
Towards Verifiable Differentially-Private Polling
Gonzalo Munilla Garrido

∗

gonzalo.munilla-garrido@tum.de

Technical University of Munich

Garching, Germany

Matthias Babel

matthias.babel@fim-rc.de

FIM Research Center,

University of Bayreuth

Bayreuth, Germany

Johannes Sedlmeir

johannes.sedlmeir@fim-rc.de

Fraunhofer FIT, Branch Business &

Information Systems Engineering

Bayreuth, Germany

ABSTRACT
Analyses that fulfill differential privacy provide plausible deniabil-

ity to individuals while allowing analysts to extract insights from

data. However, beyond an often acceptable accuracy tradeoff, these

statistical disclosure techniques generally inhibit the verifiability

of the provided information, as one cannot check the correctness

of the participants’ truthful information, the differentially private

mechanism, or the unbiased random number generation. While

related work has already discussed this opportunity, an efficient

implementation with a precise bound on errors and correspond-

ing proofs of the differential privacy property is so far missing.

In this paper, we follow an approach based on zero-knowledge

proofs (ZKPs), in specific succinct non-interactive arguments of

knowledge, as a verifiable computation technique to prove the

correctness of a differentially private query output. In particular,

we ensure the guarantees of differential privacy hold despite the

limitations of ZKPs that operate on finite fields and have limited

branching capabilities. We demonstrate that our approach has prac-

tical performance and discuss how practitioners could employ our

primitives to verifiably query individuals’ age from their digitally

signed ID card in a differentially private manner.

CCS CONCEPTS
• Information systems→ Electronic data interchange; • Security
and privacy → Cryptography; Human and societal aspects of
security and privacy; Privacy-preserving protocols.

KEYWORDS
Digital wallet, exponential noise, privacy, randomized response,

SNARK, survey, zero-knowledge proof

ACM Reference Format:
Gonzalo Munilla Garrido, Matthias Babel, and Johannes Sedlmeir. 2022.

Towards Verifiable Differentially-Private Polling. In The 17th International
Conference on Availability, Reliability and Security (ARES 2022), August 23–26,
2022, Vienna, Austria. ACM, New York, NY, USA, 10 pages. https://doi.org/

10.1145/3538969.3538992

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ARES 2022, August 23–26, 2022, Vienna, Austria
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9670-7/22/08. . . $15.00

https://doi.org/10.1145/3538969.3538992

1 INTRODUCTION
Gathering information through polls to produce statistics regarding,

e.g., the health, financial status, or demographics of a population

bears the risk of exposing individuals’ sensitive data during and

after the survey. One approach is to anonymize the gathered data

centrally, which implies high costs for implementing security mea-

sures and still carries ethical risks. Moreover, since interviewees

cannot control that their data is adequately anonymized and pro-

tected in this paradigm and their level of trust in the surveyor is

limited, their response may be subject to bias, specifically with

highly sensitive or embarrassing questions.

A simple means to enhance privacy by design and reduce the

risk of bias in such polls is through randomized response [57],

its variations [6, 25, 30, 41, 58], or more involved forms of local

differential privacy (DP) [3, 31–33, 37, 38], which provide plausible

deniability by adding noise to interviewees’ answers. The noise

distribution of these techniques is typically centered around 0 with

finite variance [14], so according to the law of large numbers, the

mean of the noisy data converges towards the original mean as the

sample size increases, improving accuracy. However, in this local

approach, there is a lack of response verifiability – the interviewer

has no assurance that the interviewee, i.e., the adversary in our

system, answered truthfully. This lack of verifiability is arguably

severe when rewards encourage malicious participation, e.g., there

is a monetary incentive to participate but no willingness to answer

truthfully.

Verifiable computation can prove the execution of a particular

algorithm from truthful inputs without revealing private informa-

tion [4]. Accordingly, we suggest combining verifiable computation

with local differential privacy (LDP) techniques to prove (i) the

interviewees’ plausible deniability guarantee derived from random-

ness and (ii) the truthfulness of their deterministic answer, i.e., the

value has been signed by a reputed authority. Similar approaches

have been discussed, for instance, in [44, 47]. Our approach hence

targets polls where there is cryptographic evidence for the answers,

e.g., a digital ID card signed by a government, digital diplomas

issued by a certified university, or COVID-19 immunity passports

certified by pharmacies or doctors. Such attestations are considered,

for instance, in the European digital wallet initiative [15, 46, 48].

In this context, it is particularly helpful that the digital certificates

involved in the many implementations of digital wallets are in fact

anonymous credentials [7, 50, 52], which allows us to extract a

user’s attribute values without revealing strongly correlating infor-

mation. Moreover, we believe that in the private sector, attestations

derived, for instance, from cryptographically signed statements

of bank accounts or insurance claims and their use in verifiable

differentially private surveys could have considerable economic

ar
X

iv
:2

20
6.

07
22

0v
1

 [
cs

.C
R

]
 1

5
Ju

n
20

22

https://orcid.org/0000-0002-0135-9432
https://orcid.org/0000-0002-8794-2126
https://orcid.org/0000-0003-2631-8749
https://doi.org/10.1145/3538969.3538992
https://doi.org/10.1145/3538969.3538992
https://doi.org/10.1145/3538969.3538992

ARES 2022, August 23–26, 2022, Vienna, Austria Gonzalo Munilla Garrido, Matthias Babel, and Johannes Sedlmeir

potential, as data markets require technologies that provide verifia-

bility despite privacy protection [20].

There are twomain approaches for verifiable computation: trusted

execution environments (TEEs) [45], and non-interactive or interac-

tive zero-knowledge proofs (ZKPs) [4, 23, 53]. Given the numerous

known vulnerabilities and attacks on TEEs [1, 40, 54] and Intel’s

SGX SDK deprecation [35], we decided to focus on ZKP-based ap-

proaches. Moreover, non-interactive ZKPs do not require to engage

into sequential messaging, so – unlike with interactive ZKP – the

prover can convince multiple parties of a claim with a single mes-

sage [53]. Thus, we opted to use non-interactive ZKPs to enable

the verifiability of the computational integrity in the selected DP

mechanism.

This paper’s scope covers both binary answers, e.g., “Are you
older than 18?”, and numerical answers, e.g., “How old are you?”.
We provide plausible deniability for interviewees with differential

privacy (DP) mechanisms in the local model, specifically, employing

randomized response [57] and exponentially distributed noise [12].

Lastly, we adapt these mechanism such that we can verify their

correct execution with ZKPs by employing succinct non-interactive

arguments of knowledge (SNARKs) [5, 27], resulting in the primi-

tives represented in Algorithms 1 and 2. We implement the corre-

sponding circuits and evaluate their performance characteristics to

assess our approach’s practicality.
1

As randomized response and exponential noise are building

blocks for other more complex mechanisms, our scheme could also

be extended to prove their verifiability, such as in two-stage ran-

domized response models [30, 41], unrelated question models [25],

forced response models [6], LDP models [31–33, 37, 38], private

weighted histogram aggregation in crowdsourcing by leveraging

multivariate randomized response [58], building histograms [3], or

using exponential noise distributions in the central model of DP.

Such verifiable forms of DP are also relevant in multilateral proto-

cols that provide economic incentives for participation based on

the participants’ contribution. In such settings, one should compute

fair rewards from the original data without noise, requiring that

the computation of both their deterministic contribution and the

shared noisy value is verifiable. An example for such a scenario

is fair blockchain-based federated learning, studied by Rückel et

al. [47].

This paper is structured as follows. We provide preliminaries in

Section 2, discuss the SNARK-based approach and its implementa-

tion in Section 3, and evaluate it in Section 4. Lastly, we comment

on related work in Section 5, discuss our approach in Section 6, and

conclude the paper in Section 7.

2 PRELIMINARIES
2.1 Differential Privacy
We consider a collection of records from a population (dataset) 𝐷 to

belong to the universe of possible datasetsD. We let𝐷 ′ ∼ 𝐷 denote

neighboring datasets, i.e.,𝐷 and𝐷 ′ differ by only one record. Differ-
ential privacy, introduced by Dwork et al. in 2006 [13], formalizes

a mathematical definition of privacy whereby an analysis’ output

distribution is nearly the same across all neighboring datasets. The

1
The source code can be found at https://github.com/applied-crypto/DPfeatZKP.

indistinguishability between datasets is parameterized by 𝜀 > 0.

The higher 𝜀, the easier it is to identify datasets.

Definition 1. ((𝜀, 𝛿)-Differential Privacy [14]). A randomized
mechanismM is (𝜀, 𝛿)-differentially private iff for any neighboring
dataset 𝐷 ′ ∼ 𝐷 , and any set of possible outputs S ⊆ 𝑅𝑎𝑛𝑔𝑒 (M),

Pr[M(𝐷) ∈ S] ≤ 𝑒𝜀 · Pr[M(𝐷 ′) ∈ S] + 𝛿 .

Having a non-zero 𝛿 relaxes the strict 𝜀 bound for possible but

unlikely events; this type of guarantee is called approximate DP,
whereas with 𝛿 = 0, we obtain pure DP. A randomized mecha-

nismM typically ensures DP by adding carefully calibrated random

noise to the output of a deterministic function 𝑓 (·), for example, by

adding exponentially distributed noise [12] to a count, average, or

median. Furthermore, another factor beyond 𝜀 that calibrates noise

is the sensitivity of 𝑓 (·), which measures the maximum variation

of the output as the input dataset 𝐷 changes (denoted as Δ).
Lastly, it is important to note that a DP mechanismM follows

sequential composition [14], i.e., if M is computed 𝑛 times over

a dataset D with 𝜀𝑖 , in effect, the total 𝜀 is given by

∑
𝜀𝑖 . Thus,

the results become less private with every query. Yet, a system

can effectively impede an attacker from averaging out the noise

through a sequence of DP results by blocking subsequent queries

or deterministically generating the randomness based on the query

parameters.

2.2 Local Differential Privacy
Definition 1 corresponds to the central model, in which a trusted

curator collects data points and adds noise from a distribution

whose variance is tuned by the function’s sensitivity (Δ) and the

required degree of plausible deniability (𝜀). In this paper, we focus on

the local model, whereby the data subject obfuscates the data points
directly before sharing. While the local model typically provides

less accuracy than the central model, the data subject does not need

to trust the curator from a privacy perspective.

For the local setting, we adopt similar notation to [22, 36]. We

let X contain all the possible records of a population, where 𝑥 ∈ X
holds a particular individual’s data. We let 𝑓 : X → [𝑙, 𝑢] be a

function that maps each element of 𝑥 ∈ X to 𝑓 (𝑥) ∈ [𝑙, 𝑢], where
[𝑙, 𝑢] is the set of integers between the lower bound 𝑙 ∈ N and the

upper bound 𝑢 ∈ N. In practice, 𝑓 (·) provides information about

an individual, e.g., their age, income, height, or blood pressure. Let

M : 𝑓 (𝑥) → [0, 𝑛] denote a randomized mechanism that maps

each deterministic query output 𝑓 (𝑥) = 𝑖 ∈ [𝑙, 𝑢] to each possible

value 𝑗 ∈ [𝑙, 𝑢] following a probability distribution that depends on

the value 𝑖 . In this setting, a randomized mechanismM provides

local (𝜀, 𝛿)-DP iff for every pair of inputs 𝑥, 𝑥 ′ ∈ X, and for every

possible output 𝑗 ∈ [𝑙, 𝑢]:
Pr[M(𝑥, 𝑓) = 𝑗] ≤ 𝑒𝜀 · Pr[M(𝑥 ′, 𝑓) = 𝑗] + 𝛿 .

We will cover two mechanisms that satisfy local DP: random-

ized response [57] for binary data and exponentially distributed

noise [12] for numerical data.

Randomized response. Warner [57] introduced randomized re-

sponse in 1965 to provide plausible deniability to interviewees,

which encouraged them to answer truthfully, thus reducing bias

in surveys. The interviewees would answer queries 𝑓 (·) of the

https://github.com/applied-crypto/DPfeatZKP

Towards Verifiable Differentially-Private Polling ARES 2022, August 23–26, 2022, Vienna, Austria

form “Are you a [...]?". The following algorithm is well-known to

be (ln 3, 0)-differentially private [14]:

(1) Flip a coin.

(2) If heads, answer truthfully.

(3) Else, flip the coin again and answer “Yes" if heads and “No"

otherwise.

Exponentially distributednoise. Earlywork byDwork et al. [12]
shows that noise distributed as Pr[𝑥] ∝ exp(− 𝜀 |𝑥 |Δ) fulfills (𝜀, 0)-DP.
We leverage exponentially distributed noise for locally obfuscating

numerical data to answer queries 𝑓 (·) of the form “Howmany [...]?”,

i.e., count queries, by adding noise to the deterministic output of

𝑓 (·) in this manner:M(𝑥, 𝑓) = 𝑓 (𝑥) + noise. As the responses are
local, we must ensure indistinguishability between any 𝑓 (𝑥) and
𝑓 (𝑥 ′); thus, we must set Δ according to the output range of 𝑓 (·).
In practice, to ensure that an attacker cannot easily distinguish

individuals in the extreme-case scenario, e.g., a newborn from a

128-year old person, with the query “How old are you?,” we set

Δ = |max

𝑥
𝑓 (𝑥) −min

𝑥
𝑓 (𝑥) | = |128 − 0|.

As presented above, both mechanisms fulfill pure DP; however,

generating exponentially distributed noise is subject to approxima-

tion errors in practical implementations and, thus, we only achieve

approximate DP instead [21]. We shed more light on this issue in

Section 3.

2.3 Proof Systems and SNARKs
There have been several key milestones in the work towards cryp-

tographically verifiable computations. Babai [2] studied interactive

proofs between a prover and a verifier and analyzed which problems

can be checked by a polynomially bounded verifier when adding

randomness and interaction. Fiat and Shamir [17] then introduced

a heuristic to replace the verifier with a random oracle, which one

can implement with a secure hash function. Nonetheless, one uses

the word “argument” instead of “proof” in this case because the exis-

tence of a secure hash function has not been proven mathematically

so far and is rather a working hypothesis, also bound to today’s

compute and (differential) cryptanalysis capabilities. Goldwasser

et al. [23] proved that one could verify a large class of problems

probabilistically in this way, where the verifier additionally does

not even need to learn anything beyond the statement’s correctness.

While practical applications of the accordingly termed ZKPs were

rare after these early developments, a period of rapid improvements

started in the mid-2000s and led to the computationally efficient

(quasi-linear complexity) generation of succinct arguments of loga-

rithmic size and verification time, called SNARKs [5, 27].

The research community has since developed other flavors such

as scalable transparent arguments of knowledge (STARKs), which

differ in the setup procedure, proof size, and cryptographic assump-

tions, but have similar functional aspects. These new approaches

allow succinct or scalable zero-knowledge proofs for the correctness

of arbitrary statements and, thus, practical verifiable computation,

i.e., proofs for the correct execution of a program without display-

ing all inputs, outputs, or intermediate steps. Additionally, one can

reveal Merkle proofs or other cryptographic relations like the public

keys corresponding to a digital signatures by a reputed institution

on the inputs to force the prover to use unknown but fixed variables.

Arguably, the core area of application of ZKPs today is in distributed

Table 1: Notation

X Universe of records

𝑥 ∈ X Individual record

𝑓 : X → [𝑙, 𝑢] Query function

𝑙 Lower bound, min

𝑥
𝑓 (𝑥)

𝑢 Upper bound, max

𝑥
𝑓 (𝑥)

M : [𝑙, 𝑢] → [𝑙, 𝑢] Randomized mechanism

Δ Sensitivity of 𝑓 (·), |𝑢 − 𝑙 |
ℓ Noise added to 𝑓 (·)

nBits Number of bits representing ℓ

𝑝𝑘 Bias of bit 𝑘 , Pr[ℓ𝑘 = 1]
𝑑 Precision

ledgers, where because of redundant execution, cheap (succinct)

verification without revealing sensitive data is important to solve

scalability issues and mitigate excessive data visibility [4, 51].

3 IMPLEMENTATION
In this section, we first describe how to adapt standard implementa-

tions of uniform randomness generation, randomized response, and

exponentially distributed noise (see Section 2) such that ZKPs can

verify their use. For our implementation, we employ Circom, a well-

known, open-source technology stack for implementing ZKPs [34].

Circom is a domain specific programming language and compiler

that translates JavaScript-like arithmetic circuits in a rank one con-

straint system (R1CS), on behalf of which further libraries (e.g.,

SnarkJS) can generate SNARKs. A circom-specific variable type to

explicitly define constraints is called Signal. The programming of

these signals is restricted by the underlying quadratic arithmetic

program (QAP), which the R1CS encodes, to use only quadratic

constraints inside one Signal. Therefore, a Signal can only be as-

signed once and is immutable. For this reason, calculations often

have to be split into multiple sub-calculations. Moreover, branch-

ings and loops can only be used in a restricted way, for instance,

the maximum number of iterations must be specified by a constant

instead of a variable or Signal.

In what follows, we will use the roles prover for the survey par-

ticipant and verifier for the surveyor, and the notation specified

in Table 1. We also assume that both of them have a dedicated

key-pair that they can use for end-to-end encrypted, authenticated

communication and for recognizing each other, or another means

to bind them to a specific secret key, for instance, through an anony-

mous credential with private holder binding [7]. Such anonymous

credentials can be implemented with specific-purpose ZKPs [7] and

with SNARKs [11, 49]. Key-pairs are a common way to facilitate

the generation of verifiable randomness, for instance, in Algorand’s

consensus mechanism [10].

3.1 Verifiable Uniform Randomness
To achieve uniform randomness that cannot be spoiled unilaterally

by either the prover or the verifier, we employ two inputs and a

hash function as a random oracle [8]. More specifically, we sign

a challenge that the verifier specifies with the prover’s private

ARES 2022, August 23–26, 2022, Vienna, Austria Gonzalo Munilla Garrido, Matthias Babel, and Johannes Sedlmeir

Algorithm 1: Verifiable randomized response for binary

data and uniform randomness (“unbiased coins”).

Data: 𝑣: binary truthful value (“Yes” or “No”); 𝑎: prover contribution to

randomness (secret key); 𝑏: verifier contribution to randomness

(challenge).

Result: Differentially private answer.

1 Function VerifiableUnifRand(𝑎, 𝑏):
2 𝑠 = sign(𝑎, 𝑏) // sign challenge with secret key

3 𝑟 = hash(𝑠) // 𝑟 is an array of bits

4 return 𝑟

5 Function VerifiableRandomizedResponse(𝑣, 𝑎, 𝑏):
6 𝑟 = VerifiableUnifRand(𝑎, 𝑏)
7 if 𝑟 [0] = 0 then
8 return 𝑣

9 else if 𝑟 [1] = 0 then
10 return No

11 else
12 return Yes

key and hash the result. As the private key is determined by the

fixed prover’s public key, neither of the two parties can bias the

resulting randomness without collusion. We use Poseidon
2
– a

relatively new hashing algorithm that was specifically developed

for use in ZKPs and that is already being used in many blockchain-

based applications on Ethereum and, therefore, to some extent

battle-tested [24]. We represent this building block as a function in

Algorithm 1 between lines 1 and 4, using existing components in

Circom for EdDSA signature verification, Poseidon, and conversion

of (large) integers to binary representation. Assuming that the

Poseidon hash function is a random oracle and the keypair was

created without anticipating the survey and the verifier’s challenge,

this gives us an array of 254 unbiased random bits.

3.2 Verifiable Randomized Response
Randomized response is simple to verify with ZKPs by utilizing the

verifiable uniform randomness function (see Algorithm 1). In prac-

tice, without loss of generality, we only consider the least two sig-

nificant bits of the random number generated. For the randomized

response algorithm presented in Section 2 and presented formally

in Algorithm 1, we need to sample at least once (last bit) and at most

twice (second-last bit), depending on the first coin flip. The source

code from Fig. 1 implements this in Circom. As if-statements are

not natively possible in R1CS and, therefore, only available with re-

strictions in Circom, we arithmetize the corresponding statements

in lines 7 to 12 from Algorithm 1 into the lines 39 to 40 from Fig. 1.

3.3 Verifiable Exponentially Distributed Noise
The exponentially distributed noise adaptation to ZKPs is not as

straightforward as with randomized response because it typically

involves floating point operations and rounding. After trying differ-

ent implementations of exponentially distributed noise generation

– we briefly cover the journey in Section 6 –we successfully adapted

the method proposed by Dwork et al. [12] to ZKP, which we present

in Algorithm 2: In their method, Dwork et al. approximated expo-

nentially distributed noise of Pr[𝑥] ∝ exp(− 𝜀 |𝑥 |Δ) with the Poisson

2
Using other hashing mechanisms is possible, yet the performance can become con-

siderably worse – for instance, in the case of SHA256, around 30x.

1 pragma circom 2.0.0;

2

3 include "./ poseidon.circom"; // Poseidon hashing

4 include "./ bitify.circom"; // Bit array conversion

5 include "./ eddsaposeidon.circom"; // Signature checking

6

7 template Main() {

8 signal input value; // v

9 signal input challenge;

10 signal input R8[2]; // elliptic curve element of

signature

11 signal input S; // field element of signature

12 signal input pk[2]; // public key

13

14 // check signature on challenge against public key

15 component eddsaVerifier = EdDSAPoseidonVerifier ();

16 eddsaVerifier.Ax <== pk[0];

17 eddsaVerifier.Ay <== pk[1];

18 eddsaVerifier.S <== S;

19 eddsaVerifier.R8x <== R8[0];

20 eddsaVerifier.R8y <== R8[1];

21 eddsaVerifier.M <== challenge;

22 eddsaVerifier.enabled <== 1; // checks signature implicitly

23

24 // hash signature and convert this randomness to bit array

25 component hash = Poseidon (3);

26 component bitify = Num2Bits_strict ();

27 hash.inputs [0] <== R8[0];

28 hash.inputs [1] <== R8[1];

29 hash.inputs [2] <== S;

30 bitify.in <== hash.out;

31 signal randSeq [254];

32 for(var i = 0; i < 254; i++) {

33 randSeq[i] <== bitify.out[i];

34 }

35

36 // determine result from randomness

37 signal rand;

38 signal output out;

39 rand <== randSeq [0] * randSeq [1];

40 out <== (1 - randSeq [0]) * value + rand;

41

42 }

43

44 component main {public [challenge , pk]} = Main();

Figure 1: Circom code for a component that implements ver-
ifiable randomized response.

distribution, fulfilling (𝜀, 𝛿)-DP. Their method samples noise by

producing a sequence of biased bits equal in number to the number

of bits in the binary expansion of the noise ℓ . The algorithm flips an

extra bit to add a sign (±ℓ). The bias of each bit 𝑘 ∈ {0, ..., nBits}
representing ℓ in binary is given in Section 4.1 of [12] by

Pr[ℓ𝑘] := Pr[ℓ𝑘 = 1] =
(
1 + exp

(
𝜀 ·2𝑘
Δ

))−1
.

To generate biased bits from unbiased bits, we include in Algo-

rithm 2 a well-known technique: first, we expand in binary the bias

𝑝𝑘 of a bit 𝑘 . Afterward, the algorithm sequentially examines ran-

dom unbiased bits until one differs from the corresponding bit in the

binary expansion of 𝑝𝑘 and, subsequently, outputs the complement

of the random unbiased bit [12]. Essentially, this approach allows to

simulate biased coins up to a pre-defined precision with unbiased

coins. However, the method employed has three limitations.

The first limitation entails several issues that relate to represent-

ing with a limited precision 𝑑 the bias of the bits composing 𝑝𝑘 ,

Towards Verifiable Differentially-Private Polling ARES 2022, August 23–26, 2022, Vienna, Austria

i.e., 𝑑 is the number of bits available for representation. Nonethe-

less, the probability of the inner loop not terminating for 𝑗 < 𝑑

and, therefore, raising an error decays with 2
−𝑑

. Thus, we can

easily choose 𝑑 such that the likelihood of this event is negligible

(line 17 of Algorithm 2). Furthermore, we show that we can pro-

vide enough precision in our circuit: The randomness generated

from a single Poseidon hash could provide a precision of around

2
252 ≈ 10

75
, i.e., 𝑑 ≈ 75. By using multiple rounds of hashing and

signing, we could also generate more random bits and account for

higher precision needs. Additionally, we restrict noise values ℓ to

the interval [𝑙, 𝑢], where 𝑢 and 𝑙 are the deterministic function’s

output upper and lower bounds, respectively. For our experiment

on polling individuals’ age, we employed the algorithm with 𝑑 = 20

and Δ = |𝑢 − 𝑙 | = 128. These example values require the algorithm

to represent ℓ with nBits=7 bits and, in turn, generate one instance

of noise with 𝑑 · 7 + 1 = 141 < 256 bits (“times 𝑑” because each of

the 7 bits’ bias will be expanded to 𝑑 bits and one more for the sign).

In other words, a single round of hashing and signature verification

is sufficient (and would still be sufficient for 𝑑 = 35, which corre-

sponds to an error bound of 2
−35 ≈ 10

−10
when approximating

probabilities [12]), and a negligible probability to raise an error

(upper bound 7 · 2−20). We could also aim for the typical machine

accuracy of 10
−16

by using 𝑑 > 16 · log
2
(10) ≈ 53.1, i.e., 𝑑 ≥ 54,

which would involve the creation of two independent random bit

arrays.

These design decisions allow us to approximate the Poisson dis-

tribution with an error bound that we can determine and control

ex-ante, when designing the survey. Thus, we achieve (𝜀, 𝛿)-DP

with a statistical difference of 𝛿 = nBits·2−𝑑 = 7 · 2−20 [12]. Con-
sequently, for improving the DP guarantee on 𝜀, we only need to

increase 𝑑 . Moreover, the probability mass outside the considered

interval [−2𝑑 , 2𝑑] is redistributed inside the interval, leading to an

additional statistical difference of 2 exp(−(𝜀 · 2𝑑)/Δ) that we let the
term nBits absorb [12].

The second limitation is the zero probability assigned to noise

values of a binary expansions with more bits than nBits (i.e., noise
outside of [𝑙, 𝑢]). Dwork et al. proposed to constrain the algorithm’s

output, i.e., deterministic answer + noise, to nBits and return the

deterministic answer in case there is an overflow. According to

Dwork et al. [12], as the distribution in the range [𝑙, 𝑢] is expo-
nential, we maintain the same privacy guarantee by increasing the

probability of not adding noise by a trivial amount (i.e., 𝛿 increases).

We execute a modulo operation to remap any output value outside

[𝑙, 𝑢] back in that range to reduce such an increase (lines 21 and 23

of Algorithm 2). Intuitively, a modulo operation on the output pre-

serves DP as it is a post-processing step and, also, will re-distribute

the outputs in the range instead of on one value. Formally, the proof

may be found in Lemma 3 of Wang et al. [56].

The third limitation comes with flipping an unbiased bit to assign

the sign of the noise, which converts a Poisson distribution into

a two-sided distribution with double the probability on its center,

i.e., of noise = 0. While Dwork et al. did not address this issue

in [12], we could follow the approach of Champion et al. [9] of

rejecting −0 and executing the algorithm again (section 3.3 of [9]).

DP is maintained as the number of failures is independent of the

noise. However, instead, to remain computationally performant,

we output a uniformly sampled value within [𝑙, 𝑢] if −0 (lines 19 to
23 of Algorithm 2), effectively removing the excess probability at

0. Intuitively, we preserve DP by adding more noise to the output

distribution. Formally, we provide this justification: Let 𝑃
old

be

some DP distribution on 𝑁 discrete values and 𝑃new such that

𝑃new (𝑥) = 𝛼𝑃
old
(𝑥) + (1 − 𝛼)/𝑁 . Obviously, this is a probability

distribution. In our case, 1 − 𝛼 is the probability of obtaining noise

−0. For any 𝐷 and 𝐷 ′ that differ in at most one record,

Pr[Mnew (𝐷) ∈ S]

= 𝛼 · Pr[M
old
(𝐷) ∈ S] + (1 − 𝛼) · |𝐷 |

𝑁

≤ 𝛼𝑒𝜀 · Pr[M
old
(𝐷 ′) ∈ S] + 𝛼𝛿 + (1 − 𝛼) · |𝐷 |

𝑁

= 𝛼𝑒𝜀 ·
(
Pr[Mnew (𝐷 ′) ∈ S]

𝛼
− |𝐷

′ | · (1 − 𝛼)
𝑁𝛼

)
+ 𝛼𝛿 + (1 − 𝛼) · |𝐷 |

𝑁

= 𝑒𝜀 · Pr[Mnew (𝐷 ′) ∈ S] + 𝛼𝛿 + (1 − 𝛼) ·
|𝐷 | − 𝑒𝜀 |𝐷 ′ |

𝑁

≤ 𝑒𝜀 · Pr[Mnew (𝐷 ′) ∈ S] + 𝛼𝛿 + (1 − 𝛼) ·
1

𝑁
.

Given that 𝜀 ≥ 0, then 𝑒𝜀 ≥ 1. Moreover, |𝐷 |− |𝐷 ′ | ≤ 1 because they

are neighboring. Thus, since we choose to re-distribute the excess

weight for noise −0 (𝛼 = 1 − 1

2
Prob(0)), 𝛿 may grow to at most

1

2
Prob(0) · 1

𝑁
. The above formulation is a universal upper bound:

Essentially, it proves that the convex combination of an (𝜀, 𝛿1)
mechanism and a uniform distribution with pointwise weight 𝛿2 =
1

𝑁
(which is obviously (0, 𝛿2)-DP) is (𝜀, 𝛿)-DP, where 𝛿 is the convex

combination of 𝛿1 and 𝛿2. Future work could focus on obtaining a

tighter 𝛿 bound specifically for the Poisson distribution or employ

the method from Champion et al. [9], which would maintain a 𝛿

upper bound of nBits · 2−𝑑 . Altogether, this approximation allows

us to sample exponentially distributed noise preserving (𝜀, 𝛿)-DP

in a way that we can successfully verify with ZKPs. We depict an

example of the resulting output distribution in Fig. 2.

As Circom does not allow for branching, i.e., implementing

conditional checks and breaking or continuing loops, besides the

workaround for if-statements, we had to introduce some additional

Signals (see Fig. 3). These Signals allow us to determine the correct

return value although all iterations from the loop are simulated in

the circuit. We did this by introducing Signal arrays hit1...nBits with
length 𝑑 that help to identify the firsts unequal pair of bits in one (𝑗)

loop, where the loop would break in Algorithm 2. This approach

ensures that only the first occurrence of unequal bits (index 𝑖) is

taken into account for the calculation of the biased randomness.

Moreover, we multiply the inverted binary result from isEqual,
which compares the corresponding bits of the random sequence 𝑟 𝑗
and the probability 𝐵 𝑗,𝑝𝑘 , with the bit of the probability and the hit

bit-value, which is 1 as long as the result of isEqual of the last iter-
ation of the loop was 1, essentially [10, . . . , 1𝑖−1, 1𝑖 , 0𝑖+1, . . . , 0𝑑−1].
Therefore, only at the first inequality of those two bits the proba-

bility bit is not multiplied with zero, and, thus, can be taken into

account for the noise. In other words, 𝑒𝑣𝑎𝑙3[𝑘] [𝑗] is the “running
return value” after the 𝑗 + 1st iteration of the loop, and is set to 1

only if the 𝑗 th bit of the probability is one, the 𝑗 th bit of the random

sequence is 0, and the first time that the probability and random

bit array are different occurs at position 𝑗 as well.

ARES 2022, August 23–26, 2022, Vienna, Austria Gonzalo Munilla Garrido, Matthias Babel, and Johannes Sedlmeir

Algorithm 2: Verifiable exponentially distributed noise

generation for numerical data. By 𝑥 mod(𝑙, 𝑢) we denote
𝑙 + (𝑥 mod(𝑢 − 𝑙)).
Data: 𝑣: integer-valued truthful value; 𝑢: upper bound; 𝑙 , lower bound;

Δ = |𝑢 − 𝑙 | ≥ 0: sensitivity of query function; 𝜀 ≥ 0: privacy

parameter; 𝑑 ≥ 0: precision of binary expansion; 𝑎: prover

contribution to randomness (secret key); 𝑏: verifier contribution to

randomness (challenge).

Result: 𝑣 + noise ∼ Pois(𝑣 | 𝜀Δ) .
1 Function VerifiableExponentialNoise(𝑣, Δ, 𝜀 , 𝑑):
2 𝐵𝐾 = BinaryExpansion(Δ)
3 𝐵𝑣 = BinaryExpansion(𝑣)
4 𝐵𝑟 = [] // 𝐵𝑟 stacks biased bits

5 for 𝑘 ← 0 to NumBits(𝐵𝐾) do
6 𝑝𝑘 = 1

1+exp(2𝑘 𝜀Δ)
7 𝐵𝑝𝑘 = BinaryExpansion(𝑝𝑘)

// 𝑟 has at least 𝑑 bits

8 𝑟 = VerifiableUnifRand(𝑎, 𝑏)
9 for 𝑗 ← 0 to 𝑑 do

// Where 𝑑 is the least significant bit

10 𝑟 𝑗 = r[j] // 𝑟 𝑗 ∈ {0, 1}
11 if 𝑟 𝑗 = 𝐵 𝑗,𝑝𝑘 then
12 continue
13 else
14 𝐵𝑟 .push(𝐵 𝑗,𝑝𝑘)
15 break

16 if 𝑗 = 𝑑 then
17 return RaiseError

18 noise = DecimalExpansion(𝐵𝑟)
19 sign = VerifiableUnifRand(𝑎,𝑏) [0]
20 if (noise = 0 and sign = 0) then
21 return

DecimalExpansion(VerifiableUnifRand(𝑎,𝑏)) mod (𝑙,𝑢)
22 else
23 return [(𝑣 + (2 · sign − 1) · noise] mod (𝑙,𝑢)

0 20 40 60 80 100 120
Result (original value 50 + noise)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Re
la

tiv
e

fre
qu

en
cy

Figure 2: Example histogram for l = 0, u = 128, d = 20, 𝜺 = 10,
and true value v = 50 with a sample size of 10 000.

1

2 // include statements as before , plus modulo component

3 template Main(nBits , d) {

4 signal input challenge , value

5 signal input prob[nBits][d]; // binary expansions of p_k

6 signal input R8[2], S, pk[2]; // signature and public key

7 // check the EdDSA signature of the challenge against pk and

put it in the hash component to create randSeq , as in

Figure 1 (lines 10 to 34).

8 ...

9

10 component isEqual[nBits][d];

11 signal noiseBits[nBits];

12 signal eval1[nBits][d];

13 signal eval2[nBits][d];

14 signal eval3[nBits][d + 1];

15 signal hit[nBits][d + 1];

16

17 // run the algorithm to create biased coins

18 for (var i = 0; i < nBits; i++) {

19 for (var j = 0; j < d; j++) {

20 isEqual[i][j] = IsEqual ();

21 }

22 }

23 for (var k = 0; k < nBits; k++) {

24 hit[k][0] <== 1;

25 eval3[k][0] <== 0;

26 for (var j = 0; j < d; j++) {

27 isEqual[k][j].in[0] <== prob[k][j];

28 isEqual[k][j].in[1] <== randSeq[k * d + j];

29 hit[k][j + 1] <==

30 hit[k][j] * isEqual[k][j].out;

31 eval1[k][j] <== hit[k][j] * (1 - isEqual[k][j].out);

32 eval2[k][j] <== eval1[k][j] * prob[k][j];

33 eval3[k][j + 1] <== eval3[k][j] + eval2[k][j];

34 }

35 noiseBits[k] <== eval3[k][d];

36 }

37

38 component numify [2];

39 // compute exponential noise from its binary representation

40 numify [0] = Bits2Num(nBits);

41 for (var i = 0; i < nBits; i++) {

42 numify [0].in[i] <== noiseBits[i];

43 }

44 signal absNoise <== numify [0]. out;

45 signal positiveNoise <== randSeq[nBits * (d + 3)] * (value +

absNoise);

46 signal noisedResult <== (1 - randSeq[nBits * (d + 3)]) * (value

- absNoise) + positiveNoise;

47 // generate uniformly distributed noise

48 numify [1] = Bits2Num(nBits);

49 for (var i = 0; i < nBits; i++) {

50 numify [1].in[i] <== randSeq [((d + 2) * nBits) + i];

51 }

52

53 component isZero = IsZero (); // check if noise == -0

54 isZero.in <== absNoise;

55 signal isUnif <== isZero.out * (1 - randSeq[nBits * (d + 3)]);

56 signal unif <== isUnif * numify [1]. out;

57 signal result <== (1 - isUnif) * noisedResult + unif;

58

59 component modulo = Modulo ();

60 modulo.in <== result;

61 modulo.mod <== 128;

62 signal output out <== modulo.out;

63 }

64

65 component main {public [challenge , pk]} = Main(7, 22);

Figure 3: Circom code for generating verifiable LDP noise
with 𝑙 = 0 and 𝑢 = 128. Import statements, signal definitions,
and EdDSA verification omitted (see also Figure 1).

Towards Verifiable Differentially-Private Polling ARES 2022, August 23–26, 2022, Vienna, Austria

3.4 Application: Verifiable
Differentially-Private Polling with
Anonymous Credentials

With the primitives presented in Algorithms 1 and 2, and an imple-

mentation of anonymous credentials with Circom, we can now

implement verifiable, differentially private polling. Note that a

Circom-based implementation of anonymous credentials allows

to selectively disclose attributes from a digital certificate that cor-

responds to a Merkle tree with a signed root, and incorporate au-

thenticity checks, private holder binding, expiration, revocation,

and predicate proofs such as range proofs. We first sketch an ex-

ample of a hypothetical setting. Digitally signed attestations of a

person’s attributes are stored in their “digital wallet” – a mobile

application – in the form of an anonymous credential, which could

contain personal information such as the holder’s name, age, and

gender, as well as a digital signature from an institution that the

surveyor trusts regarding the authenticity of the information, e.g., a

government or hospital. The digital wallet can respond to so-called

proof requests [50] that include requirements from the verifier’s

side what the survey participant should prove. In our case, this

could include the following requirements:

• Prove knowledge of (i) an authentic anonymous credential,

issued by some institution, and (ii) knowledge of the secret

key associated with the public key for the private holder,

which is a binding included as one of the attributes in the

anonymous credential.

• Prove that the anonymous credential is (i) not expired (range

proof on expiration attribute) and (ii) not revoked (proof

about set-inclusion or exclusion, referring to some public

accumulator value as specified by the verifier).

• Reveal the result of our implementation of verifiable ran-

domized response or exponentially distributed noise, applied

to one of the (boolean or integer-valued) attributes in the

credential. The attribute is represented by the issuer’s signa-

ture on the anonymous credential, for instance, the attribute

could be a leaf in a Merkle tree whose root is signed by the

issuer.

In the case of a SNARK, the wallet (or the proof request) would

also need to contain the structured reference string (proving key)

generated in a setup procedure. It is important that while generally

this proving key must be generated in a multi-party computation, in

this case, it can be generated by the surveyor alone: Any party that

knows how the structured reference string was created can fake

proofs, but the privacy guarantees are not harmed in this case [18].

When the surveyor does not leak the “toxic waste” used for creat-

ing the structured reference string, the ZKP’s soundness guarantee

provides a chain of trust for the attribute, which is not directly

revealed but modified through verifiable noise. Lastly, the verifier

(surveyor) can cryptographically check that the attribute and the

survey participant’s secret key for private holder binding are used

as private inputs for the LDP mechanism, and that the challenge as

specified by the surveyor is used. We illustrate the survey process

with anonymous credentials and verifiable differential privacy in

Fig. 4.

4 EVALUATION
In this section, we discuss the performance and practicality of our

approach for verifiable LDP. We restrict the discussion to verifiable

exponentially distributed noise because it includes strictly more

complex operations, so by demonstrating its reasonable perfor-

mance, we can conclude that verifiable randomized response also

is practical. The implementation process of our verifiable LDP ap-

proach with exponentially distributed noise was two-tiered. First,

we implemented Algorithm 2 in Javascript and verified that it in-

deed yields an exponential distribution, where values that – after

adding the LDP noise – exceed the range of the output are instead

displayedwithout added noise. Secondly, we employed the Poseidon

hash function to create a random Oracle that generates verifiable

randomness jointly from the prover’s and the verifier’s input. Next,

we implemented the corresponding circuits in Circom.

Our choice of Algorithm 2 and our choice of implementation

as displayed in Fig. 3 yielded a highly efficient implementation for

creating verifiable, Poisson-distributed LDP: Using the Poseidon

hash function, our circuit has 5997 R1CS constraints. On an Ubuntu

20.04 virtual machine with 4 virtual cores that runs on a commercial

standard Laptop (Dell Latitude 7400 with an Intel i7 8665U CPU),

proof creation – which is typically the bottleneck for using ZKPs –

takes around 2.2 s when using the Groth16 proof system [26] on

the Barreto-Naehrig curve over a 254 bit prime field (bn128), Web

assembly for witness generation, and Javascript for proof genera-

tion. The size of the proving and verification key are around 3.4MB

and 3.5 kB, respectively. These sizes suggest that proof generation

would also be practical on a web-based mobile application, although

future research should validate this assumption.

With an optimized tool, performance is even better: Using an

optimized C++-based witness generation and a proof generation

based on x86 Assembly for Intel processors (“Rapidsnark”, see [28]),

proof generation is reduced to only 140ms. Because to date there

is no available optimized tool for proof verification, this operation

still takes around 0.8 s in Javascript. Proof verification in a complex,

combined survey may even reduce complexity on the surveyor’s

side because the complexity of SNARK verification is not dependent

on the complexity of the original computation for which the survey

participant proves integrity. Moreover, we tested the deployment

of a smart contract verifier on Ethereum, which could be used for

blockchain-based, incentivized differentially private surveys and,

therefore, general data protection regulation (GDPR)-compliant

applications on personal data. We measured the smart contract’s

deployment cost at around 1, 150, 000 gas and its invocation at

around 300, 000 gas.

5 RELATEDWORK
While there is current and extensive research in the local model

of DP [3, 31–33, 37, 38] and in ZKPs [4, 5, 27], there are only few

publications that bridge both technologies.

We identified four studies that are close to ours. Rückel et al. [47]

propose an architecture to share weights from federated learning

models in a verifiable DP manner and add verifiable noise to the pri-

vate weights. However, their approach does not acknowledge that

their discretization of the Laplace distribution only fulfills approxi-
mate DP, and does not propose a bound for 𝛿 or an approach that

ARES 2022, August 23–26, 2022, Vienna, Austria Gonzalo Munilla Garrido, Matthias Babel, and Johannes Sedlmeir

Issuer (e.g., Federal Printer) Holder / Prover (Survey Participant) Verifier (Surveyor)

Creates binding keypair
 in digital wallet app

Send binding public key
Request digital certificate
(anonymous credential)

Signs anonymous credential
that contains the holder's
attributes (e.g., age)
and binding public key

Sends anonymous
 credential

Stores anonymous credential
 in digital wallet app

Defines survey parameters
(attribute, l, u, epsilon)
Creates structured reference
string (trusted setup with
proving and verification key)

Sends survey
(including proving key
 and challenge)

Uses anonymous credential,
binding secret key,
and proving key to create ZKP
(verifiable, differentially private result)
following Figure 2

Sends ZKP

Verifies ZKP with verification key
Uses result for survey evaluation

Figure 4: Process of participating in a survey with verifiable differential privacy.

works for high precision requirements, as they use the approximate

inverse cumulative distribution function (CDF) as input for the

circuit. Moreover, Tsaloli et al. [55] only provide a high-level mo-

tivation for using ZKPs for verifiable differential privacy, without

implementation details. Furthermore, while Kato et al. [39] provide

details on how to create fair randomness with a related technol-

ogy (secure-multiparty computation), they do not attempt to make

the result of the algorithm verifiable, i.e., they cannot provide a

cryptographic check of the truthful value from, e.g., an anonymous

credential, before adding LDP noise.

Lastly, Narayan et al. [44] discuss the opportunities of verifiable

differential privacy, yet they provide no details of their ZKP-based

implementation. For instance, they do not elaborate how they con-

sider rounding and how they achieve guarantees on the accuracy

of their verifiable pure DP proposal. Additionally, their approach

focuses on the central model of DP instead and shows impracti-

cal performance, as it requires 2 hours of proof generation for 32

servers. Nonetheless, when implemented with more recent ZKP

libraries, their performance may be closer to ours as advances in

proving times over the last years have been dramatic.

6 DISCUSSION
While adapting randomized response to ZKPs is straightforward, we

investigated several approaches before successfully implementing

exponentially distributed noise with ZKPs. This section discusses

the process we followed to arrive to the implementation described

in Section 3.

Adapting a DP mechanism that leverages exponential noise to

ZKP has two significant challenges. Conceptually, since ZKPs can

verify an arbitrary program, sampling from an exponential distribu-

tion may seem straightforward. Unfortunately, in practice, repeated

operations with floats that involve rounding in classical software

are challenging to implement because the range of numbers in

the nominator and denominator is bounded by a large prime, and

repeated rounding is costly since the complexity of the ZKP always

needs to account for the worst possible case. Furthermore, the prop-

agation of the corresponding errors becomes challenging to control.

Thus, the generality of computations that ZKPs can cover well is

initially limited to arithmetic operations on prime fields and their

corresponding primitives such as hash functions and signatures.

The second major challenge is the inability of finite computers

to fulfill the definition of DP on the real line. Mironov [43] was the

first to demonstrate that implementing a DP mechanism with the

floating-point arithmetic of finite computers does not guarantee DP.

Mironov proposed to solve this issue while maintaining 𝜀-DP with

the Snapping mechanism [43], and recently, Naoise et al. proposed

secure random sampling [29]. However, while their output noise

is discrete, we must still handle floats that ZKPs cannot process

efficiently.

Therefore, we first thought of discretizing the support of the

Laplace distribution (well-known to be 𝜀-DP [14]) by sampling from

its inverse CDF with a finite input range {1, ..., 𝑑}, where 𝑑 denotes

the precision Circom [34] can handle – similarly to Rückel et al. [47].

However, we were not able to determine provable guarantees on 𝛿

for the approximate DP mechanism. Thus, we turned to the Stone-
Weierstrass theorem to approximate a polynomial so close to the

Laplacian probability density function (PDF) that the approximation

error would be negligible. Furthermore, because the approximated

Towards Verifiable Differentially-Private Polling ARES 2022, August 23–26, 2022, Vienna, Austria

PDF would be a polynomial itself, we thought to elegantly prove its

use with ZKP. We employed Bernstein polynomials [16] to approx-

imate the PDF in a closed interval and, subsequently, performed

rejection sampling. However, we encountered two problems: (i) our

approximation was limited to a closed interval, whereas the Lapla-

cian PDF has unbounded support, and (ii) the Bernstein coefficients

are in general real numbers, which ZKP cannot process efficiently,

and the propagation of errors when rounding with fixed precision

is again complex to handle. Specifically, the complexity stems from

the very high degree of the polynomials and the lack of homogene-

ity, i.e., there are many different degrees of monomials that all scale

differently for a specific accuracy when multiplying inputs with a

large power of 10 and rounding afterward.

Subsequently, we turned to the truncated geometric mecha-

nism (TGM) [22], which coincidentally has the advantage to provide

better accuracy for count queries [19], the focus of this study. Ad-

ditionally, the truncation solved the problem of working with a

closed interval (also a limitation of finite computers) by condensing

the probability mass outside the interval in its lower and upper

bounds. Moreover, the support of the geometric mechanism are

integers, which ZKPs can process efficiently. Overall, TGM adapts

to finite computers while still providing pure 𝜀-DP. However, the

probabilities assigned to each integer still fall on the real line. While

we ensured these probabilities became rational numbers by care-

fully choosing 𝜀 [3], which a conventional computer can handle,

the integers necessary to represent them were too large for the

limited precision available in Circom [34] and other libraries for im-

plementing ZKPs, and we were unable to write a theoretical bound

for 𝛿 if we approximated the real numbers with finite precision.

To cope with precision limitations and the difficulty to bound 𝛿 ,

we then looked for simple sampling methods that provide bounds

on 𝛿 , which finally led us to Dwork et al. [12] (see Section 3). This

concluded our search, as their method for sampling exponentially

distributed noise consists on repeatedly flipping unbiased coins

(which is easily implemented in Circom with hashing and conver-

sion to bit arrays), and provides a bound for 𝛿 based on the precision

we can afford with Circom.

In our implementation, we used verifiable randomness co-created

by the verifier (surveyor) and the prover (survey participant). As

we noted in Section 2, when a surveyor repeatedly conducts the

query in our implementation with different challenges, they could

get additional information because by the law of large numbers,

the truthful query value without noise can be determined with

increasing accuracy. Consequently, in many scenarios, it may be

appropriate to use a challenge that is hard coded, derived from

the surveyor institution’s public key, or even derived solely from

the attribute (e.g., the index of the age in the anonymous creden-

tial), such that repeated queries, even from different but colluding

institutions, would not decrease the degree of plausible deniabil-

ity 𝜀. Furthermore, note that our verifiable randomized response

implementation could be easily extended to flip biased coins by, e.g.,

generating a verifiable hash and checking whether its normalized

value is lower than the desired bias.

7 CONCLUSION
We introduce primitives for implementing verifiable differentially

private polls in the local setting. To achieve verifiability, we carefully

selected DP mechanisms for binary and numerical data and adapted

their implementations to SNARKs. Thanks to these primitives, we

can achieve cryptographically verifiable survey responses while

providing plausible deniability for survey participants and, in turn,

not only reduce but entirely prevent bias in survey participants’

answers while giving them the needed privacy guarantees. Further-

more, note that our primitive for verifiable exponentially distributed

noise allows for different aggregation queries beyond the count,

as it can ingest arbitrary sensitivity – we limited our narrative to

count queries for the simplicity of the explanations. Finally, thanks

to the evaluations we performed, we conclude that practitioners

can deploy our primitives with acceptable performance

We encourage practitioners to develop further primitives that can

adapt to other DP mechanisms, e.g., the exponential mechanism for

categorical data [42], and other randomized-response [6, 25, 30, 41,

58] and LDP [3, 31–33, 37, 38] approaches. Furthermore, conducting

studies about how interviewees would perceive the built-in trust

would allow the research community to understand how to frame

polls and reassure candidates of their privacy. Lastly, improving

the precision limitations of ZKP circuit compilers such as Circom

and more literature on frameworks for bounding 𝛿 in approximate
LDP would open the range of practical LDP mechanisms.

ACKNOWLEDGMENTS
We thank the Bavarian Ministry of Economic Affairs, Regional De-

velopment and Energy for their funding of the project “Fraunhofer

Blockchain Center (20-3066-2-6-14)”, and the Ethereum founda-

tion’s grant that made this paper possible.

REFERENCES
[1] Fritz Alder, Jo Van Bulck, Jesse Spielman, David Oswald, and Frank Piessens. 2022.

Faulty Point Unit: ABI Poisoning Attacks on Trusted Execution Environments.

Digital Threats: Research and Practice 3, 2, Article 13 (2022), 26 pages. https:

//doi.org/10.1145/3491264

[2] László Babai. 1985. Trading Group Theory for Randomness. In Proceedings of
the 17th Annual ACM Symposium on Theory of Computing. 421–429. https:

//doi.org/10.1145/22145.22192

[3] Victor Balcer and Salil Vadhan. 2019. Differential Privacy on Finite Computers.

Journal of Privacy and Confidentiality 9, 2 (2019). https://doi.org/10.29012/jpc.679

[4] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019. Scalable

Zero Knowledge with No Trusted Setup. In Annual International Cryptology
Conference. Springer, 701–732. https://doi.org/10.1007/978-3-030-26954-8_23

[5] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in

Zero Knowledge. In Annual Cryptology Conference. Springer, 90–108. https:

//doi.org/10.1007/978-3-642-40084-1_6

[6] Robert F. Boruch. 1971. Assuring Confidentiality of Responses in Social Research:

A Note on Strategies. The American Sociologist 6, 4 (1971), 308–311. http:

//www.jstor.org/stable/27701807

[7] Jan Camenisch and Anna Lysyanskaya. 2001. An Efficient System for Non-

transferable Anonymous Credentials with Optional Anonymity Revocation. In

International Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 93–118. https://doi.org/10.1007/3-540-44987-6_7

[8] Ran Canetti, Oded Goldreich, and Shai Halevi. 2004. The Random Oracle Method-

ology, Revisited. J. ACM 51, 4 (2004), 557–594. https://doi.org/10.1145/1008731.

10087340

[9] Jeffrey Champion, Abhi Shelat, and Jonathan Ullman. 2019. Securely Sampling

Biased Coins with Applications to Differential Privacy. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security. ACM, 603–614.

https://doi.org/10.1145/3319535.3354256

[10] Jing Chen and Silvio Micali. 2019. Algorand: A Secure and Efficient Distributed

Ledger. Theoretical Computer Science 777 (2019), 155–183.

https://doi.org/10.1145/3491264
https://doi.org/10.1145/3491264
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.29012/jpc.679
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
http://www.jstor.org/stable/27701807
http://www.jstor.org/stable/27701807
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1145/1008731.10087340
https://doi.org/10.1145/1008731.10087340
https://doi.org/10.1145/3319535.3354256

ARES 2022, August 23–26, 2022, Vienna, Austria Gonzalo Munilla Garrido, Matthias Babel, and Johannes Sedlmeir

[11] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno.

2016. Cinderella: Turning Shabby X.509 Certificates into Elegant Anonymous

Credentials with the Magic of Verifiable Computation. In Symposium on Security
and Privacy. IEEE, 235–254. https://doi.org/10.1109/SP.2016.22

[12] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Generation.

In Advances in Cryptology (2006), Serge Vaudenay (Ed.), Vol. 4004. Springer,

486–503. https://doi.org/10.1007/11761679_29

[13] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography,
Shai Halevi and Tal Rabin (Eds.). Springer, 265–284. https://doi.org/10.1007/

11681878_14

[14] Cynthia Dwork and Aaron Roth. 2013. The Algorithmic Foundations of Differen-

tial Privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2013),
211–407. https://doi.org/10.1561/0400000042

[15] European Commission. 2021. Commission Proposes a Trusted and Secure Digital

Identity for all Europeans. https://ec.europa.eu/commission/presscorner/detail/

en/ip_21_2663

[16] Rida T. Farouki. 2012. The Bernstein Polynomial Basis: A Centennial Retrospec-

tive. 29, 6 (2012), 379–419. https://doi.org/10.1016/j.cagd.2012.03.001

[17] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. InConference on the Theory and Application
of Cryptographic Techniques. Springer, 186–194. https://doi.org/10.1007/3-540-

47721-7_12

[18] Georg Fuchsbauer. 2018. Subversion-Zero-Knowledge SNARKs. In IACR Interna-
tional Workshop on Public Key Cryptography. Springer, 315–347.

[19] Gonzalo Munilla Garrido, Joseph Near, Aitsam Muhammad, Warren He, Roman

Matzutt, and Florian Matthes. 2021. Do I Get the Privacy I Need? Benchmarking

Utility in Differential Privacy Libraries. http://arxiv.org/abs/2109.10789

[20] Gonzalo Munilla Garrido, Johannes Sedlmeir, Ömer Uludağ, Ilias Soto Alaoui,

Andre Luckow, and Florian Matthes. 2021. Revealing the Landscape of Privacy-

Enhancing Technologies in the Context of Data Markets for the IoT: A Systematic

Literature Review. https://arxiv.org/abs/2107.11905

[21] Ivan Gazeau, Dale Miller, and Catuscia Palamidessi. 2016. Preserving Differential

Privacy under Finite-precision Semantics. Theoretical Computer Science 655 (2016),
92–108. https://doi.org/10.1016/j.tcs.2016.01.0150

[22] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. 2012. Universally

Utility-maximizing Privacy Mechanisms. SIAM J. Comput. 41, 6 (2012), 1673–1693.
https://doi.org/10.1137/09076828X

[23] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The Knowledge

Complexity of Interactive Proof Systems. SIAM J. Comput. 18, 1 (1989), 186–208.
https://doi.org/10.1137/0218012

[24] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge

Proof Systems. In 30th USENIX Security Symposium. 519–535. https://www.

usenix.org/system/files/sec21-grassi.pdf

[25] Bernard G. Greenberg, Abdel-Latif A. Abul-Ela, Walt R. Simmons, and Daniel G.

Horvitz. 1969. The Unrelated Question Randomized Response Model: Theoretical

Framework. J. Amer. Statist. Assoc. 64, 326 (1969), 520–539. http://www.jstor.

org/stable/2283636

[26] Jens Groth. 2016. On the Size of Pairing-based Non-interactive Arguments. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 305–326. https://doi.org/10.1007/978-3-662-49896-5_11

[27] Jens Groth, Rafail Ostrovsky, and Amit Sahai. 2006. Perfect Non-Interactive

Zero Knowledge for NP. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 339–358. https://doi.org/10.

1007/11761679_21

[28] Hermez Network. 2021. Open Sourcing an Ultra-fast zk Prover: Rapidsnark.

https://blog.hermez.io/open-sourcing-ultra-fast-zk-prover-rapidsnark/

[29] Naoise Holohan and Stefano Braghin. 2021. Secure Random Sampling in Differ-

ential Privacy. In Computer Security, Elisa Bertino, Haya Shulman, and Michael

Waidner (Eds.). Vol. 12973. Springer, 523–542. https://doi.org/10.1007/978-3-030-

88428-4_26

[30] Naoise Holohan, Douglas J. Leith, and Oliver Mason. 2015. Differential privacy in

metric spaces: Numerical, Categorical and Functional Data under the One Roof.

Information Sciences 305 (2015), 256–268. https://doi.org/10.1016/j.ins.2015.01.021

[31] Naoise Holohan, Douglas J. Leith, and Oliver Mason. 2017. Extreme Points of

the Local Differential Privacy Polytope. Linear Algebra Appl. 534 (2017), 78–96.
https://doi.org/10.1016/j.laa.2017.08.011

[32] Naoise Holohan, Douglas J. Leith, and Oliver Mason. 2017. Optimal Differentially

Private Mechanisms for Randomised Response. IEEE Transactions on Information
Forensics and Security 12, 11 (2017), 2726–2735. https://doi.org/10.1109/TIFS.

2017.2718487

[33] Justin Hsu, Sanjeev Khanna, and Aaron Roth. 2012. Distributed Private Heavy

Hitters. In Proceedings of the 39th International Colloquium Conference on Au-
tomata, Languages, and Programming – Volume Part I. Springer, 461–472. https:

//doi.org/10.1007/978-3-642-31594-7_39

[34] iden3. 2018. Circom. https://docs.circom.io/

[35] Intel. 2022. 12th Generation Intel Core Processors. https://cdrdv2.intel.com/v1/

dl/getContent/655258

[36] Lefki Kacem and Catuscia Palamidessi. 2018. Geometric Noise for Locally Private

Counting Queries. In Proceedings of the 13thWorkshop on Programming Languages
and Analysis for Security. ACM, 13–16. https://doi.org/10.1145/3264820.3264827

[37] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. 2014. Extremal Mech-

anisms for Local Differential Privacy. In Advances in Neural Information Pro-
cessing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.

Weinberger (Eds.), Vol. 27. https://proceedings.neurips.cc/paper/2014/file/

86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

[38] Vishesh Karwa, Aleksandra B Slavković, and Pavel Krivitsky. 2014. Differentially

Private Exponential Random Graphs. In International Conference on Privacy in
Statistical Databases. Springer, 143–155. https://doi.org/10.1007/978-3-319-11257-
2_12

[39] Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. 2021. Preventing Ma-

nipulation Attack in Local Differential Privacy Using Verifiable Randomization

Mechanism. https://arxiv.org/abs/2104.06569

[40] Fatima Khalid and Ammar Masood. 2022. Vulnerability Analysis of Qualcomm

Secure Execution Environment. Computers & Security 116 (2022), 102628. https:

//doi.org/10.1016/j.cose.2022.102628

[41] N. S. Mangat and Ravindra Singh. 1990. An Alternative Randomized Response

Procedure. Biometrika 77, 2 (1990), 439–442. http://www.jstor.org/stable/2336829

[42] Frank McSherry and Kunal Talwar. 2007. Mechanism Design via Differential

Privacy. In 48th Annual IEEE Symposium on Foundations of Computer Science.
IEEE, 94–103. https://doi.org/10.1109/FOCS.2007.66

[43] Ilya Mironov. 2012. On Significance of the Least Significant Bits for Differen-

tial Privacy. In Proceedings of the Conference on Computer and Communications
Security. ACM. https://doi.org/10.1145/2382196.2382264

[44] Arjun Narayan, Ariel Feldman, Antonis Papadimitriou, and Andreas Haeberlen.

2015. Verifiable Differential Privacy. In Proceedings of the 10th European Conference
on Computer Systems. Article 28. https://doi.org/10.1145/2741948.2741978

[45] OMTP. 2009. Advanced Trusted Environment: OMTP TR1. ,

204 pages. http://www.gsma.com/newsroom/wp-content/uploads/2012/

03/omtpadvancedtrustedenvironmentomtptr1v11.pdf

[46] Alexander Rieger, Tamara Roth, Johannes Sedlmeir, Linda Weigl, and Gilbert

Fridgen. 2022. Not Yet Another Digital Identity. Nature Human Behaviour 6, 1
(2022), 3–3. https://doi.org/10.1038/s41562-021-01243-0

[47] Timon Rückel, Johannes Sedlmeir, and Peter Hofmann. 2022. Fairness, Integrity,

and Privacy in a Scalable Blockchain-Based Federated Learning System. Computer
Networks 202 (2022), 108621.

[48] Sebastian Sartor, Johannes Sedlmeir, Alexander Rieger, and Tamara Roth. 2022.

Love at First Sight? A User Experience Stury of Self-Sovereign Identity Wallets.

In Proceedings of the 30th European Conference on Information Systems. AIS.
[49] Martin Schanzenbach, Thomas Kilian, Julian Schütte, and Christian Banse. 2019.

ZKlaims: Privacy-preserving Attribute-Based Credentials using Non-Interactive

Zero-Knowledge Techniques. https://arxiv.org/abs/1907.09579

[50] Vincent Schlatt, Johannes Sedlmeir, Simon Feulner, and Nils Urbach. 2021. De-

signing a Framework for Digital KYC Processes Built on Blockchain-Based

Self-Sovereign Identity. Information & Management (2021), 103553. https:

//doi.org/10.1016/j.im.2021.103553

[51] Johannes Sedlmeir, Jonathan Lautenschlager, Gilbert Fridgen, and Nils Urbach.

2022. The Transparency Challenge of Blockchain in Organizations. Electronic
Markets (2022). https://doi.org/10.1007/s12525-022-00536-0

[52] Johannes Sedlmeir, Reilly Smethurst, Alexander Rieger, and Gilbert Fridgen. 2021.

Digital Identities and Verifiable Credentials. Business & Information Systems
Engineering 63, 5 (2021), 603–613.

[53] Gerardo I Simari. 2002. A Primer on Zero Knowledge Protocols. (2002), 12.

http://cs.uns.edu.ar/~gis/publications/zkp-simari2002.pdf

[54] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep

Torrellas, and Christopher W. Fletcher. 2019. MicroScope: Enabling Microarchi-

tectural Replay Attacks. In Proceedings of the 46th International Symposium on
Computer Architecture. ACM, 318–331. https://doi.org/10.1145/3307650.3322228

[55] Georgia Tsaloli and Aikaterini Mitrokotsa. 2019. Differential Privacy Meets

Verifiable Computation: Achieving Strong Privacy and Integrity Guarantees. In

6th International Joint Conference on e-Business and Telecommunications. 425–430.
https://doi.org/10.5220/0007919404250430

[56] Lun Wang, Ruoxi Jia, and Dawn Song. 2022. D2P-Fed: Differentially Private

Federated Learning With Efficient Communication. (2022). https://arxiv.org/

abs/2006.13039

[57] Stanley L Warner. 1965. Randomized Response: A Survey Technique for Elim-

inating Evasive Answer Bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–69.

https://doi.org/10.1080/01621459.1965.10480775

[58] Qing Yang, Wei Yu, and Yacine Challal (Eds.). 2016. Wireless Algorithms, Systems,
and Applications. Lecture Notes in Computer Science, Vol. 9798. Springer. https:

//doi.org/10.1007/978-3-319-42836-9

https://doi.org/10.1109/SP.2016.22
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://ec.europa.eu/commission/presscorner/detail/en/ip_21_2663
https://ec.europa.eu/commission/presscorner/detail/en/ip_21_2663
https://doi.org/10.1016/j.cagd.2012.03.001
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://arxiv.org/abs/2109.10789
https://arxiv.org/abs/2107.11905
https://doi.org/10.1016/j.tcs.2016.01.0150
https://doi.org/10.1137/09076828X
https://doi.org/10.1137/0218012
https://www.usenix.org/system/files/sec21-grassi.pdf
https://www.usenix.org/system/files/sec21-grassi.pdf
http://www.jstor.org/stable/2283636
http://www.jstor.org/stable/2283636
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://blog.hermez.io/open-sourcing-ultra-fast-zk-prover-rapidsnark/
https://doi.org/10.1007/978-3-030-88428-4_26
https://doi.org/10.1007/978-3-030-88428-4_26
https://doi.org/10.1016/j.ins.2015.01.021
https://doi.org/10.1016/j.laa.2017.08.011
https://doi.org/10.1109/TIFS.2017.2718487
https://doi.org/10.1109/TIFS.2017.2718487
https://doi.org/10.1007/978-3-642-31594-7_39
https://doi.org/10.1007/978-3-642-31594-7_39
https://docs.circom.io/
https://cdrdv2.intel.com/v1/dl/getContent/655258
https://cdrdv2.intel.com/v1/dl/getContent/655258
https://doi.org/10.1145/3264820.3264827
https://proceedings.neurips.cc/paper/2014/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://doi.org/10.1007/978-3-319-11257-2_12
https://doi.org/10.1007/978-3-319-11257-2_12
https://arxiv.org/abs/2104.06569
https://doi.org/10.1016/j.cose.2022.102628
https://doi.org/10.1016/j.cose.2022.102628
http://www.jstor.org/stable/2336829
https://doi.org/10.1109/FOCS.2007.66
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2741948.2741978
http://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
http://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://doi.org/10.1038/s41562-021-01243-0
https://arxiv.org/abs/1907.09579
https://doi.org/10.1016/j.im.2021.103553
https://doi.org/10.1016/j.im.2021.103553
https://doi.org/10.1007/s12525-022-00536-0
http://cs.uns.edu.ar/~gis/publications/zkp-simari2002.pdf
https://doi.org/10.1145/3307650.3322228
https://doi.org/10.5220/0007919404250430
https://arxiv.org/abs/2006.13039
https://arxiv.org/abs/2006.13039
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1007/978-3-319-42836-9
https://doi.org/10.1007/978-3-319-42836-9

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 Local Differential Privacy
	2.3 Proof Systems and SNARKs

	3 Implementation
	3.1 Verifiable Uniform Randomness
	3.2 Verifiable Randomized Response
	3.3 Verifiable Exponentially Distributed Noise
	3.4 Application: Verifiable Differentially-Private Polling with Anonymous Credentials

	4 Evaluation
	5 Related Work
	6 Discussion
	7 Conclusion
	Acknowledgments
	References

