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Abstract

We present two new algorithms for Householder QR factorization of Block Low-Rank (BLR) matrices:
one that performs block-column-wise QR, and another that is based on tiled QR. We show how the
block-column-wise algorithm exploits BLR structure to achieve arithmetic complexity of O(mn), while the
tiled BLR-QR exhibits O(mn1.5) complexity. However, the tiled BLR-QR has finer task granularity that
allows parallel task-based execution on shared memory systems. We compare the block-column-wise BLR-
QR using fork-join parallelism with tiled BLR-QR using task-based parallelism. We also compare these
two implementations of Householder BLR-QR with a block-column-wise Modified Gram-Schmidt (MGS)
BLR-QR using fork-join parallelism, and a state-of-the-art vendor-optimized dense Householder QR in
Intel MKL. For a matrix of size 131k × 65k, all BLR methods are more than an order of magnitude faster
than the dense QR in MKL. Our methods are also robust to ill-conditioning and produce better orthogonal
factors than the existing MGS-based method. On a CPU with 64 cores, our parallel tiled Householder
and block-column-wise Householder algorithms show a speedup of 50 and 37 times, respectively.

Keywords: Block low-rank matrix, QR factorization, householder reflections, task-based execution

1 Introduction

QR factorization plays a central role in solving scientific and engineering problems. It factorizes a matrix A ∈ Rm×n
(m ≥ n) into

A = QR, (1)

where Q ∈ Rm×m is orthogonal (QQT = QTQ = I) and R ∈ Rm×n is upper triangular. QR factorization is well-known
as a stable direct method to solve least squares problems [40]. It is also used as a stable solver for linear systems,
possibly as an alternative to LU decomposition without pivoting [19], and has been used in efficient algorithms for
computing polar decomposition [31] and spectral decomposition [32].

A wide range of problems in computational science requires factorizing dense matrices. Since traditional factorization
methods require O(n3), they have become the bottleneck for large-scale computation. Therefore, many techniques
have been proposed to perform efficient factorization by exploiting the underlying structure of the matrices. A notable
example is the low-rank structure arising from the discretization of integral equations, where the resulting full-rank
matrices have been shown to possess many rank-deficient off-diagonal blocks [21]. This observation provides the basis
of hierarchical low-rank representations [13, 8, 6] that greatly reduce storage requirement and allow factorization in
linear-polylogarithmic time. A similar low-rank structure has also been exploited in solving Toeplitz least squares
problems [41] and sparse least squares problems [18, 17].

Block Low-Rank (BLR) matrices [3] exploit a similar low-rank property, but produce a flat 2D blocked structure
unlike the aforementioned hierarchical representations. This results in arithmetic complexity of O(n2) for LU and QR
factorization [4, 24]. Even though the hierarchical representations achieve lower complexity than BLR, the simplicity
and flexibility of the BLR format make it easy to use in the context of a general-purpose, algebraic solver [5]. Its
simple, non-hierarchical structure is also efficient on parallel computers [27, 1, 15, 37]. Moreover, it has been shown
that matrix-vector multiplication based on BLR-matrices is significantly faster than Hierarchical matrices for a large
number of processes [25]. For these reasons, BLR-matrices may be a better choice, at least for some problem classes
and sizes [5].

In recent years, BLR factorization has generated considerable research interest. BLR-LU direct solvers have been
shown to perform better than full-rank solvers in a sequential environment [5]. Cholesky direct solvers using the BLR
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format have been utilized for weather modeling [2] and PASTIX supernodal solver [33] on multicore architectures.
BLR direct solvers have also been used in large-scale computation on distributed memory systems for seismic and
electromagnetic [38] and geospatial statistics problems [1, 14].

However, QR factorization of BLR-matrices is not a well-studied problem. Ida et al. have combined the Gram
Schmidt orthogonalization with BLR-matrix arithmetic to perform QR factorization on distributed memory systems
[24]. Even so, the method still relies on the traditional fork-join approach that has relatively large synchronization
overhead. It may also suffer from numerical instability as it inherits the property of Gram-Schmidt iteration. In this
article, we present two new algorithms for the QR factorization of BLR-matrices: one that performs block-column-wise
QR based on the blocked Householder method [19], and another one that is based on the tiled QR [20]. Using
the numerically stable Householder triangularization and BLR-matrix arithmetic, the block-column-wise algorithm
achieves a theoretical complexity of O(mn), while the tiled BLR-QR exhibits O(mn1.5) complexity. Nonetheless,
the tiled BLR-QR has finer granularity that allows for parallel task-based execution on shared memory systems.
This leads to an out-of-order execution with very loose synchronization compared to the fork-join model. Numerical
experiments show that our algorithms are more than an order of magnitude faster than the vendor-optimized dense
Householder QR in Intel MKL. Moreover, our algorithms are robust to ill-conditioning and achieve higher parallel
speedups compared to the existing Gram-Schmidt-based algorithm.

The rest of this article is organized as follows. In Section 2, we first summarize well-known methods to perform
blocked and tiled QR decomposition of dense matrices. In Section 3 we briefly introduce BLR-matrices and elaborate
on different methods to perform QR decomposition on them. We begin with an overview of the existing method
that relies on modified Gram-Schmidt iteration. Then we explain our new algorithms: the first one that performs
block-column-wise Householder QR; followed by one that is based on the tiled Householder QR. We then present the
parallelization of our algorithms in Section 4, using both traditional fork-join and modern task-based execution models
on shared-memory systems. Section 5 presents the results of various numerical experiments to show the performance
and accuracy of our algorithms using several examples. Section 6 concludes this article.

2 Block Dense QR

In this section, we summarize the standard blocked and tiled methods for QR decomposition of dense matrices.
Although they have similar O(mn2) arithmetic complexity as the unblocked version, the blocked and tiled methods
are known to be more efficient on modern supercomputers since they are rich in Level-3 BLAS operations that provide
high performance on memory hierarchy systems [11].

To facilitate this, we assume that the matrix A ∈ Rm×n is subdivided into p× q square blocks of size b× b, where
b is the chosen block size, p = m/b, and q = n/b. Extension to rectangular block is possible with extra permutation
steps.

2.1 Blocked Modified Gram-Schmidt Dense QR

The modified Gram Schmidt (MGS) orthogonalization is a well-known method for computing QR factorization. The
blocked version of this method is proposed in [26]. Consider a matrix A ∈ Rm×n = [A1 A2] such that A1 and A2 are
the block-columns of A. Then we can rewrite Equation 1 as

[A1 A2] = [Q1 Q2]

[
R1,1 R1,2

0 R2,2

]
. (2)

Thus A can be orthogonalized by the following steps:

1. Orthogonalize block-column A1 = Q1R1,1.

2. Compute R1,2 = QT1 A2.

3. Update A2 ← A2 −Q1R1,2.

4. Orthogonalize block-column A2 = Q2R2,2.

These steps can be extended for arbitrary number of block columns, as shown in Algorithm 1. This is typically the
method of choice when A is well-conditioned. However, when A is ill-conditioned, this method suffers from numerical
instability due to rounding errors inherent in floating-point arithmetic on computers [40].

2.2 Blocked Householder Dense QR

Householder triangularization is the principal method of QR factorization for its numerical stability. The blocked
version of this method is proposed in [19], where the basic idea is to reorganize the computation by applying the
Householder transformations in a cluster of columns at a time, i.e. triangularizing one block-column at a time.
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Algorithm 1: Blocked Modified Gram-Schmidt (MGS) QR factorization

Input: A with p× q blocks
Output: Q with p× q blocks and R with q × q blocks such that A = QR

1 for j = 1 to q do
2 [Qj , Rj,j ] = QR(Aj)
3 for k = j + 1 to q do
4 Rj,k = QTj Ak
5 Ak ← Ak −QjRj,k
6 end

7 end

Before we proceed to the blocked version, let us recall the standard non-blocked method. Householder QR produces
a factorization as in Equation 1 by performing Householder triangularization on A. However, unlike the Gram Schmidt
QR, it does not directly produce the orthogonal factor Q. Instead, it performs in-place factorization such that in the
end A is replaced with R in its upper triangular part and Householder vectors in its lower triangular part. These
Householder vectors are then used to construct Q when needed. This extra step of construction from Householder
vectors is rich in matrix-vector multiplication and cannot fully utilize the parallelism in modern computers. For this
reason, the compact WY representation [36] has been proposed, which accumulates Householder reflectors such that

Q = I − Y TY T , (3)

where Y ∈ Rm×n is a unit lower trapezoidal matrix containing Householder vectors, and T ∈ Rn×n is upper triangular.
The generation of Y and T requires extra steps of O(n3). Using this scheme, Y can still be stored in the lower
triangular part of A, but additional storage for T is needed. Throughout this article, we assume that Householder QR
factorization on dense matrices uses this representation to store Q.

For the sake of simplicity, consider the matrix A ∈ Rm×n partitioned into a 3× 2 block matrix

A =

 A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

 , (4)

where Ai,j ∈ Rb×b. If we rewrite Equation 1 as A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

 = Q

 R1,1 R1,2

0 R2,2

0 0

 , (5)

A can be triangularized as follows:

1. Triangularize block-column

 A1,1

A2,1

A3,1

 = Q̂1

 R1,1

0
0

.

2. Update

 R1,2

A2,2

A3,2

← Q̂T1

 A1,2

A2,2

A3,2

.

3. Triangularize block-column

[
A2,2

A3,2

]
= Q̂2

[
R2,2

0

]
.

The orthogonal factor Q can then be constructed as

Q = Q̂1

[
I 0

0 Q̂2

]
. (6)

Algorithm 2 shows the generalization of blocked Householder QR based on step (1)-(3) above for an arbitrary number
of blocks. Note that the Householder triangularization ultimately amounts to multiplication by QT from the left. Thus,
when needed, multiplication with Q can be done by performing similar steps in the correct order and transposition.
Algorithm 3 shows the method to multiply a matrix C by Q from the left, which has roughly the same cost as
Algorithm 2.
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Algorithm 2: Blocked Householder QR factorization

Input: A with p× q blocks
Output: Y,R with p× q blocks and T with 1× q blocks such that R is upper triangular and Y, T contain

intermediate orthogonal factors
1 for k = 1 to q do

2 QR




Ak,k
Ak+1,k

...
Ap,k


 = Q̂k


Rk,k
0
...
0

, such that Q̂k = I −


Yk,k
Yk+1,k

...
Yp,k

Tk


Yk,k
Yk+1,k

...
Yp,k


T

3 for j = k + 1 to q do

4 Update


Rk,j
Ak+1,j

...
Ap,j

← Q̂Tk


Ak,j
Ak+1,j

...
Ap,j


5 end

6 end

Algorithm 3: Left multiplication by Q from blocked Householder algorithm

Input: Y with p× q blocks, T with 1× q blocks, C with p× q blocks
Output: C ← QC

1 for k = q downto 1 do
2 for j = q downto k do

3 Update


Ck,j
Ck+1,j

...
Cp,j

←
I −


Yk,k
Yk+1,k

...
Yp,k

Tk


Yk,k
Yk+1,k

...
Yp,k


T



Ck,j
Ck+1,j

...
Cp,j


4 end

5 end

2.3 Tiled Householder Dense QR

Gunter and Van De Geijn decomposed the operations of blocked Householder QR further to obtain the tiled Householder
method [20]. The method takes its root in the updating factorization technique [19, 39]. From Equation 5, the upper
triangularization of A can also be done by:

1. Upper triangularize block A1,1 = Q̂1,1R1,1.

2. Compute R1,2 = Q̂T1,1A1,2.

3. Upper triangularize

[
R1,1

A2,1

]
= Q̂2,1

[
R1,1

′

0

]
, which zeroes A2,1 and updates R1,1.

4. Update

[
R1,2

A2,2

]
← Q̂T2,1

[
R1,2

A2,2

]
.

5. Upper triangularize

[
R1,1

′

A3,1

]
= Q̂3,1

[
R1,1

′′

0

]
, which zeroes A3,1 and updates R1,1

′.

6. Update

[
R1,2

A3,2

]
← Q̂T3,1

[
R1,2

A3,2

]
.

7. Upper triangularize block A2,2 = Q̂2,2R2,2.

8. Upper triangularize

[
R2,2

A3,2

]
= Q̂3,2

[
R2,2

′

0

]
, which zeroes A3,2 and updates R2,2.

Algorithm 4 shows the generalization of step (1)-(8) for an arbitrary number of blocks. Analogous to the blocked
Householder method, the construction of Q can also be done by performing similar steps in the correct order and
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transposition. Algorithm 5 shows the method to left-multiply by Q, which also has roughly the same cost as Algorithm
4.

It is important to see that the tiled Householder QR is similar to the blocked Householder QR, except that the
upper triangularization of a block column is decomposed into multiple, smaller operations involving at most two
blocks at a time. This improves granularity and data locality of the operations. However, this leads to a larger storage
requirements as we need to store more ”T” matrices from the intermediate QR factorizations. On the contrary, the
same approach to decompose block-column operation is quite difficult to apply to the blocked MGS method since
orthogonalization needs all information of the column.

Algorithm 4: Tiled Householder QR factorization

Input: A with p× q blocks
Output: Y, T,R with p× q blocks such that R is upper triangular and Y, T contain intermediate orthogonal

factors
1 for k = 1 to q do

2 QR (Ak,k) = Q̂k,kRk,k, such that Q̂k,k = I − Yk,kTk,kY Tk,k
3 for j = k + 1 to q do

4 Rk,j = Q̂Tk,kAk,j
5 end
6 for i = k + 1 to p do

7 QR

([
Rk,k
Ai,k

])
= Q̂i,k

[
R′k,k
0

]
, such that Q̂i,k = I −

[
I
Yi,k

]
Ti,k

[
I
Yi,k

]T
8 for j = k + 1 to q do

9

[
Rk,j
Ai,j

]
← Q̂Ti,k

[
Rk,j
Ai,j

]
10 end

11 end

12 end

Algorithm 5: Left multiplication by Q from tiled Householder algorithm

Input: C, Y, T with p× q blocks
Output: C ← QC

1 for k = q downto 1 do
2 for i = p downto k + 1 do
3 for j = q downto k do

4 Update

[
Ck,j
Ci,j

]
←

([
I
Yi,k

]
Ti,k

[
I
Yi,k

]T)[
Ck,j
Ci,j

]
5 end

6 end
7 for j = q downto k do
8 Update Ck,j ← (I − Yk,kTk,kY Tk,k)Ck,j
9 end

10 end

3 Block Low-Rank QR

3.1 Block Low-Rank Matrices

Block low-rank matrices exploit the low-rank property by performing flat 2D blocking and storing rank-deficient
(admissible) blocks in low-rank representation. We briefly introduce them in this section. For a detailed explanation,
we refer the reader to [3].

Given a dense matrix A ∈ Rm×n, a block size b is chosen to subdivide the matrix into p× q (p = m/b, q = n/b)
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square blocks such that

Ã =


Ã1,1 Ã1,2 · · · Ã1,q

Ã2,1 · · · · · ·
...

... · · · · · ·
...

Ãp,1 · · · · · · Ãp,q

 ,
where

Ãi,j =

{
Ai,j (Ai,j is not admissible)

Ui,jV
T
i,j (Ai,j is admissible)

∣∣∣∣1 ≤ i ≤ p, 1 ≤ j ≤ q (7)

and Ui,jV
T
i,j is the low-rank compressed form of Ai,j so that Ui,j , Vi,j ∈ Rb×ri,j . In practice, the compression rank is

chosen adaptively for each block. Given a prescribed error tolerance ε > 0, we choose ri,j = rε to be the smallest
integer that satisfies ‖Ãi,j − Ai,j‖F ≤ ε‖Ai,j‖F , where ‖ · ‖F denotes the Frobenius norm. This implies the overall
BLR compression error

‖Ã−A‖F ≤ ε‖A‖F (8)

is also bounded by ε (see [23]). Let us denote r as the maximum rank of the admissible blocks. In many problem
classes, r can be shown to be much smaller than n [9, 7]. Throughout this article we assume that r is a small constant,
i.e. r = O(1).

The admissibility condition determines whether a block is admissible for low-rank compression. There are mainly
two types of admissibility conditions. One is the weak admissibility where all off-diagonal blocks are assumed to be
admissible. Another one is the strong admissibility where inadmissible off-diagonal blocks exist. Under the strong
admissibility condition, one typically use the admissibility constant η > 0 to determine admissible blocks based on the
underlying geometric information of the matrix (see [4] for details). Here we assume that the larger the η, the more
inadmissible off-diagonal blocks exist. When geometric information is not available, one approach is to attempt to
compress each block and revert the ones with large rank (e.g. larger than b/2) back to dense form. This requires extra
operations which is usually negligible in case of BLR compression.

The choice of admissibility condition depends on the problem. When all off-diagonal blocks of the matrix have
small rank, e.g. in 2D Poisson problems, weak admissibility condition is usually sufficient. However when the matrix
has full-rank off-diagonal blocks, e.g. in 3D Helmholtz problems, strong admissibility is commonly preferred. Figure 1
shows the examples of BLR-matrices with different admissibility conditions. Grey-filled squares represent inadmissible
(dense) blocks and the other represent admissible (low-rank) blocks.

Figure 1: Example of block low-rank matrices: weakly admissible (left); strongly admissible (right)

The storage and computational costs involving BLR-matrices depend on the chosen block size and admissibility
condition. Unlike hierarchical representations where the (minimum) block size only contributes to lower order terms
of the cost, block size in BLR has a significant effect due to the flat blocking scheme. It has been shown in [4] that
the optimal choice of block size b = O(

√
n) leads to O(n1.5) storage for a square BLR-matrix and O(n2) cost for

BLR factorization. Moreover, assuming that the cost to compress an admissible block is O(b2r), which for example is
achievable using Rank Revealing QR [19] or randomized SVD [22], constructing a BLR-matrix also requires O(n2).
Here we assume that each admissible block is compressed using Rank Revealing QR factorization. This produces the
approximation Ãi,j = Ui,jV

T
i,j such that Ui,j has orthonormal columns.

Operations on BLR-matrices are similar to that of blocked dense matrices, with the addition of basic operations
involving dense and low-rank blocks. Let us define four operations:
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OP1: Low-Rank + Dense = Dense

OP2: Low-Rank + Low-Rank = Low-Rank

OP3: Low-Rank × Dense = Low-Rank

OP4: Low-Rank × Low-Rank = Low-Rank

OP1 requires converting the low-rank block to dense form followed by dense blocks addition, which amounts to a total
cost of O(b2r). In OP2, two low-rank blocks can be summed by simply agglomerating their components. However, this
would make the rank grow very quickly. Therefore, the rounded addition method in Algorithm 6 [8, p. 16] is employed
to efficiently re-compress the resulting matrix back to rank rε. Here we assume that recompression is performed every
time two low-rank matrices are added, leading to a cost of O(br2) per operation. For OP3, the operation boils down to
multiplication between the dense block and V T part of the low-rank block from the right (or U part if it’s from the
left), which costs O(b2r). Lastly, for OP4, the resulting low-rank block C = A×B is formed by

UA︸︷︷︸
UC

V TA UBV
T
B︸ ︷︷ ︸

V T
C

,

which costs O(br2).

Algorithm 6: Rounded Low-Rank Addition

Input: A = UAV
T
A , B = UBV

T
B , UA, VA ∈ Rb×rA , UB , VB ∈ Rb×rB

Output: A+B ≈ C = UCV
T
C , UC , VC ∈ Rb×rε

1 U =
[
UA UB

]
, V =

[
VA VB

]
2 [QU , RU ] = QR(U), [QV , RV ] = QR(V )

3 [u, σ, v] = SV D(RUR
T
V )

4 UC ← first rε columns of QUu
5 VC ← first rε columns of QV vσ

3.2 Blocked Modified Gram-Schmidt BLR-QR

Ida et al. [24] have combined the blocked MGS method with BLR-matrix arithmetic to formulate a BLR-QR
decomposition algorithm. Given a weakly admissible BLR-matrix Ã, the algorithm produces two BLR-matrices Q̃ and
R̃ under two assumptions:

• Q̃ and R̃ are BLR-matrices with the same structure as Ã

• The off-diagonal blocks Q̃i,j and R̃i,j are approximated using the same error threshold as the corresponding Ãi,j .

Under these conditions, the matrices Q̃ and R̃ serve as the approximate QR decomposition of Ã, such that Ã ≈ Q̃R̃.
The algorithm proceeds in the same way as Algorithm 1 with some operations tailored for BLR-matrices. Line 2 of
Algorithm 1, which corresponds to orthogonalization of a block column, is performed based on the method presented
in [10]. The matrix multiplications in line 4 and 5 are performed using BLR-matrix arithmetic.

The QR factorization of a block column is described as follows. First, let us write the block column Ãj as

Ãj =


Ã1,j

Ã2,j

...

Ãp,j

 =


ÃU1,jÃ

V
1,j

ÃU2,jÃ
V
2,j

...

ÃUp,jÃ
V
p,j

 , (9)

where

ÃUi,j =

{
Ib (Ãi,j is not admissible)

Ui,j (Ãi,j is admissible)
, ÃVi,j =

{
Ãi,j (Ãi,j is not admissible)

V Ti,j (Ãi,j is admissible)
(10)

for i = 1, 2, . . . , p. Note that we have just written each Ãi,j in left-orthogonal form. Now since each ÃVi,j is a dense
block, we can write the matrix

Bj =


ÃV1,j
ÃV2,j

...

ÃVp,j

 (11)
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and perform the dense MGS QR factorization Bj = Q̃Bj R̃
B
j . Then we partition the matrix Q̃Bj back according to

the subdivision of Bj in Equation 11. Since we know that each ÃUi,j has orthonormal columns, we can obtain the
orthogonal factor as

Q̃j =


ÃU1,j 0 · · · 0

0 ÃU2,j
. . . 0

...
. . .

. . . 0

0 · · · 0 ÃUp,j

 Q̃Bj =


ÃU1,jQ̃

B
1,j

ÃU2,jQ̃
B
2,j

...

ÃUp,jQ̃
B
p,j

 , (12)

and upper triangular R̃j,j = R̃Bj such that Ãj = Q̃jR̃j,j , that is the QR factorization of the block column Ãj .
Assuming a block size b = O(

√
n), this algorithm has an arithmetic complexity of O(mn), which is faster than the

O(mn2) dense MGS algorithm. We refer the reader to [24] for a detailed explanation.

3.3 Blocked Householder BLR-QR

Our first algorithm follows the blocked Householder dense QR in Section 2.2 to perform orthogonal triangularization
of BLR-matrices. However, a BLR-matrix may contain admissible (low-rank) blocks that need to be handled in a
different way than inadmissible (dense) blocks. Thus, the operations need to be extended to handle these low-rank
blocks. Let Ã be a BLR-matrix as defined in Equation 7. Our algorithm uses the steps from Algorithm 2 to produce
the approximate QR factorization Ã ≈ Q̃R̃ such that:

• Q̃ and R̃ are BLR-matrices with the same structure as Ã.

• The admissible blocks Q̃i,j and R̃i,j are approximated using the same error threshold as the corresponding admissible
block Ãi,j .

3.3.1 Triangularization of block column

The first operation that we need to redefine is the QR factorization of a block-column (line 2 of Algorithm 2). We adopt
a similar approach to the one presented in [29]. Let us write the k-th block column that needs to be triangularized as

Ãk,k
Ãk+1,k

...

Ãp,k

 =


ÃUk,kÃ

V
k,k

ÃUk+1,kÃ
V
k+1,k

...

ÃUp,kÃ
V
p,k

 (13)

where ÃUi,kÃ
V
i,k for i = k, k + 1, . . . , p are the left-orthogonal forms of Ãi,k as defined in Equation 10. Next we perform

Householder triangularization to factorize the matrix
ÃVk,k
ÃVk+1,k

...

ÃVp,k

 = Q̃Vk


R̃k,k
0
...
0

 , (14)

where

Q̃Vk = I −


Yk,k
Yk+1,k

...
Yp,k

Tk


Yk,k
Yk+1,k

...
Yp,k


T

(15)

such that Tk ∈ Rb×b and Yi,k has the same dimension as ÃVi,k for i = k, k + 1, . . . , p. Since each ÃUi,k has orthonormal

columns, we set Ỹi,k = ÃUi,kYi,k to obtain the orthogonal factor

Q̂k = I −


Ỹk,k
Ỹk+1,k

...

Ỹp,k

Tk


Ỹk,k
Ỹk+1,k

...

Ỹp,k


T

. (16)

It is important to note that Ỹi,k is a low-rank block if the corresponding Ãi,k is low-rank, otherwise it is dense.
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To see why this works, let us define W = diag(ÃUk,k, Ã
U
k+1,k, . . . , Ã

U
p,k). Because diagonal blocks are dense,

W = diag(I, ÃUk+1,k, . . . , Ã
U
p,k). Multiplying Q̂Tk to the block-column in Equation 13 yields

Q̂Tk


Ãk,k
Ãk+1,k

...

Ãp,k

 =

I −W


Yk,k
Yk+1,k

...
Yp,k

TTk


Yk,k
Yk+1,k

...
Yp,k


T

WT

W


ÃVk,k
ÃVk+1,k

...

ÃVp,k



= W
(
Q̃Vk

)T


ÃVk,k
ÃVk+1,k

...

ÃVp,k

 = W


R̃k,k
0
...
0

 =


R̃k,k
0
...
0

 . (17)

Thus, we have upper triangularized the k-th block-column and at the same time obtained the QR factorization of it.
The cost for this operation is dominated by the QR factorization in Equation 14. Each ÃVi,k has a small number

of rows r (� b) if Ãi,k is low-rank. Under weak admissibility condition, this leads to dense QR factorization of a
(b+ (p− k)r)× b matrix that costs O(b3 + pb2r). The cost is similar under strong admissibility condition as long as
the number of dense blocks in a block-column is bounded by a constant.

3.3.2 Apply block column reflector

This operation corresponds to line 4 of Algorithm 2 where we multiply the resulting Q̂k with a block-column. Let us
write the operation as

Q̂Tk


Ãk,j
Ãk+1,j

...

Ãp,j

 =


Ãk,j
Ãk+1,j

...

Ãp,j

−



Ỹk,k
Ỹk+1,k

...

Ỹp,k

TTk


Ỹk,k
Ỹk+1,k

...

Ỹp,k


T 

Ãk,j
Ãk+1,j

...

Ãp,j




=


Ãk,j
Ãk+1,j

...

Ãp,j

−


Ỹk,k
Ỹk+1,k

...

Ỹp,k

[TTk ] [Ỹ Tk,kÃk,j + Ỹ Tk+1,kÃk+1,j + · · ·+ Ỹ Tp,kÃp,j
]
. (18)

The operation shown in Equation 18 consists of multiplication between dense and low-rank blocks, and accumulation
by low-rank addition. Under the weak admissibility condition, this operation costs O(b2r + pbr2). Under strong
admissibility condition some block-columns require multiplication between dense blocks, leading to a cost of O(b3 +
b2r + pbr2).

3.3.3 Algorithm and Cost Estimate

With the extended operations in place, we can perform blocked Householder QR to a BLR-matrix Ã. Figure 2 shows
the operations in Algorithm 2 performed on a BLR-matrix with 3× 3 blocks under weak admissibility condition.

In the following, we estimate the arithmetic complexity of our first algorithm. Under the strong admissibility
condition, the structure of the BLR-matrix largely depends on the problem, requiring problem-specific analysis that is
not the scope of this article. Thus, for simplicity let us assume the weak admissibility condition.

Table 1 shows the cost breakdown of one k-iteration in Algorithm 2. We get the total operation count by taking
the sum for k = 1, 2, . . . , q:

Tblocked(m,n, b) =

q∑
k=1

b3 + pb2r + (q − k)(b2r + pbr2)

=
1

2

(
2nb2 + 2mnr + n2r +

mn2r2

b2
− nbr − mnr2

b

)
.

Setting b = O(
√
n) yields the arithmetic complexity of O(mn). In terms of storage, this algorithm uses the existing

space of Ã plus extra space to store T1, T2, . . . , Tq matrices, each of size b× b. This extra storage is not larger than
the space for a BLR-matrix, meaning that this algorithm requires O(m

√
n) storage.
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Figure 2: Graphical representation of operations in Algorithm 2 on a BLR-matrix with p = q = 3. Thick borders show
the tiles that are being read and green fills shows the tiles that are being written at each step

Table 1: Operations inside one k-iteration (1 ≤ k ≤ q) of Algorithm 2 and their costs

Operation Complexity Number of calls

Triangularization of block-column b3 + pb2r 1
Apply block-column reflector b2r + pbr2 q − k

3.4 Tiled Householder BLR-QR

Our second algorithm is based on the tiled Householder dense QR explained in Section 2.3. It proceeds in the same
way as Algorithm 4 to produce an approximate QR factorization Ã ≈ Q̃R̃ under the same assumption as our first
algorithm. In the following, we explain how we extend the operations to handle low-rank blocks and estimate the
overall cost of the algorithm.

3.4.1 Householder QR factorization of diagonal block

This operation corresponds to line 2 of Algorithm 4 where we perform Householder triangularization of a diagonal
block

Ãk,k = Q̂k,kR̃k,k.

Since diagonal blocks are always dense, there is no need to handle low-rank blocks. This operation costs O(b3).

3.4.2 Apply block reflector

This operation corresponds to line 4 of Algorithm 4 where we multiply an off-diagonal block with orthogonal reflector,
that is:

R̃k,j = Q̂Tk,kÃk,j .

The off-diagonal block of a BLR-matrix can be dense or low-rank. If the particular block is low-rank, this operation
amounts to a multiplication of dense and low-rank block that costs O(b2r).
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3.4.3 Update QR factorization

This operation corresponds to line 7 of Algorithm 4 where we zero the off-diagonal block below Ãk,k using the QR
factorization

QR

([
R̃k,k
Ãi,k

])
= Q̂i,k

[
R̃′k,k
0

]
.

The upper triangular R̃k,k comes from the QR factorization of a diagonal block, so it is always a dense block. However
Ãi,k can be a dense or low-rank block. In the case of a dense block, we simply concatenate the blocks and perform
Householder dense QR on them. But if Ãi,k is low-rank, we first perform dense QR factorization of[

R̃k,k
ÃVi,k

]
= Q̂Vi,k

[
R̃′k,k
0

]
, (19)

where

Q̃Vi,k = I −
[

I
Yi,k

]
Ti,k

[
I
Yi,k

]T
. (20)

Because Ui,k has orthonormal columns, we set Ỹi,k = Ui,kYi,k to obtain the orthogonal factor

Q̂i,k = I −
[

I

Ỹi,k

]
Ti,k

[
I

Ỹi,k

]T
. (21)

Note that this is a specialization of the operation explained in Section 3.3.1 where the block column is composed of
a dense upper triangular block on top of an off-diagonal block. This operation requires O(b3) for both dense and
low-rank Ãi,k due to the cost for generating Ti,k.

3.4.4 Apply trapezoidal block reflector

This operation corresponds to line 9 of Algorithm 4 where we multiply the orthogonal reflector from Equation 21 to
the corresponding blocks, that is[

R̃k,j
Ãi,j

]
← Q̂Ti,k

[
R̃k,j
Ãi,j

]
=

[
R̃k,j
Ãi,j

]
−

([
I

Ỹi,k

]
TTi,k

[
I

Ỹi,k

]T [
R̃k,j
Ãi,j

])

=

[
R̃k,j
Ãi,j

]
−
[

I

Ỹi,k

] [
TTi,k

] [
R̃k,j + Ỹ Ti,kÃi,j

]
.

The cost of this operation depends on the blocks Ỹi,k, R̃k,j , and Ãi,j . If R̃k,j is low-rank and at least one of {Ỹi,k, Ãi,j}
is low-rank, the cost is O(b2r); Otherwise it is O(b3).

3.4.5 Algorithm and Cost Estimate

Once we have the extended operations defined, we can perform tiled Householder QR on a BLR-matrix Ã. Figure 3
shows the operations that happen inside one outer iteration of Algorithm 4 on a BLR-matrix with 3× 3 blocks under
weak admissibility condition.

In the following, we estimate the arithmetic complexity of our second algorithm. Let us also assume the weak
admissibility condition for the sake of simplicity. Table 2 shows the cost breakdown of one k-iteration of Algorithm 4.
Summing up for k = 1, 2, . . . , q gets us the total operation count:

Ttiled(m,n, b) =

q∑
k=1

(p− k + 1)b3 + (p− k + 1)(q − k)b2r

=
1

6

(
6mnb+ 3nb2 +

3mn2r

b
− 3n2b− 5n3r

b
− 3mnr

)

For b = O(
√
n), this algorithm has an arithmetic complexity of O(mn1.5), which is slower than the blocked

Householder variant. It also produces more T matrices, which in total amounts to storing a lower trapezoidal m× n
matrix. This leads to a storage requirement that grows similarly to that of dense Householder factorization (O(mn)).
However, this algorithm has finer granularity that makes it more efficient for parallel computation, which will be
shown in later section.
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Figure 3: Graphical representation of one iteration of the outer loop in Algorithm 4 on a BLR-matrix with p = q = 3.
Thick borders show the tiles that are being read and green fills shows the tiles that are being written at each step

Table 2: Operations inside one k-iteration (1 ≤ k ≤ q) of Algorithm 4 and their costs

Operation Complexity Number of calls

QR factorization of diagonal block b3 1
Apply block reflector b2r q − k
Update QR factorization b3 p− k
Apply trapezoidal block reflector b2r (p− k)(q − k)

4 Multithreaded Block Low-Rank QR

In order to fully utilize modern multi-core architectures, we present the parallel algorithms for the BLR-QR factorization
on shared memory systems. We first recall the fork-join parallelization of the blocked MGS-based method [24]. Then
we use a similar fork-join approach to parallelize our proposed algorithms. Lastly, we show the task-based parallel
version of the tiled Householder BLR-QR, which is the main advantage of this variant.

Note that it is also possible to use task-based execution for the blocked MGS and Householder-based methods.
The approach described in [30] consists of representing the algorithm as a Directed Acyclic Graph (DAG) where nodes
represent tasks (either block-column factorization or update) and edges represent dependencies among them. They
refer this as dynamic lookahead technique. However, results show that their technique is still exposed to scalability
problems due to the relatively coarse granularity of the tasks. Therefore we focus on using task-based execution on
the finely grained tiled Householder-based algorithm.

4.1 Parallel Blocked MGS BLR-QR

Algorithm 1 can be executed in parallel using the fork-join model [16], which has been presented in [24]. The
block-column QR (line 2) can utilize a multithreaded BLAS/LAPACK kernel. The computation of Rj,k for different k
(line 4) can be performed in parallel. After that, the updates to Ak can be performed in parallel too. These updates
are first decomposed into independent block-by-block multiplications and computed simultaneously. Algorithm 7
shows the fork-join parallel version of Algorithm 1.
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Algorithm 7: Fork-join blocked MGS BLR-QR factorization

Input: Ã with p× q blocks
Output: Q̃ with p× q blocks and R̃ with q × q blocks such that Ã ≈ Q̃R̃

1 for j = 1 to q do

2 [Q̃j , R̃j,j ] = QR(Ãj) // multithreaded

3 for k = j + 1 to q do in parallel

4 R̃j,k = Q̃Tj Ãk
5 end

6 forall Ãi,k where k > j and 1 ≤ i ≤ p do in parallel

7 Ãi,k ← Ãi,k − Q̃i,kR̃j,k
8 end

9 end

4.2 Parallel Blocked Householder BLR-QR

The fork-join approach can also be used to parallelize Algorithm 2. Let us look at the dependency among the
operations. Operations in line 4 for different j update different block-columns and only have a common dependency to
the computation of Q̂k (line 2). Thus they can be computed simultaneously as soon as the computation of Q̂k is done.
The computation of Q̂k itself (line 2) can be done by utilizing a multithreaded BLAS/LAPACK kernel. Algorithm
8 shows the parallel version where the j-loop (line 3) branches off to become a parallel region. Similarly, the left
multiplication by Q̃ in Algorithm 3 can also be executed in parallel using the same approach.

Algorithm 8: Fork-join blocked Householder BLR-QR factorization

Input: Ã with p× q blocks
Output: Ỹ , R̃ with p× q blocks and T with 1× q blocks such that R is upper triangular and Ỹ , T contain

intermediate orthogonal factors
1 for k = 1 to q do

2 QR




Ãk,k
Ãk+1,k

...

Ãp,k


 = Q̂k


R̃k,k
0
...
0

, such that Q̂k = I −


Ỹk,k
Ỹk+1,k

...

Ỹp,k

Tk


Ỹk,k
Ỹk+1,k

...

Ỹp,k


T

// multithreaded

3 for j = k + 1 to q do in parallel

4 Update


R̃k,j
Ãk+1,j

...

Ãp,j

← Q̂Tk


Ãk,j
Ãk+1,j

...

Ãp,j


5 end

6 end

4.3 Parallel Tiled Householder BLR-QR

Looking at the operations in Algorithm 4, the fork-join approach is also applicable to obtain a parallel algorithm.
The computations of Rk,j in line 4 for different j only have a common dependency to the computation of Q̂k,k in
line 2, and thus can be performed in parallel. A similar dependency can be seen among the update operations in
line 9. Algorithm 9 shows the fork-join parallel version of Algorithm 4 where the two j-loops (line 3 and 8) branch
off to become parallel regions. Lastly, the computation of Q̂k,k (line 2) and Q̂i,k (line 7) can be performed using a
multithreaded BLAS/LAPACK kernel.

As we have mentioned before, the tiled Householder QR has finer granularity compared to the other blocked
algorithms, which could be leveraged in a parallel environment. The idea of exploiting finer granularity of tiled
Householder QR to obtain a highly parallel algorithm has been introduced in [11] in the context of optimizing dense
factorization. Since we are using the same tiled algorithm but adapted to the BLR format, we follow similar steps to
reach an efficient parallelization scheme of our BLR-QR algorithm.
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Algorithm 9: Fork-join tiled Householder BLR-QR factorization

Input: Ã with p× q blocks
Output: Ỹ , T, R̃ with p× q blocks such that R̃ is upper triangular and Ỹ , T contain intermediate orthogonal

factors
1 for k = 1 to q do

2 QR (Ãk,k) = Q̂k,kR̃k,k, such that Q̂k,k = I − Ỹk,kTk,kỸ Tk,k // multithreaded

3 for j = k + 1 to q do in parallel

4 R̃k,j = Q̂Tk,kÃk,j
5 end
6 for i = k + 1 to p do

7 QR

([
R̃k,k
Ãi,k

])
= Q̂i,k

[
R̃′k,k
0

]
, such that Q̂i,k = I −

[
I

Ỹi,k

]
Ti,k

[
I

Ỹi,k

]T
// multithreaded

8 for j = k + 1 to q do in parallel

9

[
R̃k,j
Ãi,j

]
← Q̂Ti,k

[
R̃k,j
Ãi,j

]
10 end

11 end

12 end

Let us again look at the operations in Algorithm 4, but this time without limiting ourselves to one k iteration.
It turns out that there are direct dependencies between operations across consecutive iterations of k. This chain of
dependencies is best described by a DAG, where a node represents an operation and an edge represents a dependency
between two operations. Figure 4 shows the dependency graph when Algorithm 4 is executed on a BLR-matrix with
p = q = 3. Note that the construction of Q̃ uses the same set of operations so we can obtain a similar dependency
graph from it.
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Figure 4: Dependency graph of Algorithm 4 on a BLR-matrix with p = q = 3

It can be seen from Figure 4 that the DAG also has a recursive structure. For any p1 ≥ p2, the DAG for BLR-matrix
with p2 × p2 blocks is a subgraph of the DAG for BLR-matrix with p1 × p1 blocks. This property allows for reusing
the existing DAG to accelerate the construction of a larger graph.

Once we obtain the DAG, we can use it as a guide in executing the tasks. A task can be started as soon as all
of its dependencies are fulfilled. Once a task T is finished, the scheduler fulfills the dependency of tasks that are
dependent on T . As a result, the threads only need to check the task pool and execute tasks that are ”ready” to be
executed. All threads repeat this cycle until the task pool is empty and the algorithm is finished. This results in an
out-of-order execution with very loose synchronization required between the threads compared to the fork-join model.

A closer look into the graph in Figure 4 reveals that certain kinds of task have more outgoing edges than the
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others. This offers a chance for improvement because executing a task with a large number of outgoing edges will
fulfill more dependencies, thus bringing more tasks into the “ready” state. Therefore, a priority value can be assigned
to each task, such that a task with more outgoing edges has a higher priority to be executed first. In our algorithm, it
is clear that the factorization of diagonal blocks has the highest priority. The second one is updating QR factorization,
followed by the application of trapezoidal and block reflectors.

5 Numerical Results

In this section, we demonstrate the performance and accuracy of our algorithms using several example matrices on
a shared-memory system. The BLR-QR algorithms were implemented in C++ where floating point calculations
were performed in double precision. Fork-join and task-based parallelism were performed using OpenMP. BLAS and
LAPACK routines from Intel MKL were used for the inner kernels involving dense matrices, where single-threaded
kernels were used inside OpenMP parallel regions and multi-threaded kernels were used outside of parallel regions.
We modified LAPACK’s DGEQP3 routine to obtain a truncated rank revealing QR factorization based on relative error
threshold. Experiments were conducted on a system described in Table 3.

Table 3: Details of system used for experiments

Dual AMD EPYC™ 7502

Clock speed 2.5 GHz
# cores 2 x 32 = 64
Peak performance 2560 GFlop/s
Memory 500 GB
Compiler suite GCC 8.4
BLAS & LAPACK library Intel MKL 2020.1.217
Multithreading OpenMP 4.5
DGEMM performance 1861 GFlop/s

The following algorithms have been compared:

• Dense Householder: Householder QR factorization subroutine of Intel MKL (DGEQRF).

• Blocked MGS: Blocked modified Gram-Schmidt-based QR factorization of weakly admissible BLR-matrices
explained in Section 3.2.

• Blocked Householder: Blocked Householder-based QR factorization of BLR-matrices explained in Section
3.3.

• Tiled Householder: Tiled Householder-based QR factorization of BLR-matrices explained in Section 3.4.

We evaluate the accuracy of BLR-QR methods using two metrics: one is residual that measures the quality of the
approximate factorization; the other one is orthogonality that measures the quality of the orthogonal factor Q̃. Both
metrics are respectively given by

Res =
‖Q̃R̃−A‖F
‖A‖F

, Orth =
‖Q̃T Q̃− I‖F√

n
,

where n denotes the matrix size and
√
n is the Frobenius norm of order n identity matrix.

5.1 Performance on Random BLR Matrices

First, we test our methods using randomly generated BLR matrices such that each diagonal block is a random dense
matrix and each off-diagonal block is a rank-k matrix obtained from the outer product of two b× k random matrices,
where b is the chosen BLR block size. We assume weakly admissible BLR compression with error tolerance ε = 10−10.

We first show the operation and memory complexities of our algorithms using BLR matrices of varying sizes. We
generate m× n (m = 2n) random BLR matrices with block size b = 2

√
n and rank k = 1 off-diagonal blocks. Table

4 shows that our BLR methods produce approximate factorization accurately to the level of the prescribed error
tolerance. Figure 5 shows the floating-point operations (flops) count and factorization time using a single-core of the
machine, and Figure 6 shows the corresponding memory consumption.
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Table 4: Accuracy on random BLR matrices (ε = 10−10)

m n
Blocked Householder Tiled Householder

Res Orth Res Orth

2,048 1,024 4.9 · 10−15 3.7 · 10−15 6.5 · 10−14 4.1 · 10−13

8,192 4,096 1.9 · 10−14 8.0 · 10−15 1.6 · 10−13 1.7 · 10−12

32,768 16,384 2.8 · 10−14 1.7 · 10−14 9.8 · 10−14 1.1 · 10−12

131,072 65,536 2.2 · 10−13 3.7 · 10−14 3.9 · 10−13 5.3 · 10−14
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Figure 5: Flops count (left) and factorization time (right) using a single-core
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Figure 6: Memory consumption during executions using a single-core

Figure 5 clearly shows that as the matrix size becomes larger, the flops count of both BLR-QR algorithms grow in
accordance with our estimate in Section 3. The right part of the figure shows that our BLR methods outperform
Dense QR on large matrices. On the largest matrix (n = 65, 536), the BLR methods are more than an order of
magnitude faster. However, for the smallest matrix (n = 1, 024), the BLR-QR methods, which operate on a set of
small matrix blocks, suffer from the suboptimal performance of BLAS libraries on small data sizes. The benefit of
using BLR factorization starts to appear when the matrix is large enough.

Figure 6 shows that compression using BLR-matrix, followed by performing QR factorization on the compressed
form leads to orders of magnitude smaller memory consumption compared to performing direct factorization on the
dense matrix. The memory consumption of both blocked Householder and MGS-based methods grow as O(m

√
n),

which corresponds to the storage requirement of a rectangular BLR-matrix. Our blocked Householder-based method
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consumes slightly less memory compared to the existing blocked MGS-based method because it reuses the lower
triangular part of R̃ (for Y matrices) plus a block diagonal matrix (for T matrices) to implicitly store the orthogonal
factor Q̃, whereas the MGS-based method explicitly forms two BLR-matrices Q̃ and R̃ during the factorization.
However, the tiled Householder-based method consumes more memory than the other BLR methods since it needs
more additional space to store the T matrices coming from the update QR factorization steps. This leads to a
memory consumption that grows similarly to the dense QR. As a remedy, an inner blocking technique [11, 34] could
be employed to reduce additional storage for the T matrices.

We now demonstrate the parallel scalability of our methods. We use two random m× n (m = 2n) BLR-matrices
with n = 16, 384 and n = 32, 768, block size b = 256, and rank k = 16 off-diagonal blocks. We compare our parallel
algorithms with the existing parallel blocked MGS-based algorithm. Figure 7, 8, and 9 show the factorization time,
speedup, and flops rate using different number of threads, respectively.
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Figure 7: Factorization time using different number of threads: n=16,384 (left); n=32,768 (right)
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Figure 8: Speedup using different number of threads: n=16,384 (left); n=32,768 (right)

Figure 7 shows that all BLR methods scale nicely using up to 64 cores of the machine. For the matrix of size
n = 16, 384, the task-based tiled Householder method outperforms the blocked Householder when using 64 cores.
However, on the larger matrix (n = 32, 768), using 64 cores of our machine is not sufficient for this to happen. But we
can expect that when the number of threads increases, the tiled method would eventually outperform the blocked
method. This shows that the finer granularity of the tiled Householder method that allows for efficient dynamic
task-based execution is able to overcome the induced extra operations once we have a large number of computing
cores.
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Figure 8 shows that the fork-join blocked MGS, tiled Householder, and blocked Householder-based methods showed
a speedup of up to 26, 26, and 37 times, respectively. The fork-join blocked Householder-based methods showed
higher speedups compared to the MGS-based. Even though both of these methods perform similar block-column-wise
QR, the blocked MGS has a bottleneck of computing the R̃j,k (line 3-5 of Algorithm 7) [24]. Furthermore, the
blocked Householder outperforms tiled Householder when using fork-join execution model. On the other hand, the
task-based tiled Householder achieved up to 50 times speedup, thanks to the DAG-based execution that fully utilizes
the dependency between operations in the tiled Householder QR, allowing it to scale almost perfectly as the number
of threads increases.

Although the scalability is promising, the actual performance of the BLR-QR algorithms is still far from the peak
performance of the machine, as shown in Figure 9. There are two reasons behind this. First, BLR-QR methods have
to deal with low-rank block operations, which involve manipulating a collection of small matrices instead of one large
matrix, making it more memory-bound [35, 42]. Second is the suboptimal performance of BLAS routines on small data
sizes. Therefore we cannot expect these algorithms to reach the same flops rate as the traditional dense algorithms.
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Figure 9: Flops rate using different number of threads: n=16,384 (left); n=32,768 (right)

Figure 10: Execution traces of parallel tiled Householder BLR-QR on 8kx8k matrix: fork-join (top, 20.8s); task-based
(bottom, 12.9s). BLR-QR executions start at around 7.5 seconds of the timeline
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Samples of a parallel execution trace are shown in Figure 10 where the grey part corresponds to computation and
the white part corresponds to synchronization and overhead. The fork-join model has many synchronizations involving
all threads, which means threads that completed their task first need to wait for the others before proceeding with the
execution. However, the task-based execution showed very loose synchronization because once a thread finishes a task,
it can take another ”ready” task from the task pool and begin another execution without waiting for other threads.
This leads to an out-of-order execution that eliminates unnecessary synchronizations and significantly reduces the idle
time of threads. Furthermore, one can also expect the tiled method to perform better in distributed memory systems
due to its fine granularity that would lead to smaller communication overhead compared to the blocked method. Note
that due to the limitation of OpenMP, in our implementation, the dependency graph is constructed on the fly by the
master thread, which corresponds to the large overhead in the beginning. This is not very efficient when using a small
number of threads since the master thread spends more than 70% of its time generating tasks. This overhead however
is not significant when using a large number of threads.

5.2 Accuracy on Ill-Conditioned Matrices

In this example, we demonstrate the numerical stability of our methods in factorizing ill-conditioned matrices. We use
matrices arising from Boundary-Element-Method discretization of Single-Layer Potential (SLP) operator on the unit
circle, generated using H2Lib [12]. The resulting square matrices are ill-conditioned and have off-diagonal blocks with
small ranks, hence we assume weakly admissible BLR compression. We set the block size b = 2

√
n and error tolerance

ε = 10−9.
We compare the accuracy of our methods with the existing blocked MGS-based method. Table 5 shows that as the

condition number increases, our Householder methods are robust to this increase and produce numerical orthogonality
on the level of the prescribed tolerance. On the other side, the orthogonality produced by the MGS method clearly
deteriorates as the condition number increases.

Table 5: Accuracy on ill-conditioned matrices (ε = 10−9)

n κF (A)
Block Max Blocked Householder Tiled Householder Blocked MGS
Size Rank Res Orth Res Orth Res Orth

1,024 2.8 · 105 64 11 6.8 · 10−10 6.9 · 10−11 6.1 · 10−10 5.2 · 10−11 5.1 · 10−10 1.9 · 10−8

4,096 4.6 · 106 128 12 1.0 · 10−9 1.2 · 10−10 9.6 · 10−10 4.5 · 10−11 8.6 · 10−10 1.0 · 10−7

16,384 7.4 · 107 256 12 2.1 · 10−9 6.2 · 10−11 1.8 · 10−9 6.7 · 10−11 1.8 · 10−9 1.5 · 10−6

32,768 2.9 · 108 512 13 2.3 · 10−9 6.0 · 10−11 2.0 · 10−9 5.3 · 10−11 2.0 · 10−9 6.9 · 10−6

5.3 Performance on Spatial Statistics Problems

In this example, we use square matrices arising from the Spatial Statistics problem with exponential kernel on uniform
3D grids, generated using STARS-H [28]. The resulting matrices have many off-diagonal blocks with relatively high
ranks, thus a strongly admissible compression is preferred.

We first demonstrate the parallel scalability of our methods for the matrix of order n = 16, 384 compressed with
block size b = 256, tolerance ε = 10−6, and admissibility constant η = 0.3. Figure 11 shows that using 64 cores the
fork-join tiled and blocked householder methods achieve a speedup of 13 and 17 times, respectively. On the other
hand, the task-based tiled Householder method achieves 47 times speedup, allowing it to become faster than the
blocked method.

Next, we evaluate the performance and accuracy of our methods using matrices of varying sizes and admissibility
constant. We compare our fork-join blocked and task-based tiled Householder with the parallel dense QR of Intel MKL
using 64 cores in terms of factorization time and memory consumption. Table 6 shows that our BLR-QR methods are
able to produce residual and orthogonality to the level of the prescribed error tolerance. It also shows that we can
fine-tune the admissibility constant (introduce more/less off-diagonal inadmissible block, i.e. decrease/increase the
maximum rank of admissible off-diagonal blocks) to reach the optimal factorization time and memory consumption.
On the matrix of order 16k, the BLR methods lose to the dense QR. However, for the larger matrix of order 65k, the
BLR methods are faster and achieve up to 80% less memory usage compared to the dense QR.
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Figure 11: Parallel scalability on spatial statistics problem: factorization time (left); speedup (right)

Table 6: Accuracy on 3D Spatial Statistics problems (ε = 10−6)

Dense QR BLR Blocked Householder Tiled Householder

n
Mem Time Block η Max Mem Time Res Orth Mem Time Res Orth
(MB) (s) Size Rank (MB) (s) (MB) (s)

16,384 2,048 8.26
256 0.2 117 847 32.5 1.1 · 10−9 1.3 · 10−11 1,857 16.9 1.5 · 10−9 1.1 · 10−9

256 0.3 86 954 23 8.0 · 10−10 1.1 · 10−11 1,964 13.7 1.4 · 10−9 1.0 · 10−9

256 0.4 58 1,284 16.4 2.1 · 10−10 3.8 · 10−12 2,293 10.8 3.8 · 10−10 2.2 · 10−10

65,536 32,768 310
512 0.2 175 6,698 257.7 3.7 · 10−9 1.5 · 10−10 22,957 215.9 6.3 · 10−9 4.0 · 10−9

512 0.3 94 10,236 185.6 1.5 · 10−9 8.8 · 10−11 26,491 218.8 2.8 · 10−9 1.8 · 10−9

512 0.4 51 14,684 230.9 5.1 · 10−10 4.3 · 10−11 30,937 286.9 9.9 · 10−10 6.3 · 10−10

5.4 Performance on Inverse Poisson Problems

In this example, we use sparse least squares matrices arising from the Inverse Poisson problem defined on uniform 2D
grids, generated using the MATLAB code of spaQR [18]. We use strongly admissible BLR compression with block size
b = 2

√
n and tolerance ε = 10−10. Since the geometry information is not available, we attempt to compress every

off-diagonal block and revert back to dense the blocks whose rank is larger than b/2.
Figure 12 shows the parallel scalability of our BLR methods for the matrix of size 74, 112 × 36, 864. Using 64

cores, the fork-join tiled, fork-join blocked, and task-based tiled Householder methods achieve a speedup of 2, 3, and
14 times, respectively. These relatively lower speedups come from the fact that although the dimension is quite large,
the resulting BLR matrix is dominated by zero blocks that make the actual computation load smaller.

We then compare our fork-join blocked and task-based tiled Householder with the parallel dense QR of Intel MKL
using all 64 cores of the machine. Table 7 shows that the BLR methods are faster than Dense QR while producing
residual and orthogonality to the level of the prescribed error tolerance. Moreover, the tiled method is faster than the
blocked method in all three sparse matrices that we use.

Table 7: Accuracy on 2D Inverse Poisson problems (ε = 10−10)

Dense QR Blocked Householder Tiled Householder

m n
Mem Time Mem Time Res Orth Mem Time Res Orth
(MB) (s) (MB) (s) (MB) (s)

74,112 36,864 20,844 200 3,727 106 1.4 · 10−11 1.3 · 10−11 20,017 46 8.4 · 10−12 5.7 · 10−12

100,800 50,176 38,587 479 6,117 190 1.5 · 10−11 1.4 · 10−11 36,125 82 8.4 · 10−12 5.4 · 10−12

131,584 65,536 65,792 1569 9,399 354 1.6 · 10−11 1.6 · 10−11 60,351 161 8.6 · 10−12 5.4 · 10−12
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Figure 12: Parallel scalability on sparse least squares problem: factorization time (left); speedup (right)

6 Conclusion

We have presented two new algorithms for Householder QR factorization of Block Low-Rank matrices. One that
performs block-column-wise QR based on the blocked Householder method, and another one that performs fine-grained,
block-wise QR based on the tiled Householder method. We have shown that both algorithms exploit BLR structure
to achieve arithmetic complexity of O(mn) and O(mn1.5), respectively. We have compared our algorithms with an
existing BLR-QR method that is based on the blocked Modified Gram Schmidt iteration. We also compared them to
a state-of-the-art vendor-optimized dense Householder QR of Intel MKL. Numerical experiments showed that all BLR
methods are more than an order of magnitude faster than the dense QR of MKL. The BLR methods are also more
efficient in terms of memory consumption, possibly saving hundreds of gigabytes of memory for huge matrices.

We also have demonstrated the parallelization of our algorithms using both traditional fork-join and modern
task-based execution models. We compared our parallel algorithms with an existing fork-join blocked MGS-based
parallel algorithm. Results showed that our task-based tiled Householder algorithm outperforms the fork-join methods,
thanks to the dynamic task-based execution that allows for out-of-order execution with very loose synchronization
between the threads. We have shown that in a shared-memory parallel environment, the benefit that comes from a
finely grained algorithm is able to overcome the extra operations that it introduces.

Numerical experiments also showed that our methods can be used in various computational science problems to
produce approximate QR factorization with controllable accuracy. This shows that BLR matrices can provide a good
approximation for the resulting orthogonal and upper triangular factors. Both Householder and MGS-based BLR
methods produced approximate QR factorization of similar residual. However in terms of orthogonality, our method is
robust to ill-conditioning, whereas the existing MGS-based method suffers from numerical instability.
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