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Image quality assessment is often performed with deep networks which are ine-tuned to regress a human provided quality

score of a given image. Usually, this approaches may lack generalization capabilities and, while being highly precise on similar

image distribution, it may yield lower correlation on unseen distortions. In particular they show poor performances whereas

images corrupted by noise, blur or compressed have been restored by generative models. As a matter of fact, evaluation of

these generative models is often performed providing anecdotal results to the reader. In the case of image enhancement and

restoration, reference images are usually available. Nonetheless, using signal based metrics often leads to counterintuitive

results: highly natural crisp images may obtain worse scores than blurry ones. On the other hand, blind reference image

assessment may rank images reconstructed with GANs higher than the original undistorted images. To avoid time consuming

human based image assessment, semantic computer vision tasks may be exploited instead.

In this paper we advocate the use of language generation tasks to evaluate the quality of restored images. We refer to

our assessment approach as LANguage-based Blind Image QUality Evaluation (LANBIQUE). We show experimentally that

image captioning, used as a downstream task, may serve as a method to score image quality, independently of the distortion

process that afects the data. Captioning scores are better aligned with human rankings with respect to classic signal based or

No-Reference image quality metrics. We show insights on how the corruption, by artifacts, of local image structure may steer

image captions in the wrong direction.

CCSConcepts: ·Computingmethodologies→Computer vision tasks; Scene understanding; Image representations;

Object recognition; Image compression.

Additional Key Words and Phrases: image quality enhancement, image captioning, image quality evaluation, GAN, generative

models evaluation

1 INTRODUCTION

In the last years, models able to generate novel images by implicit sampling from the data distribution have
been proposed [16]. While these models are extremely appealing, generating for example photo realistic faces
[22] or landscapes [35], they are hard to be evaluated. Often anecdotal qualitative examples are presented to the
reader with little quantitative and objective evidence, and evaluation of generative models is still undergoing a
debate regarding how to perform it. The idea of using a computer vision classiier to evaluate the veracity of a
generated images was irst proposed in [39]. The authors propose the Inception Score (IS), which is obtained
applying the Inception model [42] to every generated image in order to obtain the conditional label distribution
p (y |x ). Realistic images should contain one or few well deined objects therefore leading to a low entropy in the
conditional label distribution p (y |x ). An improved evaluation metric, named Frechét Inception Distance (FID)
has been proposed by [18]. The authors show that FID is more consistent than Inception Score with increasing
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A statue of a woman 

wearing a christmas tie

A brown and white dog 

wearing a tie

A brown and white dog

wearing a red tie

Fig. 1. Caption generated on Compressed, Reconstructed and Original image (let to right) using [2]. Sample ground truth
caption: łA brown and white dog wearing a necktiež. Best viewed in color on computer screen.

disturbances and human judgment. FID performs better as an evaluation metric since it also exploits the statistics
of the real images.

Recently [6, 25, 41] have speciically addressed methods to evaluate Generative Adversarial Networks (GANs).
In [41] have been proposed two methods that evaluate diversity and quality of generated images using classiiers
trained and tested on generated images. In [5] the authors trained an Auxiliary Classiier GAN to generate new
distorted samples to train a shallow quality evaluator to solve the lack of data in the standard datasets. In [6] a
discussion of 24 quantitative and 5 qualitative measures for evaluating generative models is provided, including
IS and FID, image retrieval and classiication performance.
Apart from generating new images, GANs can be efectively used to enhance the visual quality of images

that have been subjected to some degradation, like noise or compression. In this use case the generator network
is conditioned with the degraded input, and it produces an enhanced version. In [25] it is observed that many
existing image quality assessment (IQA) algorithms do not correctly assess GAN generated content, especially
when considering textured regions; this is due to the fact that although GANs generate very realistic images that
may look like the original one, they match them poorly when considering pixel-based metrics. The proposed
metric, called SSQP (Structural and Statistical Quality Predictor), is based on the łnaturalness" of the image.

Subjective metrics, such as Mean Opinion Score are obtained by presenting images to several human evaluators
and asking for a subjective score on the image quality. Such mean of measuring image quality is possibly the best
choice but has the obvious drawback of human annotators need and the related cost in terms of time and money
to rank a high volume of data.

Regarding the evaluation of image enhancement methods, only recently semantic computer vision tasks have
been proposed for image quality assessment. The motivation behind this choice is twofold. On the one hand,
since images are often processed by algorithms, it is intrinsically interesting to evaluate the performance of such
algorithms on degraded and restored images; to this regard, it has to be noted that MPEG leads an activity on
Video Coding for Machines (VCM), that aims to standardize video codecs in the case where videos are consumed
by algorithms. On the other hand, we assume that semantic computer vision tasks lead to a more robust evaluation
protocol. In previous works object detection and segmentation have been used to assess image enhancement
[13, 14, 51].
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In this paper, we introduce a novel image quality assessment method based on language models. To the best of
our knowledge, language has never been used to evaluate the quality of images. We refer to the new approach as
LANguage-based Blind Image QUality Evaluation (LANBIQUE). Fig. 1 shows the gist of the proposed approach:
the efects of image compression lead to a wrong captioning of the image on the left with respect to the original
high quality image on the right; captioning an image that has been obtained enhancing the compressed image
with a GAN-based approach (center) leads to a caption that is very similar to the caption of the high quality
image. The main contributions of our work are the following:

• LANBIQUE show consistency across diferent captioning algorithms [2, 11] and language similarity metrics.
Interestingly, improving the language generation model also improves the correlation between our score
and MOS.
• Experiments shows that LANBIQUE does not sufer from drawbacks of common Full-Reference and No-
Reference metrics when evaluating GAN enhanced images and keeps a high accordance with human scores
for compressed and for images restored via deep learning.

In this extended version, we propose the following improvement with respect to [15].

• We show that LANBIQUE can be used also for distortions diferent from JPEG compression.
• We tested LANBIQUE on the larger and more diverse PieAPP dataset, showing strong results against
learning and non-learning based methods.
• Finally, the basic version of LANBIQUE is extended in order to make it possible to work also without a
reference image. To get to this goal we employ a blind restoration GAN, which can restore images without
the knowledge nor the intensity of the distortion, to recover a pseudo-reference image.

The rest of the paper is organized as follows: in Section 2 we describe the related works. In Section 3 we briely
discuss about prior GAN-based image restoration approaches. In Section 4 we describe LANBIQUE in detail. In
Section 5 we show experimental results of LANBIQUE on diferent settings and datasets. Finally, in Section 6 we
draw the conclusions about our approach.

2 RELATED WORK

Full-Reference quality assessment. When dealing with image restoration tasks, a reference image is often
available to perform evaluation. Full-Reference image quality assessment is an evaluation protocol which uses a
reference version of an image to compute a similarity. Popular metrics are Peak Signal-to-Noise Ratio (PSNR) and
Mean Squared Error (MSE). However, these metrics have been often criticized because they are not consistent with
human perceived quality of images [49]. SSIM, a metric of structural similarity, has been proposed to overcome
this limitation. Unfortunately, as will be shown in the following, even SSIM is too simplistic to capture human
perceived quality of images; moreover, distortion metrics have been shown to be at odds with high perceptual
quality. Blau and Michaeli [4] propose a generalization of rate-distortion theory which takes perceptual quality
into account, and study the three-way trade-of between rate, distortion, and perception. The authors show that
aiming at obtaining a high perceptual quality leads to an elevation of the rate-distortion curve and thus requires
to make a sacriice in either the distortion or the rate of the algorithm.

No-Reference quality assessment. No-Reference image assessment techniques are devised in the realistic scenario
in which image quality must be estimated without accessing an original high quality or uncompressed version of
the image itself. Recent No-Reference image quality assessment methods are based on natural scene statistics
(NSS), computed in the spatial domain. Instead of extracting distortion speciic statistics such as the amount
of blur or ringing in an image, they look at the statistics of locally normalized luminance in order to estimate
the loss in image naturalness. These metrics are designed and optimized in order to be highly correlated with
human subjective metrics. Pei and Cheng [36] train a random forest for IQA using the features extracted from
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Original GAN MSE JPEG20

Fig. 2. ualitative comparison of reconstruction methods: GAN produces images more pleasant for the human eye. Best
viewed in color and zoomed on computer screen. GAN: GAN-based restoration using perceptual loss. MSE: CNN-based
restoration using MSE loss; JPEG 20: JPEG compression with quality factor 20;

the diference of Gaussian (DOG) bands and demonstrate it highly correlates with human visual system. Lukin
et al. [29] fuse the outcome of several quality assessment systems by training a neural network. Kim and Lee
[24] propose a Full-Reference framework that aims to learn the human visual sensitivity by leveraging distorted
images, objective error maps and subjective scores. Bosse et al. [7] propose a learned approach for image quality
assessment that incorporates an optional joint optimization of weighted average patch aggregation implementing
a method for pooling local patch qualities to global image quality. In [28] Liu et al. address the problem of the
lack of data in the standard IQA datasets with a siamese network that learns from rankings. This approach
obtains impressive results. In the last few years with the advent of new large datasets [19, 37] for Image Quality
Assessment, No-Reference and Full-Reference transformer-based approaches were deployed obtaining very high
performances [10, 52].

3 IMAGE RESTORATION

Even if this work does not propose novel image restoration approaches, to make the paper self-contained here we
formalize the image restoration or enhancement task. The main motivation that lead us to work on an alternative
to image quality assessment is the poor performance of standard IQAmethods on images that have been enhanced
by GANs, e.g. for denoising [23, 44], deblurring [43, 53] or compression artefact removal [14, 30, 45]. Furthermore,
we leverage image restoration as a tool to extend the capabilities of LANBIQUE in order to evaluate those images
that lack an uncorrupted high quality counterpart, extending our approach to the No-Reference scenario, as show
in Sect.4.3.

ACM Trans. Multimedia Comput. Commun. Appl.
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Problem formulation. Given some image processing algorithm D, such as JPEG image compression, a distorted
image is deined as ILQ = D (IHQ ), where IHQ is a high quality image undergoing the distortion process, image
enhancement aims at inding a restored version of the image IR ≈ G (ILQ ). In this work we use two image
enhancement networks, one that is speciic for JPEG artifacts [14], and a more generic approach, which can work
without prior knowledge of the degradation [47].

In [14] Galteri et al. try to learn a generative model G which, conditioned on the input distorted images, is
optimized to invert the distortion process D so that G ≈ D−1. Their generator architecture is loosely inspired
by [17]. They employ LeakyReLU activations and 15 residual layers in a fully convolutional network. The inal
image is obtained by a nearest neighbor upsampling of a convolutional feature map and a following stride-one
convolutional layer to avoid grid-like patterns possibly stemming from transposed convolutions.

The set of weightsψ of the D network are learned by minimizing:

Ld = − log
(

Dψ
(

IHQ |ILQ
))

− log
(

1 − Dψ
(

IR |ILQ
))

where IHQ is the uncompressed or high-quality image, IR is the restored image created by the generator and ILQ
is a compressed image.

The generator is trained combining a perceptual loss with the adversarial loss:

LAR = LP + λLadv . (1)

where Ladv is the standard adversarial loss:

Ladv = − log
(

Dψ
(

IR |ILQ
))

(2)

that rewards solutions that are able to mislead the discriminator, and Lp is a perceptual loss based on the distance
between images computed projecting IHQ and IR on a feature space by some diferentiable function ϕ and taking
the Euclidean distance between the two feature representations:

LP =
1

Wf Hf

Wf
∑

x=1

Hf
∑

y=1

(

ϕ
(

IHQ
)

x,y
− ϕ (IR )x,y

)2

(3)

They employ a generator inspired by [17], with a residual architecture using LeakyReLU activations, Batch-
Normalization [20] and Nearest-neighbour upsampling layer is used to recover original size [33], and a fully
convolutional Discriminator. In [14] it has been shown that using a GAN approach instead of direct training
of the network for image enhancement, results in improved subjective perceptual similarity to original images
and, more importantly, in much improved object detection performance. Qualitative examples of GAN and direct
training method are shown in Fig. 2.

Real-ESRGAN [47] is a more recent approach, that has the advantage of not requiring to know the type of
distortion nor the intensity of it in advance to restore an image. In [47] Wang et al. introduce a high-order
degradation modeling process to better simulate complex real-world degradations. Diferently from [14] they use
a U-Net discriminator with spectral normalization to increase discriminator capability and stabilize the training
dynamics. As in ESRGAN [48] the generator is built by several residual-in-residual dense blocks (RRDB).

4 EVALUATION PROTOCOL

Classic Full-Reference image quality evaluation methods rely on the similarity between an image which has
been processed by some algorithm D and a reference undistorted image. Considering the use case of image
enhancement of an image that was compressed, GANs are a good solution since they are great at illing in high
frequency realistic details in image enhancement tasks; in this case the resulting enhanced image is compared to
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Fig. 3. Overview of LANBIQUE. An image is first processed by an object detector, each box feature is then fed to a captioning
model[2, 11]; then a metric for captioning evaluation is used to score the quality of the image. In this example a highly JPEG
corrupted images yields a low CIDEr score of 0.631.

the reference. Unfortunately, when using classical MSE based Full-Reference metrics such as SSIM and PSNR
GAN restored images yield lower performance as can be seen in Tab. 2, although they appear as łnatural" and
pleasant to human evaluators, as also seen in examples of Fig.2. For this reason, in [13, 14] semantic tasks are
used to evaluate the quality of restored images. Measuring the performance of a semantic task such as detection
on restored images gives us an understanding of the łcorrectness" of output images. Given some semantic task
(e.g. object detection), a corresponding evaluation metric (e.g. mAP) and a dataset, the evaluation protocol consists
in measuring the variation of such metric on diferent versions of the original image. Interestingly, this evaluation
methodology gives hints on what details are better recovered by GANs.

In certain cases, detection is a task describing scene semantics in a very approximate fashion; usually detectors
do not degrade for object classes that are clearly identiiable by their shape since even high distortions in the
image are not able to hide such features. The gain in image quality provided by GANs, according to object
detection based evaluation, resides in producing high quality textures for deformable objects (e.g. cats, dogs, etc).

In this paper we advocate the use of a language generation task for evaluating image enhancement. The idea
is that captioning maps the semantics of images into a much iner and rich label space represented by short
sentences. To be able to obtain a correct caption from an image many details must be identiiable.

4.1 Evaluation with Reference Captions

We devise the following evaluation protocol for image enhancement. We pick an image captioning algorithm A.
Image captioning is the task of generating a sequence of words, possibly grammatically and semantically correct,
describing the image in detail. Given a set of reference captions S and the caption generated from an input image
A (I ), we want to measure their similarity with a language metric D:

LANBIQUE(D,A; I , S ) = D (A (I ), S ) (4)

We look at the performance of a captioning algorithmA on diferent versions of a dataset (e.g. COCO): compressed,
original and restored. The pipeline of this evaluation approach is depicted in Fig. 3.
In particular, we analyze results from two highly performing captioning methods [2, 11] which combine a

bottom-up model of visual entities and their attributes in the scene with a language decoding pipeline. Both
methods are trained over several steps incorporating semantic knowledge at diferent levels of granularity. In
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particular, the bottom-up region generator is based on Faster R-CNN [38] which is based on a feature extractor
pre-trained on ImageNet [12] and then ine-tuned to predict object entities and their attributes using the Visual
Genome dataset [26]. In [2], further knowledge is incorporated into the model by training the caption generation
model using a irst LSTM as a top-down visual attention model and a second level LSTM as a language model.
Meshed memory transformers [11] share the exact same visual backbone as [2] but exploit a stack of memory-
augmented visual encoding layers and a stack of decoding layers to generate caption tokens.

No matter how captioning models are optimized, our results show that the behavior of the captioning model
for image quality assessment is consistent over several metrics as shown in Tab. 1.
Captioning is evaluated with several specialized metrics measuring the word-by-word overlap between a

generated sentence and the ground truth [34], in certain cases including the ordering of words [3], considering
n-grams and not just words [27, 46] and the semantic propositional content (SPICE [1]). These metrics evaluate
the similarity with respect to a set of reference captions S , that is usually composed of ive references.

4.2 Evaluation without Reference Captions

Unfortunately, in most of the cases reference captions are not available as they often must be collected with great
expense of efort and resources; in fact, standard datasets used for image quality evaluation do not include captions.
However, it is possible to evaluate any kind of test image with our language based approach by modifying the
pipeline. The idea is that the reference image is enough high quality to provide a valid caption for the evaluation
of LANBIQUE. We caption the reference image IHQ using the same captionerA we use for the test image I , then
we maintain the same procedure we previously described:

LANBIQUE-NC(D,A; I , IHQ ) = D (A (I ),A (IHQ )) (5)

Language Model

Language 

Metric
0.932

Blind Image 

Enhancement
Language Model Pseudo Ground Truth Caption

Predicted Caption

Input Image

Pseudo

Reference

Fig. 4. LANBIQUE without a reference caption available. The reference image is captioned as well by the same language
model to generate a description of the image. This output is used as pseudo ground truth caption and compared to the
predicted caption.

This evaluation approach is represented in Fig. 4. Since we change the evaluation pipeline with respect to the
previous case, we argue that there may be a drawback with respect to the original version of the approach. As a
matter of fact, modern captioners provide just one description per image and this means that the computation of
D metric is done just between two sentences. However, this does not afect the performance of our approach
signiicantly, provided that the A generates high quality captions.
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4.3 No-Reference Evaluation

In this section we show how our approach can be extended to work in a No-Reference setting. In many occasions
we may not have a high quality image available to be compared with the one to be tested. For this reason, we
modify our language based pipeline by adding an additional blind restoration module R. We assume that the
images to be tested are corrupted by one or a combination of unknown distortions that are responsible of a global
reduction of the visual quality. In this extended model, our aim is to restore corrupted input image I in order to
use the enhanced version as the reference image. After this operation is completed, we are able to feed both the
corrupted image and the restored one to the same captioning module, hence we generate their text descriptions
and inally we calculate the ultimate score based on some language metric D:

LANBIQUE-NR(D,A,R; I ) = D (A (I ),A (R (I ))) (6)

This No-Reference approach is depicted in Fig.5

Language Model

Language 

Metric
0.752Language Model Pseudo Ground Truth Caption

Predicted Caption

Input Image

Reference

Image

Fig. 5. LANBIQUE in the No-Reference seting. A blind image enhancement method is used to recover a high quality version
of the image, then a captioning model is applied to both images. Input image predicted caption is then compared with the
pseudo ground truth caption obtained from the restored image.

Typically, image distortions are not known a priori so it may be a diicult task to train many networks capable
of handling all the possible combinations of corruption processes and then select the best one for a speciic
restoration. For this reason, we choose to train a single network following a degradation model, so that it can
restore most types of distorted images and recover their original quality as best as possible. In order to ensure a
good output quality, we employed Real-ESRGAN [47] as the restoration module. We have modiied the original
model by adding JPEG2000 in the training procedure, then we have ine-tuned a pre-trained version of such
network with the new introduced distortion.
In most of the cases, recovered images represent a solid reference for our evaluation model, as they are very

close to real images from the point of view of human perception. In this setup, our LANBIQUE-NR assigns high
scores to slightly distorted images, as their reconstruction is likely very perceptually close, and the captions
generated are pretty close. On the other hand, highly distorted images are transformed into better quality data
that difer signiicantly from input. In this case, the captions between the two versions may difer much more,
thus leading to lower scores of language metrics.
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4.4 Subjective evaluation

In this evaluation we assess how images obtained with the selected GAN based restoration method [14] are
perceived by a human viewer, evaluating in particular the preservation of details and overall quality of an
image. In total, 16 viewers have participated to the test, a number that is considered enough for subjective image
quality evaluation tests [50]; no viewer was familiar with image quality evaluation or the approaches proposed
in this work. A Single-Stimulus Absolute Category Rating (ACR) experimental setup has been developed using
avrateNG1, a tool designed to perform subjective image and video quality evaluations. We asked participants to
evaluate images’ quality using the standard 5-values ACR scale (1=bad, up to 5=excellent). A set of 20 images is
chosen from the COCO dataset, selecting for each image three versions: the original image, a JPEG compressed
version with QF=10 (high compression quality factor) and the restored version of the JPEG compressed image
with QF=10 compressed image; this results in a set of 60 images. Each image was shown for 5 seconds, preceded
and followed by a grey image, also shown for 5 seconds. Considering our estimation of test completion time, we
chose this amount of images to keep each session under 30 minutes as recommended by ITU-R BT.500-13 [21].
To select this small sample of 20 images to be as representative as possible of the whole dataset D for the

captioning performance we operate the following procedure. Let µ∗ (v ) and σ 2∗ (v ) be the mean and variance of a
captioning metric score (in this case we used CIDEr) for a given version v of the image i . We iteratively extract 20
random image ids, yielding set D∗ out of the whole 5,000 testing set from the Karpathy split, without repetition.
We attempt to minimize

eµ =
1

|D∗ |

∑

i ∈D∗

∑

v ∈Vi

|µ∗ (v ) − µ | (7)

and

eσ 2 =

1

|D∗ |

∑

i ∈D∗

∑

v ∈Vi

|σ 2∗ (v ) − σ 2
| (8)

by iterative resampling images until we ind eµ and eσ 2 such that eµ ≤ 10−3 and eσ 2 ≤ 10−4. Vi is the set of
diferent versions of an image i in the smaller dataset D∗, namely: JPEG compressed at QF=10 (referred to as

JPEG 10 in the following), its GAN reconstruction and the original uncompressed image; and µ and σ 2 are the
mean and variance of the considered captioning metric computed on the whole set of images D. The selected
images contain diferent subjects, such as people, animals, man-made objects, nature scenes, etc. Both the order
of presentation of the tests for each viewer, and the order of appearance of the images were randomized.

5 EXPERIMENTAL RESULTS

5.1 Results on JPEG Artefacts

First, we study in detail the behavior of LANBIQUE on a single distortion. This way we can easily control the
amount of image corruption and evaluate the behavior of our metric on GAN restored images.

Results with reference captions. In order to use a dataset of images with a set of associated captions, we selected
the 5,000 images testing set from the Karpathy split of COCO dataset [9]. The images have then been compressed
at diferent JPEG Quality Factors (QF), and then they have been reconstructed using the GAN approach of [14].
In Tab. 1 we report results of LANBIQUE using various captioning metrics D. Interestingly, all metrics show that
captions over reconstructed images (REC rows) are better with respect to caption computed over compressed
images (JPEG rows). This shows that image details that are compromised by the strong compression induce
errors in the captioning algorithm. On the other hand, the GAN approach is able to recover an image which is not

1https://github.com/Telecommunication-Telemedia-Assessment/avrateNG
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only pleasant to the human eye but recovers details which are also relevant to a semantic algorithm. In Fig. 1 we
show the diference of captions generated by [2] over original, compressed and restored images. A human may
likely succeed in producing an almost correct caption for highly compressed images, nonetheless state-of-the art
algorithms are likely to make extreme mistakes which are instead not present on reconstructed images.

Table 1. Evaluation of image restoration over compression artifacts with GAN using LANBIQUE with diferent captioning
metrics (best results highlighted in bold). For each metric we denote higher(↑) or lower(↓) is beter. JPEG q indicates a JPEG
compressed image with QF = q (e.g. 10), while (REC q) indicates the corresponding reconstruction using [14]. Captions
created from reconstructed images obtain a beter score for every metric.

QUALITY BLEU_1↑ METEOR↑ ROUGE↑ CIDEr↑ SPICE↑

JPEG 10 0.589 0.173 0.427 0.496 0.103
REC 10 0.730 0.253 0.527 1.032 0.189

JPEG 20 0.709 0.241 0.513 0.937 0.174
REC 20 0.751 0.266 0.543 1.105 0.201

JPEG 30 0.740 0.258 0.535 1.054 0.194
REC 30 0.757 0.269 0.549 1.133 0.205

JPEG 40 0.748 0.263 0.542 1.087 0.200
REC 40 0.758 0.270 0.549 1.132 0.206

JPEG 60 0.755 0.267 0.546 1.117 0.204
REC 60 0.760 0.270 0.550 1.137 0.207

ORIGINAL 0.766 0.274 0.556 1.166 0.211

In Fig. 6 we show the diferent performance of captioning algorithms in terms of CIDEr measure on the same
split of test of compressed and restored images, considering diferent quality factors of JPEG. The captioner
proposed in [11] outperforms [2] as expected, but interestingly we may observe that the range of CIDEr values
of [11] is signiicantly higher than [2]. We argue that this could be considered a strong feature of our evaluation
approach, as a wider range of value may imply that a good captioner is able to predict the image quality in a
iner manner than other weaker captioning algorithms.

Fig. 7 shows the bottom-up captioning process performed on an image used in the subjective evaluation. The
left image shows the JPEG 10 version, while the right one shows the GAN reconstruction. The images show the
bounding boxes of the detected elements. In the irst case the wrong detections of indoor elements like łloorž
and łwallž are likely reasons for the wrong caption, as opposed to the correct recognition of a łwhite wavež and
łblue waterž in the GAN-reconstructed image.

Results without reference captions. A common setting that is used to evaluate image enhancement algorithms
is Full-Reference image quality assessment, where several image similarity metrics are used to measure how
much a restored version difers with respect to the uncorrupted original image. This kind of metrics, measuring
pixel-wise value diferences are likely to favor MSE optimized networks which are usually prone to obtain blurry
and lowly detailed images.

In certain cases, it is not possible to use Full-Reference quality metrics, e.g. if there’s no available original image.
These kind of metrics typically evaluate the łnaturalness" of the image being analyzed. In the same setup we used
previously, we perform experiments using NIQE and BRISQUE which are two popular No-Reference metrics for
images. Interestingly, these metrics tend to favor GAN restored images instead of the original uncompressed ones.

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 6. CIDEr scores using [2] (purple) and [11] (yellow) on compressed and restored images for diferent QFs fromMS-COCO.

A couple of people siting next to a Christmas tree. A man riding a wave on a surfboard in the ocean.

Fig. 7. Botom-Up detection process of captioning on two images: let) JPEG compressed; right) GAN reconstruction. Note
that several mistaken detections on the let image are avoided in the right one. In particular on the let łsurfboardž is
missed and łwhite floorž and łblue wallž are wrongly detected. These two indoor details are the one that likely mislead the
captioning.

Most surprisingly, NIQE and BRISQUE obtain better results when we reconstruct the most degraded version of
images (QF 10-20), but these values increase as we reconstruct less degraded images. We believe that BRISQUE and
NIQE favor crisper images with high frequency patterns which are distinctive of GAN based image enhancement
and they are typically stronger when reconstructing heavily distorted images.

In Tab. 2 we report results on COCO for Full-Reference and No-Reference indexes. In this setup, we compress
the original images at diferent QFs and then we restore them with a QF speciic artifact removal GAN. We use
the uncompressed image generated caption as ground truth, as in Tab. 3. The results show that, for restored
images, PSNR accounts for a slight improvement while SSIM indexes lower than the compressed counterparts.
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Table 2. Evaluation using No-Reference and Full-Reference metrics on MS-COCO. For each metric we denote higher(↑) or
lower(↓) is beter. JPEG q indicates a JPEG compressed image withQF = q (e.g. 10), while (REC q) indicates the corresponding
reconstruction using [14]. NIQE and BRISQUE rate beter GAN images than the ORIGINAL. SSIM always rate restored
images worse than compressed. PSNR shows negligible improvement. [11] and CIDEr have been used by LANBIQUE-NC
respectively as language model and language metric.

QUALITY NIQE↓ BRISQUE↓ PSNR ↑ SSIM↑ LPIPS↓ LANBIQUE-NC ↑

JPEG 10 6.689 52.67 25.45 0.721 0.305 0.542
REC 10 3.488 17.93 25.70 0.718 0.144 1.118

JPEG 20 5.183 43.99 27.46 0.796 0.187 0.956
REC 20 3.884 17.85 27.60 0.784 0.085 1.289

JPEG 30 4.474 37.72 28.61 0.831 0.134 1.165
REC 30 3.601 18.32 28.81 0.819 0.060 1.370

JPEG 40 4.011 33.61 29.41 0.852 0.105 1.260
REC 40 3.680 18.68 29.44 0.836 0.048 1.424

JPEG 60 3.588 28.15 30.71 0.880 0.067 1.366
REC 60 3.885 19.45 30.61 0.862 0.032 1.482

ORIGINAL 3.656 21.79 - - - -

This is an expected outcome, as in [14] it is shown that state of the art results on PSNR can be obtained only
when MSE is optimized and on SSIM if the metric is optimized directly. Nonetheless, as can be seen in Fig. 2,
GAN enhanced images are more pleasant to the human eye, therefore we should not rely just on PSNR and SSIM
for GAN restored images. LANBIQUE, using [11], is in line with LPIPS [54]. Unfortunately, LPIPS, as shown in
Tab. 3 has low correlation with scores determined by human perceived quality.

Correlation with Mean Opinion Score. In Fig. 8 left) are reported subjective evaluation results as Mean Opinion
Scores (MOS) as box plots, showing the quartiles of the scores (box), while the whiskers show the rest of the
distribution. The plots are made for the original images, the images compressed with JPEG using a QF=10, and
the images restored with the GAN-based approach [14] from the heavily compressed JPEG images. The igure
shows that the GAN-based network is able to produce images that are perceptually of much higher quality than
the images from which they are originated; the average MOS score for JPEG images is 1.15, for the GAN-based
approach is 2.56 and for the original images it is 3.59. The relatively low MOS scores obtained also by the original
images are related to the fact that COCO images have a visual quality that is much lower than that of dataset
designed for image quality evaluation. To give better insight on the distribution of MOS scores, Fig. 8 right) shows
the histograms of the MOS scores for the three types of images: orange histogram for the original images, green
for the JPEG compressed images and blue for the restored images.

We further show that our language based approach correlates with perceived quality using a IQA benchmark
test on the LIVE dataset [40] that consists of 29 high resolution images compressed at diferent JPEG qualities for
a total of 204 images. For each LIVE image a set of user scores is provided indicating the perceived quality of
the image. However, no caption is provided in this dataset. For this reason, we consider the output sentences
of captioning approaches over the undistorted image as the ground truth in order to calculate the language
similarity measures, following the LANBIQUE-NC protocol presented in Sect. 4.2. In Tab. 3 we show the Pearson
correlation score of diferent captioning metrics and other common Full-Reference quality assessment approaches.
The experiment shows an interesting behaviour of our approach in terms of correlation. In the irst place, we can
observe that each captioning metric has a correlation index that is higher or at least comparable with the other
Full-Reference metrics. In particular, METEOR and CIDEr perform better than the other metrics independently of
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Fig. 8. Let) Subjective image quality evaluation of original COCO images (orange), heavily compressed JPEG images (blue)
and their restored version obtained with the GAN-based approach (green). Restored images are perceived as having a beter
quality than their compressed versions. Right) Histograms of MOS scores of the three types of images.

Table 3. Pearson score, correlating scores with users’ MOS for diferent captioning metrics and image based Full-Reference
approaches on LIVE dataset. CIDEr obtains a superior score with respect to image based methods.

Metric LANBIQUE-NC w/ [11] LANBIQUE-NC w/ [2]

BLEU 1 0.873 0.838
METEOR 0.900 0.846
SPICE 0.895 0.844
ROUGE 0.861 0.832
CIDEr 0.901 0.854

PSNR 0.857
SSIM 0.893
LPIPS 0.859

which captioning algorithm is used. In the following experiments LANBIQUE, LANBIQUE-NC and LANBIQUE-NR
have been computed using CIDEr metric. Moreover, we observe that the correlation metric signiicantly improves
if we employ a more performing captioner. In this case, the visual features used by the two captioning techniques
are exactly the same, the main diference lies in the overall language generation pipeline of the approaches.
Hence, we argue that language is efectively useful for quality assessment, and the more a captioning algorithm
is capable of providing detailed and meaningful captions the better we could use the generated sentences to
formulate good predictions about the quality of images.
In order to better understand what metric could be used instead of human evaluation, we computed the

correlation coeicient

ρ =

∑

i ∈D (xi − x ) (yi − y)
√

∑

i ∈D (xi − x )
2
∑

i ∈D (yi − y)
2

(9)

between BRISQUE [31], NIQE [32], the proposed LANBIQUE and MOS for all versions of the images. As shown
in Tab. 4, it turns out that using a ine-grained semantic task as image captioning is the best proxy (highest
correlation) of real human judgment.

Fig. 9 shows a captioning example from the COCO images used in the subjective quality evaluation experiment.
On the left we show a sample compressed with JPEG with a QF=10, on the center we show the image restored
with [14] and on the right we show the original one. It can be observed that the caption of the restored image
is capable of describing correctly the image content, on par with the caption obtained on the original image.
Instead, the caption of the highly compressed JPEG image is completely unrelated to image content, probably
due to object detection errors.
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JPEG 10 GAN Original

A couple of people siting next
to a christmas tree.

A man riding a wave on a
surfboard in the ocean.

A man riding a wave on a
surfboard in the ocean.

A teddy bear siting next to a
car.

A dog siting in the front of a
car.

A dog is siting in a car seat.

A man riding a skateboard on
a skate board.

A man riding a skateboard on
the street.

A man riding a skateboard on
a sidewalk.

Fig. 9. Examples of captions for COCO images used in the subjective quality evaluation. Let column) JPEG compressed with
QF=10; Center column) GAN-based restoration from JPEG compressed images with QF=10; right column) original images.

Table 4. Pearson’s Correlation coeficient, ρ (X ,Y ) between No-Reference and captioning based metrics (xi ∈ X ) and MOS
(yi ∈ Y ), as defined in Eq. 9 on for a sample set D sampled from COCO.

Metric NIQE BRISQUE LANBIQUE

ρ ↑ 0.84 0.89 0.96
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5.2 Results on all distortions

We further show the performance of our approach in full reference image quality assessment on other types of
distortion. In this experiment we keep using LIVE dataset, as it contains images corrupted with other processes,
such as Gaussian blur, fast-fading, JPEG2000 and white noise, but we add also a recent large scale PieAPP dataset.

5.2.1 Results on LIVE. We repeat the same experiment done for JPEG images on LIVE dataset, irstly considering
each distortion separately and then all the distortions together. In Tab. 5 we show the Pearson score for LANBIQUE
and several Full-Reference approaches. As we can see, our approach seems to underperform on each distortion
except for JPEG, while SSIM and LPIPS are consistent despite the diversity of decaying processes. This is somehow
expected, as blur and white noise tend not to harm detection signiicantly unless they are used with high
intensity. Fast fading on the other hand, is to be considered as local distortion. For this reason, objects may not
be corrupted at all, thus leading to unchanged detection performances and consequently low correlation scores
for our assessment approach. As expected LANBIQUE-NR obtains a lower score than LANBIQUE-NC: in fact
LANBIQUE-NC is an upper bound for the No-Reference version since this latter protocol would require a perfect
blind restoration method capable of obtaining the reference images to obtain the same score.

Table 5. Pearson’s correlation of our approach (Full-Reference and No-Reference) on all distortions present on LIVE compared
with other Full-Reference metrics. For the No-Reference approach (LAMBIQUE-NR) fast fading score is not reported since
actual State-Of-The-Art restoration approaches perform poorly on this distortion.

GBLUR FASTFADING JP2K JPEG WN TOTAL

PSNR 0.767 0.763 0.83 0.857 0.732 0.752
SSIM 0.886 0.845 0.89 0.893 0.951 0.789
LPIPS 0.951 0.836 0.885 0.859 0.910 0.785

LANBIQUE-NC 0.786 0.651 0.787 0.901 0.735 0.792

LANBIQUE-NR 0.676 - 0.679 0.796 0.667 0.701

However, we experience a totally diferent scenario when the distortions are evaluated all together. We can
see that for each IQA approach we have tested, there is a signiicant drop in the correlation coeicient with
respect to single distortion experiments. We argue this is due to the fact that the scores for single distortion
types are well correlated but considering the scores for multiple distortion classes there is a bigger discrepancy
between them that leads to a decrease of the total score. On the other hand, our approach does not sufer from
this phenomenon, as the performance we measure in these conditions is consistent, if not higher, with single
distortions. Moreover, our language based approach slightly overperforms the other measures on the same data
and at the same conditions.

5.2.2 Results on PieAPP. Finally, we use a more recent large scale dataset [37]. Prashnani et al. collected a very
large dataset increasing the number of distortions with respect to existing IQA benchmarks. Moreover, they
designed the testing procedure diferently. Speciically, instead of collecting multiple subjective scores from a set
of users, they rely on the fact that for humans is easier to tell which of two distorted images IA, IB is closer to a
reference undistorted one IR . Then images are labelled by the percentage of users that preferred an IA with respect
to IB . If there is an even split between these two populations, it means that both images are equally diferent from
the reference IR . Starting from 200 reference images and combining a diverse set of 75 distortions, with a total of
44 distortions in the training set, and 31 in the test set which are distinct from the training set, the PieAPP dataset
accounts for a total of 77,280 pairwise comparisons for training (67,200 inter-type and 10,080 intra-type). In Tab. 6

we report results in term of Kendall’s Rank Correlation Coeicient: KRCC = 1/
(

n
2

)

∑

i<j sign(xi −x j )sign(yi −yj );
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Pearson’s Linear Correlation Coeicient (PLCC or ρ (X ,Y ) as deined in Eq. 9) and Spearman’s Rank Correlation
(SRCC), ρ (R (X ),R (Y ) where R (X ) are the ranks of sample X .

Interestingly, both image and type of distortions do not overlap between training and testing. In Tab. 6, we
show how our LANBIQUE-NC approach (using CIDEr and [11]) ranks with respect to non-learning (top) and
learning based (bottom) approaches. We refer to non-learning methods when the algorithm is not relying in any
way on any kind of supervision for the IQA task. Our approach exploits learned deep networks and features
but those are not the result of training on PieAPP or on any other IQA dataset. Instead, the lower portion of the
Table reports methods [7, 8, 24, 29], that are speciically trained to score image similarity. Very interestingly our
LANBIQUE-NC approach is consistently better than any non-learned image similarity metric and outperforms
all both [7] and [37], with [7] being a close comparison.

Table 6. Evaluation on PieAPP dataset. Column FR indicates if the method is used in a Full-Reference fashion or not. For all
metrics higher is beter. We report Kendall’s Rank Correlation Coeficient (KRCC), Pearson’s Linear Correlation Coeficient
(PLCC) and Spearman’s Correlation Coeficient(SRCC). KRCC is computed for the whole set (pAB ∈ [0, 1]) and for a set for
which there is more agreement between human labels (pAB < [.35, .65]). LANBIQUE-NC has beter KRCC with respect to all
non-learning based methods and is also beter than most of the methods that exploit some sort of supervision to perform
IQA.

Method FR Learning KRCC (pAB ∈ [0, 1]) KRCC (pAB < [.35, 65]) PLCC SRCC

MAE yes no .252 .289 .302 .302
RMSE yes no .289 .339 .324 .351
SSIM yes no .272 .323 .245 .316
MS-SSIM yes no .275 .325 .051 .321
GMSD yes no .250 .291 .242 .297
VSI yes no .337 .395 .344 .393

PSNR-HMA yes no .245 .274 .310 .281
FSIMc yes no .322 .377 .481 .378
SFF yes no .258 .295 .025 .305
SCQI yes no .303 .364 .267 .360
LANBIQUE-NC yes no .342 .412 .316 .310

DOG-SSIMc [36] yes yes .263 .320 .417 .464
Lukin et al. [29] yes yes .290 .396 .496 .386
Kim et al. [24] yes yes .211 .240 .172 .252
Bosse et al. [7] no yes .269 .353 .439 .352
Bosse et al. [7] yes yes .414 .503 .568 .537
PieAPP [37] yes yes .668 .815 .842 .831

6 CONCLUSION

In this work we propose LANBIQUE, a new approach to evaluate image quality using language models. Existing
metrics based on the comparison of the restored image with an undistorted version may give counter-intuitive
results. On the other hand, the use of naturalness based scores may in certain cases ranks restored images higher
than original ones.
We show that instead of using signal based metrics, semantic computer vision tasks can be used to evaluate

results of image enhancement methods. Our claim is that a ine grained semantic computer vision task can be a
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great proxy for human level image judgement. Indeed we ind out that employing algorithms mapping input
images to a iner output label space, such as captioning, leads to more discriminative metrics.

LANBIQUE is capable to evaluate the quality of images corrupted by diferent distortions and its performance
is comparable to other image quality assessment methods. Moreover, we have modiied our evaluation pipeline to
transform our original solution into a No-Reference method and we have demonstrated that it keeps performing
fair on standard benchmarks.

Finally, we have tested LANBIQUE an a large scale dataset that contains unknown distortions. Despite the lack
of learning and of knowledge on data, our approach outperforms every baseline that does not use learning for the
evaluation, and it is comparable to most of the learned approaches on the same data. As a inal note, we would
like to remark that our approach will continuously improve thanks to the advancement of image captioning
and enhancement networks. Indeed, we have shown that without changing the visual features, switching to a
better captioning algorithm we get a higher performance. Moreover, being LANBIQUE-NC an upper bound for
LANBIQUE-NR, as image enhancers gain quality, the gap between the performance of these two methods will
shrink.
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