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ABSTRACT

Generating genuinely creative and novel artifacts with machine
learning is still a challenge in the world of computational science. A
creative machine learning agent can be beneficial for applications
where novel solutions are desired and may also optimize search.
Reinforcement Learnings’ (RL) interactive properties can make it an
effective tool to investigate these possibilities in creative contexts.
This paper shows how a Reinforcement learning-based technique,
in combination with Principal Component Analysis (PCA), can be
utilized for generating varying movements based on a goal picking
policy. The proposed model is trained on a data set of motion
capture recordings of dance improvisation. Our study shows that
the trained RL agent can learn to pick sequences of dance poses
that are coherent, have compound movement, and can resemble
dance.
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1 INTRODUCTION

Movement generation using Artificial Intelligence (Al) is a complex
task, and artistic movement such as dance introduces an additional
set of challenges as the space of potentially interesting solutions
is infinite and subjective. Dance generation has been explored pre-
viously using deep learning sequence prediction models such as
LSTMs [2, 15, 17], and the Transformer model [7, 8, 16]. However,
using a supervised learning approach enforces an expectation that
there is a single correct next state given any starting position. When
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generating artistic output, this is not the case. In generative Al ap-
plications, this is often addressed through the use of Generative
Adversarial Networks [1], but this method requires large data sets
and can be difficult to train effectively. A promising alternative
is RL [11]. However, finding an appropriate reward function and
evaluating the agents performance remains a challenge. Recently
several works have used RL to generate artistic outputs like music
and paintings [3, 4, 9, 13, 21]. The idea of using RL to generate
novel creative artifacts was explored by J. Schmidhuber using the
concept of curiosity and intrinsic motivation (internal rewards as
opposed to external rewards, affecting behaviour) [12]. One way
of achieving intrinsic motivation is to use Hierarchical RL (HRL)
algorithms. Kulkarni et al. [6] propose an approach for dealing
with delayed rewards in some video games, using HRL based on
temporal abstraction. Our work is inspired by the HRL approach
and uses predefined goals to generate dance sequences which are
inspired by the dance samples observed by the agent.

2 METHODS

Using a data-set of dancers captured with full-body motion capture,
we analyze the data, frame by frame, and feed it to our RL. The RL
is programmed to generate its own versions of the dance based on
a list of predefined goals.

2.1 Movement data, goals and evalution

The training data contains 162 examples of improvised dance from
an open access data set!, previously used by Wallace et al. [17, 18].
The time-series consist of 22, 3-dimensional points on the dancers
bodies, captured at a rate of 30 frames per second.

We define a set of goals, G, as a series of movement frames. The
goals are stored as a dictionary, where the name of the goal is the
key. We created each goal g by animating the data sets and visually
inspecting the animation for positions that seemed interesting to
us and were sufficiently different from the rest of our goal posi-
tions. Examples are demonstrated in Figure 1. How the goals are
structured is shown in Figure 2.

Defining states is a problem when using time-series data with
high dimensionality. When deciding on a metric for evaluating
the generated movements we use the center point of the 22 joints
(See Figure 3a). This center point is the mean value of the dancer’s
positions in x, y and z dimensions. We use these center points to
IWallace, Benedikte, Nymoen, Kristian, Martin, Charles P., & Torresen, Jim. (2022).
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Figure 1: How the agent follows goal positions. Pose names are arbitrary and not of importance to the algorithm and its

workings.
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Figure 2: Overview of our reinforcement learning based ap-
proach

calculate a single metric for each frame. The metric is the average
Euclidean distance from each of the 22 points to the center point.
This approach allows for ease of evaluation, but does incur a loss
of information.

We construct a memory unit (See Figure 2) to store the data. The
unit we use functions as an ordered list, where the “memories” (state
transitions) are ordered by the same metric as they are evaluated

by. The memory unit has a finite size and will at some point during
training be full. When trying to store a new memory while the
unit is full, the unit will find the closest memories it has stored and
replace one of them if it has worse expected reward than the new
memory, if not it will be discarded.

2.2 Rewarding behaviour

Salleh et. al. [10] suggest a 30/70% explore/exploit-ratio for optimal
search in Swarm-Based Metaheuristic Algorithms. We use this
information to create a bell curve distributed reward function that
motivates 30% divergence, shown in Figure 3b.

2.3 Movement generation

When generating new movement, the agent uses the input data
for comparison. We use a hyper-parameter f, as the number of
frames for an agent to follow a certain goal. A goal is either picked
at random or sampled from the memory unit. After f frames, the
movement is evaluated by calculating its difference from the ob-
served dance and thereafter sent to the memory unit. Then a new
goal is set using an epsilon greedy policy [19]. When an entire
dance sequence is used, a new one is picked and the process repeats
(Figure 2). When generating movement, the agent uses the delta
values from the goal position to where the points currently are in
the 3D-space. It then multiplies these values with a static, tuneable
parameter from 0 to 1, which decides how fast the agent moves
towards the goal.

2.4 Using PCA for goal-selection

A second approach using PCA has also been implemented. The
PCA model is fitted to the full data set, reducing it down to three
principal components. During goal selection we look back at the
preceding 30 frames of generated dance data and project them down
on three dimensions. The three values are averaged over the 30
frames to get the average of the three most principal components
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(a) Figure showing what the data looks like when ani-
mated. Black dots represent the 22 3D positions of the
dancer. The blue dot represents the calculated center
point for the frame and the red lines represent the dis-
tance from the points representing the dancer to the cen-
ter point.

%-difference from dancer

(b) The reward function, a bell curve with maximum at a
30% difference.

Figure 3: Setup for calculating rewards

for the given time span. These values are used to store the data in
our memory unit.

2.5 Visual comparison of generated dance
motion

The goal of this comparison is to identify visual differences between
the implementations. It is conducted as a side by side comparison
by the authors. As a benchmark, a random goal selection strategy
is used, in which the agent does not utilize its internal memory
but picks goals from the goal pool randomly. For each instance of
input data, we compare the three different goal selection strategies
(random, PCA and center point difference), as well as the input
motion.

MOCO’22, June 22-24, 2022, Chicago, IL, USA

3 RESULTS
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(a) Results of RL trained agent (without PCA implementation) show-
ing convergence towards a reward value of about 0.46. Individual

runs still vary quite a lot, but become better on average over time.
The red curve fit to the data shows the general reward trend of the

trained agent.

(b) Keyframes of the first couple of seconds of generated dance with
the agent. a) Goals are picked at random. b) Goals are picked by the
agent (No PCA algorithm. Center point deviation evaluation.).

a)

Figure 4

Results show a steady increase in average reward over the episodes.
Since each episode tackles a different dance sequence than the next,
the average reward for each subsequent episode varies. The agent
optimizes for the general data set, and will, on average, do well
on most of the data. On the other hand, we can clearly see that
it does not work as well for some of the dance sequences. Figure
4a shows that when in the later stages of the training we still get
some episodes with quite low average reward. This run was done
by setting a goal for every five frames. The average performance
for each episode converges towards a reward of about 0.46. Since
we measure the average reward of each episode there is a varying
degree of success within them. Note that the rewards presented in
Figure 4a were calculated by setting a goal for five frames at a time
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while the results used in the visual evaluation come from setting a
goal for ten frames at a time. The trend seen in 4a is the same seen
for ten frames.

3.1 Visual comparison

Visually, none of the generated dances correlates with the original
input motion capture, and all generally maintain an even pace. The
randomly generated dance performs small, smooth, and disorderly
movements, only within a small scope of its available movement
space. The RL-algorithms movements are more compound, result-
ing in larger, more sudden changes in posture (See 4b), although
sometimes sharp and abrupt, breaking the flow. The RL PCA agent
falls in between the two former agents. It performs large compound
movements without the abrupt changes, in a fixed fast-paced tempo,
being perceived as energetic, but not as diverse as the RL imple-
mentation. Videos available on YouTube?.

3.2 Quantitative measurements

To contribute to assessing the flow and thus dance-like quality of
the agents generated movement, fluidity values were calculated.
The fluidity measurements indicate the level of flow and circularity
present in the movement. It gives the ratio between velocity and
acceleration of the normalized and averaged data. The larger the
fluidity measurement, the greater the fluidity of the movements.
The fluidity measurements of the RL agent ranged between 0.1720-
0.1803, and 0.1669-0.1769 for the RL-PCA agent. The random agent
ranged between 0.1651-0.1699.

We also measured the cumulative distances traveled by each of
the markers in the generated movements. The RL agent had an
average cumulative distance of 6.4x10°, RL-PCA agent had a value
of 6.7%10°, and the random agent had a value of 4.8%10°.

4 DISCUSSION

4.1 Visual comparison

The RL algorithm seems to make improvements, as the two RL
implementations, with their more compound movements, ordered
transitions, and pose choices perform better than the random al-
gorithm. The RL-PCA is considered the best, being perceived as
smoother, more energetic, and lacking irregularities, implying that
the PCA provides smoother transitions and better flow. Input dance
and generated dance seem unrelated, implying "novelty” in this
sense, and is presumably caused by the center point evaluation.
More complex methods might decrease the deviation. Also, the 30%
differentiation-ratio might be too high. The monotone tempo is
presumably caused by the fixed goal-picking pace. The algorithms
seems to improve the peformance, but we will not claim that the
results are genuinely creative or novel.

4.2 Measurements

On average the RL agent had slightly larger fluidity values than the
PCA-RL agent, indicating that the RL agent has the smoothest gen-
erated movement. This is surprising due to the visual comparison
concluding the PCA-RL to be smoother. Both trained agents had
larger fluidity values than the random agent. The differences are

Zhttps://youtube.com/playlist?list=PLtPJR9As AyV VMruA0417FbuDjLYCKhoVE
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small, and fluidity may not be a significant performance measure-
ment. On average the PCA-RL agent had the largest cumulative
distance. The PCA-RL agent and the RL agent have very similar
average cumulative distances, while the random agent has a much
smaller cumulative distance than the other two. This agrees with
the visual observations of the trained agents’ generated movements
being larger and more compound than the random agent’s move-
ments.

4.3 Limitations and future work

A lot of information gets lost during the center point calculation.
Better positional simplification could perhaps solve this. The re-
ward system makes it nearly impossible for the agent to reach full
reward, as it requires there to be a 30% perfectly deviating goal to
pick for every frame in every sequence. The visual comparison has
a very limited selection of five results to evaluate. To get a more
holistic impression, more videos should be generated and compared.
Identifying creativity is challenging, and often subjective [5]. Hav-
ing only the authors performing the comparisons brings limitations.
Having a larger representation of different, independent assessors
may increase the comparisons’ quality. A perceptual judgment ex-
periment could be conducted [14]. The Wiggins CSF model [20]
may also be a good alternative.

5 CONCLUSION

We have attempted a new implementation of an RL and PCA-based
agent for dance generation, with a reward structure that moti-
vates divergence from the original data set. It learns by observing
improvisational-dance motion recordings. When presented with
new dance sequences, the trained agent will try to improvise its
own novel and coherent dance. Defining creativity in generative
Al is challenging. From our results, it is hard to define anything
the agent does as creative. Movements generated by the RL and the
RL-PCA implementations are larger, more compound and coherent
than of the random agent. Although lacking the expected flow and
choreography of a dance performance, they can be considered as
some form of dance. There is still a long way before this approach
can create truly human-like dance performances, but it provides a
groundwork that can be expanded and developed.
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