really data races.

5Instrumenting at the source-code level does mean that our proof-of-concept implementation assumes sequential consis-

tency of the source language memory model. This is a limitation of the implementation only, not the theory. Instrumenting

the binary would bypass this problem, or one could use SC-preserving compilation (e.g., [15]).
6Our example CPU/accelerator system can be configured for several different CPU architectures, and these architectures

vary in how they handle uncached memory accesses. For example, the Nios II has uncached read/write instructions that

are allowed to incoherently bypass the cache; ARM makes cacheability a property of an address, rather than an access; and

MicroBlaze specifies writethrough caches, rendering the distinction moot. Our tool has a flag for whether to include CPU

data races between cached and uncached accesses (assuming Nios-II-style semantics) or flag only data races between CPU

and accelerator. Given our emphasis on heterogeneous systems, our experiments use the latter setting.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

6:20 M. Young et al.

Table 2. Test Programs

Test Name Test Description SLoC

vbw_libfixmath Square root and division 190

vbw_mtx_fir 2D FIR filter using matrices 118

vbw_mtx_median_argb32 Median filter with 32-bit data type 117

vbw_mtx_median Median filter with 8-bit data type 119

vbw_mtx_motest * Motion estimation 228

vbw_mtx_sobel Sobel filter 154

vbw_mtx_xp Matrix transpose 287

vbw_vec_add * Vector addition 122

vbw_vec_fft FFT 2678

vbw_vec_fir FIR filter using vectors 62

vbw_vec_power Vector exponentiation 116

We evaluated our analysis on these eleven programs, selected from the accelerator vendor’s

SDK. Our selection criterion was all non-trivial programs written in C. “SLoC” indicates

source lines of code. The asterisks (*) indicate examples where our analysis discovered

previously unknown data races.

4.3 Time Required for Analysis

As noted already, our implementation was rudimentary, as it was not our goal to attain state-of-the-
art performance. The shortest runtime took 30ms for 6,013 lines in the trace file (vbw_libfixmath),
and the longest runtime took approximately nine days for almost 29 million lines in the trace
(vbw_mtx_sobel). Ten out of the 11 examples completed in less than 45 minutes each. Figure 12
plots the analysis runtime for examples without races. (Examples with races completed quickly
because the tool stops at the first race detected.)

4.4 Data Race Detection Results

The experiments with injected races were unremarkable. The tool was able to detect the injected
races easily in all cases, which was unsurprising since the analysis is sound and the programs had
minimal branching structure. Interestingly, in some cases, the system simulator still showed the
test as passing, even though we had eliminated necessary synchronization, because the race went
the right way by chance. This highlights how data races can produce elusive bugs, which are not
caught in debugging, but emerge only late (and sporadically) in a production system, underscoring
the importance of data race detection tools.

Whenever the tool flagged a data race, we analyzed the reported race manually to determine
whether it was a real race or an artifact introduced by our abstractions. Happily, we had zero false
positives: every time the tool flagged a possible data race, it was indeed a real data race. Hence,
despite our safe abstractions, our tool achieved 100% precision (albeit on a small test set).

False negatives are harder to quantify. No other tool models the data races that we are targeting,
so there is no independent way to confirm race-freedom. Manually, it’s much harder to verify a
program race-free than simply to check that an identified race is really a race. Fortunately, the test
programs have fixed inputs, so technically, there is only one program path possible. (There are,
of course, many possible interleavings of concurrent actions.) Hence, since our method is proven
sound with respect to the program path that executed, and since there is only on program path
possible, there should be zero false negatives. Empirically, on the examples with injected races, we
detected races every time, so there were no false negatives, but no true negatives either. Overall,
we never observed a known false negative, and the theory predicts that none should be possible.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:21

Fig. 12. Analysis runtime of examples without data races. (All examples with data races terminated quickly.)

As noted in the text, our implementation is a straightforward tracking of the happens-before graph, so

we make no claims of stellar performance. Nevertheless, this semi-log plot shows runtime growing sub-

exponentially in the number of lines in the trace. With our abstraction of cache behavior, runtime is not

prohibitively expensive, even with a rudimentary implementation.

Remarkably, the tool found subtle, previously unknown races in two out of the eleven examples
(in their original form, without injected races). One example is actually the vector addition example
vbw_vec_add in Figure 1. The tool detects a potential race at the first DMA read from main memory
(line 23) vs. a writeback node for the cached writes at line 13:

test_zero_array(scalar_out , N);

...

vbx_dma_to_vector(v_in1 , (void *) vector_in1 , N*sizeof(vbx_sp_t));

At the source-code level, the bug is not obvious: the conflicting variables are scalar_out and
vector_in1, which are two completely different variables. Closer inspection of the code reveals
that scalar_out is a cached vector that eventually has its values written back when the test ze-
roes this array, and vector_in1 is an uncached vector in main memory that is accessed by the
accelerator via DMA. In this case, the compiler for the VectorBlox simulator laid out memory such
that the end of scalar_out mapped to the same cache line as the beginning of vector_in1. Thus,
although the source code is careful to use uncached reads and writes on vector_in1, the write-
backs for scalar_out can overwrite the first few bytes of vector_in1 in main memory, due to
writeback granularity. The DMA read may thus read wrong data values. (This data race is similar
to the problem of false sharing, but this is a correctness bug rather than a performance issue.) Such
a data race is completely invisible to prior data race detectors, which don’t model the interaction
between caches and non-coherent accesses. In practice, the race might be impossible on some plat-
forms, yet appear unpredictably on others, making the code non-portable and nearly impossible
to debug. Yet, our analysis uncovered the bug easily.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

6:22 M. Young et al.

The other data race detected had the same root cause: in the vbw_mtx_motest example, the
compiler had allocated memory in such a manner that writebacks from cached memory affected
regions of memory that were supposed to be accessed only via uncached reads and writes. Once
discovered, the bugs are easily fixed via careful data alignment, but both bugs were previously
undiscovered in the SDK. These examples highlight the subtlety of data races for heterogeneous
systems, and the ability of our analysis to find them.

5 RELATED WORK

As noted in the introduction, there is an extensive body of research on data race detection. Here,
we briefly mention a few of the more influential and relevant lines of research.

Data race detectors can be broadly grouped into those based on locksets versus those that reason
about the happens-before relation, plus hybrids of the two. Lockset approaches presume that any
concurrent object should be protected by a lock and compare the sets of locks guaranteed to be
held by concurrent accesses. Representative lockset-based data race detectors include Warlock
[23], Eraser [19], RacerX [6], RELAY [26], and Locksmith [17]. Lockset approaches typically exhibit
superb scalability, but suffer from imprecision and false positives. Locksets also reflect a higher-
level view of memory accesses and don’t reflect the data races in low-level code that concern us.
Type-based analyses (e.g., [1, 7]) can be viewed as generalizations and extensions of lockset-based
approaches.

Pure happens-before reasoning tends to be too slow, given its low-level view of tracking of all
memory operations. State-of-the-art tools typically use happens-before reasoning for low-level
precision, but combine it with more sophisticated, higher-level analyses for efficiency. Examples
of such hybrids include the methods of O’Callahan and Choi [16], which explore a wide variety
of lightweight static analyses combined with happens-before reasoning; FastTrack [8], which uses
an adaptive representation for the happens-before relation that requires only constant space for
common cases (thread local, lock protected, read shared) without loss of precision; and IFRit [5],
that uses static analysis to determine interference-free regions to eliminate most potential data
races. LiteRace [14] is also happens-before-based, but pioneered the use sampling, focusing the
analysis only on portions of the code that have not been executed extensively. (IFRit also does
some sampling.)

Our prototype data race detector uses pure happens-before reasoning and is definitely not state-
of-the-art. However, the novelty is our abstraction of cache behavior, to allow reasoning about
and detecting data races involving interaction between caches and non-coherent memory accesses.
This is an issue not addressed by prior work.

Closer in spirit to our work, GRace [27] is a data race detector for GPU programs. Like our work,
their focus is on data races and hardware accelerators. Unlike our work, their focus is exclusively
on data races within the accelerator itself, whereas we focus exclusively on data races occurring
from the interaction between cached memory and uncached accelerators.

The specification of memory models for shared-memory multiprocessors has some similarities
to our problem. Both problems require reasoning about the ordering of operations on a shared
memory in the presense of complicated hardware optimizations. For that problem, the research
community has gravitated towards axiomatic specifications that relax typical ordering constraints
in subtle ways, to permit the behaviors exhibited by high-performance microarchitectures (e.g., [2]
is a classic survey, and we have already cited [4], which employs such an approach for the ARM
and Power ISAs). Such a solution is appropriate for that problem, since the memory model is
part of the ISA, so it is desirable to have underspecified behavior to allow future optimizations,
and there are few different ISAs, so only a few different memory models need be formalized. In
contrast, for modern, accelerator-rich systems, every configuration might have different data races,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:23

so the task of specifying correct behavior must be more precise, yet less laborious than for general
memory models. Accordingly, we follow a different direction: rather than try to create a more
complex ordering formalism to abstract what a broad class of microarchitectures might do, we
simply follow the microarchitecture of the specific caches, but provide a safe abstraction to prevent
a combinatorial explosion of possible happens-before graphs.

6 CONCLUSION AND FUTURE WORK

We have introduced the first systematic approach to finding data races arising from the interaction
of cached memory accesses and non-coherent memory accesses, as arise in heterogeneous systems
with non-coherent accelerators. The key contribution is a novel abstraction for cache behavior.
We formally prove the abstraction sound (i.e., any data race in an execution is guaranteed to be
detected), and empirically demonstrate that even in a basic implementation, it is scalable enough
to be useful, yielded zero false positives, and discovered two previously unknown data races.

The obvious direction for future work is to try embedding our abstraction into a state-of-the-
art dynamic race detector, or conversely, to incorporate techniques from state-of-the-art dynamic
race detectors into ours. The benefits would be greatly improved performance and scalability over
our implementation, and/or the novel capability to detect an emerging class of data races for the
state-of-the-art race detector. In general, this is potentially possible for any race detector that rea-
sons about the happens-before graph. Specifically revisiting the hybrid dynamic race detectors
cited in Section 5, we find that unfortunately, some tools are targeted at a much high-level view of
concurrency, and some optimizations appear to be difficult to reconcile with our abstraction, but
fortunately, most techniques appear readily compatible with ours. For example, O’Callahan and
Choi [16] focus specifically on Java threads, and their methods exploit the assumption that at least
some synchronization is lock-based. However, if we make the same assumption of some lock-based
synchronization, we could employ their same lockset-based redundancy checks (lockset-subset
and oversized-lockset) to prune some memory operations from the happens-before graph. Simi-
larly, FastTrack [8] also presumes a higher, software-level view of concurrent threads, but if such
information were available, their notion of “epochs” holds promise for pruning the happens-before
graph and improving scalability. For example, they track only the latest write to a given address
a, as we do in our active frontier optimization, but they have similar optimizations if they can
establish that reads are thread-local or lock-protected. LiteRace’s [14] sampling-based approach —
which builds the happens-before graph for only a small fraction of memory operations, concen-
trating on lightly tested parts of the code — is completely orthogonal to the happens-before graph
construction itself, and hence should be straightforward to merge with our method. Only with
IFRit [5] is it unclear how to combine our approach with theirs. They are essentially constructing
the happens-before graph over “interference free regions” (IFRs) instead of individual mem-
ory operations, but IFRs are precise-but-unsound7 abstractions of potentially data-racing memory
operations. It may be possible to adapt the notion of an IFR to incorporate our visible abstract
caches and additional abstractions, but the combination of our sound-but-imprecise abstractions
with their unsound-but-precise abstraction eliminates any guarantees about the resulting analy-
sis. Nevertheless, it might be empirically effective. Perhaps most promising would be adding our
abstractions to the widely deployed Thread Sanitizer system [20]. Thread Sanitizer has a “pure
happens-before mode”, which could be easily augmented with our abstract cache models. Their

7Note that the paper reverses the usual terminology and describes their method as “sound” but “imprecise” and/or “in-

complete”. IFRs are precise, because 100% of the data races detected using IFRs are true data races, but the technique is

unsound because data races can be missed. The paper describes IFRs as “sound” in the sense that overlapping IFRs provably

guarantees the existence of a data race.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

6:24 M. Young et al.

“segments” are a sound way to group memory accesses together into a single node in the happens-
before graph, improving scalability. And their hybrid lockset-based optimizations are orthogonal
to their happens-before reasoning, so there should be no conflict.

As raised in footnotes 3 and 5, our simple, proof-of-concept dynamic race detector assumes se-
quential consistency, so another obvious improvement would be to extend our implementation for
“full-stack” soundness (a la “full-stack memory consistency models” [24]), through the high-level
language memory model, any compiler optimizations, and any relaxed ISA memory model. As
noted earlier, this could be done by instrumenting at lower levels, e.g., the memory interface of
the CPU (perhaps implemented using a system simulator). An alternative would be to formalize
the composition of memory models (e.g., [13, 24]) and use the resulting relaxed, composite model
instead of program order as the basis of the happens-before relation. Combinations are also possi-
ble, e.g., SC-preserving compilation [15] or binary instrumentation, combined with a formalization
of the relaxed ISA memory model (e.g., [4]).

From a more conceptual perspective, two opposing directions seem promising. One direction
would be towards fully formal verification, by embedding our analysis into a bounded model
checker or static analyzer. Challenges here would be disambiguating memory references and find-
ing a way to join the graphs when program paths join, without being too lossy. The other direction
would be to try to simplify the approach to be fast enough to be used as a runtime checker. This
would require a much smaller and simpler approximation of the happens-before relation and a
much faster check for races, as well as exploiting known techniques for pre-analyzing the code
to be checked and possible hardware support. Another interesting direction would be automatic
synthesis/optimization of synchronization code. With a data race checker, one could exhaustively
explore inserting/deleting synchronization operators. SAT/SMT-style heuristics might make such
an approach practical.

ACKNOWLEDGMENTS

The authors would like to thank Sam Bayless for insightful comments early in this work.

REFERENCES

[1] Martin Abadi, Cormac Flanagan, and Stephen N. Freund. 2006. Types for safe locking: Static race detection for Java.

ACM Transactions on Programming Languages and Systems (TOPLAS) 28, 2 (2006), 207–255. https://doi.org/10.1145/

1119479.1119480

[2] Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared memory consistency models: A tutorial. Computer 29, 12

(1996), 66–76. https://doi.org/10.1109/2.546611

[3] Sarita V. Adve, Mark D. Hill, Barton P. Miller, and Robert H. B. Netzer. 1991. Detecting data races in weak memory

systems. In 18th ACM/IEEE International Symposium on Computer Architecture (ISCA). 234–243. https://doi.org/10.

1145/115953.115976

[4] Jade Alglave, Anthony C. J. Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar, Peter Sewell, and Francesco

Zappa Nardelli. 2009. The semantics of power and ARM multiprocessor machine code. In POPL 2009 Workshop on

Declarative Aspects of Multicore Programming. 13–24. https://doi.org/10.1145/1481839.1481842

[5] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J. Boehm. 2012. IFRit: Interference-free

regions for dynamic data-race detection. In ACM International Conference on Object Oriented Programming Systems

Languages and Applications (OOPSLA’12). 467–484. https://doi.org/10.1145/2384616.2384650

[6] Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, static detection of race conditions and deadlocks. ACM

SIGOPS Operating Systems Review 37, 5 (2003), 237–252. https://doi.org/10.1145/1165389.945468

[7] Cormac Flanagan and Stephen N. Freund. 2000. Type-based race detection for Java. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI’00). ACM SIGPLAN Notices 35, 5, 219–232. https://doi.org/

10.1145/349299.349328

[8] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and precise dynamic race detection. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI’09). ACM SIGPLAN Notices 44, 6,

121–133. https://doi.org/10.1145/1543135.1542490

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

https://doi.org/10.1145/1119479.1119480
https://doi.org/10.1109/2.546611
https://doi.org/10.1145/115953.115976
https://doi.org/10.1145/1481839.1481842
https://doi.org/10.1145/2384616.2384650
https://doi.org/10.1145/1165389.945468
https://doi.org/10.1145/349299.349328
https://doi.org/10.1145/1543135.1542490

Cache Abstraction for Data Race Detection in Heterogeneous Systems 6:25

[9] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2018. Accelerators and coherence: An SoC perspective. IEEE Micro

38, 6 (2018), 36–45. https://doi.org/10.1109/MM.2018.2877288

[10] John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2

(2019), 48–60. https://doi.org/10.1145/3282307

[11] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21, 7 (1978),

558–565. https://doi.org/10.1145/359545.359563

[12] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan Padhye. 2019. Efficient scalable thread-safety-

violation detection: Finding thousands of concurrency bugs during testing. In 27th ACM Symposium on Operating

System Principles (SOSP’19). ACM, 162–180. https://doi.org/10.1145/3341301.3359638

[13] Yatin A. Manerkar, Daniel Lustig, and Margaret Martonosi. 2020. RealityCheck: Bringing Modularity, Hierarchy, and

Abstraction to Automated Microarchitectural Memory Consistency Verification. arXiv:2003.04892 [cs.DC]

[14] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009. LiteRace: Effective sampling for lightweight

data-race detection. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’09).

ACM, 134–143. https://doi.org/10.1145/1542476.1542491

[15] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2011. A case for an

SC-preserving compiler. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’11).

199–210. https://doi.org/10.1145/1993498.1993522

[16] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid dynamic data race detection. In ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP’03). 167–178. https://doi.org/10.1145/781498.781528

[17] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2011. LOCKSMITH: Practical static race detection for C. ACM

Transactions on Programming Languages and Systems (TOPLAS) 33, 1 (2011), 3. https://doi.org/10.1145/1889997.1890000

[18] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. 2012. Scalable and precise dynamic

datarace detection for structured parallelism. In 33rd ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’12). 531–542. https://doi.org/10.1145/2345156.2254127

[19] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser: A dynamic

data race detector for multithreaded programs. ACM Transactions on Computer Systems (TOCS) 15, 4 (1997), 391–411.

https://doi.org/10.1145/265924.265927

[20] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data race detection in practice. In Workshop

on Binary Instrumentation and Applications (WBIA’09). ACM, 62–71. https://doi.org/10.1145/1791194.1791203

[21] Aaron Severance and Guy G. F. Lemieux. 2013. Embedded supercomputing in FPGAs with the VectorBlox MXP

matrix processor. In International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’13).

IEEE/ACM/IFIP, 1–10. https://doi.org/10.1109/CODES-ISSS.2013.6658993

[22] Inderpreet Singh, Arrvindh Shriraman, Wilson W. L. Fung, Mike O’Connor, and Tor M. Aamodt. 2013. Cache coherence

for GPU architectures. In IEEE International Symposium on High Performance Computer Architecture (HPCA). 578–590.

https://doi.org/10.1109/HPCA.2013.6522351

[23] Nicholas Sterling. 1993. WARLOCK–A static data race analysis tool. In USENIX Winter Technical Conference. USENIX

Association, 97–106.

[24] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2017. TriCheck: Mem-

ory model verification at the trisection of software, hardware, and ISA. In 22nd International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS’17). 119–133. https://doi.org/10.1145/

3037697.3037719

[25] Ana Lucia Varbanescu and Jie Shen. 2016. Heterogeneous computing with accelerators: An overview with examples.

In 2016 Forum on Specification and Design Languages (FDL). IEEE, 1–8. https://doi.org/10.1109/FDL.2016.7880387

[26] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static race detection on millions of lines of code. In 6th

Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering (ESEC-FSE’07). ACM, 205–214. https://doi.org/10.1145/1287624.1287654

[27] Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal. 2011. GRace: A low-overhead mechanism for detecting

data races in GPU programs. In ACM Symposium on Principles and Practice of Parallel Programming (PPoPP’11). 135–

146. https://doi.org/10.1145/2038037.1941574

Received 2 December 2021; revised 25 March 2022; accepted 2 May 2022

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 1, Article 6. Publication date: December 2022.

https://doi.org/10.1109/MM.2018.2877288
https://doi.org/10.1145/3282307
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3341301.3359638
http://arxiv.org/abs/2003.04892
https://doi.org/10.1145/1542476.1542491
https://doi.org/10.1145/1993498.1993522
https://doi.org/10.1145/781498.781528
https://doi.org/10.1145/1889997.1890000
https://doi.org/10.1145/2345156.2254127
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1109/CODES-ISSS.2013.6658993
https://doi.org/10.1109/HPCA.2013.6522351
https://doi.org/10.1145/3037697.3037719
https://doi.org/10.1109/FDL.2016.7880387
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/2038037.1941574

