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ABSTRACT

Blacklists (blocklists, denylists) of network entities (e.g., IP ad-
dresses, domain names) are popular approaches to preventing cyber
attacks. However, the limited capacity of active network defense
devices may not hold all the entries on a blacklist. In this paper,
we evaluated two strategies to limit the size of a blacklist and their
impact on the blacklist’s accuracy. The first strategy is setting the
maximal size of a blacklist; the second is setting an expiration time
to blacklist items. Short-term attack predictions are typically more
precise, and, thus, the recent blacklist entries should be more valu-
able than older ones. Our experiment shows that the blacklists
reduced to half of the size via either strategy achieve only a 25 %
drop in accuracy.
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1 INTRODUCTION

The rising numbers and severity of cybersecurity incidents call
for the application of novel approaches to network security man-
agement, both in incident response but also in prevention. One of
the most popular preventive approaches is employing blacklists
(blocklists, denylists). A blacklist contains a list of network entities
(e.g., IP addresses, domain names) that were or are supposed to
behave maliciously. The network administrators use the blacklists
to deny access to their networks, systems, and service to the net-
work entities on the blacklist. A blacklist can be created using the
observations of malicious activities in one’s own network or can
be outsourced. Various cyber threat intelligence (CTI) feeds [16],
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distributed intrusion detection systems [15], and alert sharing plat-
forms [8] can be used to obtain a blacklist or raw data for creating
one.

One of the major issues of blacklisting is the relevance of the
entries. Putting any maliciously-behaving IP address on a blacklist
is simple, but there is no guarantee that the malicious activity will
continue or repeat. A blacklist based on observations collected in
one environment might not be relevant for preventing malicious
activities in a different environment. These factors result in the
low applicability of most of the blacklist content. Researchers and
practitioners are trying to filter the data to increase the relevancy of
the blacklist. For example, CTI feeds are often focused on particular
environments so that the users may pick the most fitting blacklist
for their geographical location, organization type, or threatened
services and devices. An advanced approach is using predictive
blacklists that are based on predictions of network attacks that
are already aimed specifically and promise higher relevance. We
typically refer to such attempts as predictive or personalized black-
listing [5].

Another issue of blacklisting is the size of the blacklist. Naturally,
the list of network entities is significantly smaller than the raw
data from which it was inferred, such as intrusion detection alerts,
network traffic records, or system logs. Still, the number of IP
addresses and other network entities may be too large to employ
them. The blacklists are typically converted into firewall or routing
rules, and the capacity of the active network devices is limited.
There is a need to limit the size of the blacklist in order to fit the
capacity of the active network devices.

To approach the highlighted issues, we build upon previous work
on predictive blacklisting and study the effects of two blacklist size
limitation strategies. We follow previous work on the design of
an attack prediction system [6] that is used to generate predictive
blacklists [5]. With the help of real-world attack samples [8], we
generate various blacklists limited in size and compare them to
the unlimited blacklist. First, we set various maximal sizes of the
blacklist and use only the most N recent entries. Second, we set an
expiration time for each blacklist item. In an experiment, we aim
to answer the following research questions:

e How can we cut a predictive blacklist in size while maintain-
ing sufficient accuracy?

o After what time could the entries in the predictive blacklist
expire?

e Which of the two strategies provides better results in terms
of blacklist size and the number of changes?

This paper is structured into 6 section. In Section 2, we sum-
marize the background and related work. The experiment setup is
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presented in Section 3 and the results are presented in Section 4.
Section 5 concludes the paper.

2 BACKGROUND AND RELATED WORK

Herein, we first describe the background of blacklisting in cyberse-
curity with a focus on the methods of predictive blacklisting and
their evaluation. Second, we briefly survey related work.

2.1 Background

Following the terminology of related work [13, 18], the blacklist
may stand in the form of Local Worst Offender List (LWOL) or
Global Worst Offender List (GWOL). In the case of LWOL, the
blacklist is generated from the internal records of an organization,
system, or service and contains, for example, the most frequent
network entities that behaved maliciously. Such network entities
are recognized by local Intrusion Detection Systems (IDS) or similar
means. The advantage of LWOL is that local administrators have
full control over it and its creation. However, such a blacklist is
often purely reactive and prevents only repeating attacks. It does
not protect against threats not observed in the local environment
and does not act proactively.

On the contrary, GWOL is a global list, mostly collected by a third
party using data from IDS, honeypots, and other sources distributed
globally. A well-known example of a GWOL source is DShield',
which processes around 30 million alerts per day. Such an amount
of input data generates a huge blacklist of a plethora of attackers
observed globally. When using such a blacklist locally, many attacks
not observed locally could be prevented. However, the blacklists are
impractically large, and it is very likely that most of their content
is not relevant to the local environment.

When evaluating blacklist, we typically use two metrics, hit count
and hit rate. The hit count is the number of attacks prevented by
deploying a blacklist. The hit rate is the hit count divided by the
size of the blacklist, usually measured in the number of entries.

Predictive blacklisting is a proactive variation of blacklisting.
The entries in a predictive blacklist were not necessarily observed
in the past by IDS or a similar tool but, instead, they are expected to
behave maliciously in the future. The advantage of such a blacklist
is that it is more likely to achieve a higher hit rate and, thus, protect
the infrastructure more efficiently. The predictive blacklists are
commonly based on attack prediction or attack projection [7].

Attack projection refers to a number of techniques used to project
an ongoing cyber attack. For example, if there is a known attack
scenario and we observe an attacker who already performed a part
of the sequence, we may project the attack and predict that the
attacker will perform the remainder of the steps in the sequence.
In the past, the attack projection used predefined attack libraries
that were impractical to use, while modern approaches use data
mining and machine learning to project the attacks autonomously.
An example of such an approach is the work by Husak et al. [5]
implemented as the AIDA framework [6]. Attack projection is effec-
tive for making predictions about the near future and is backed by
recent observations of potentially malicious behavior [7]. Another
advantage is that the prediction also states what kind of attack is
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expected to be performed and against which target, which could
be further exploited by the defenders.

Attack prediction is a more generic approach that can use other
techniques to predict an attack or designate a network entity as
potentially malicious. Contrary to attack projection, there is no
need to have recent evidence of potentially malicious activity of a
network entity. For example, the approaches based on reputation
scoring use long-term observation, contextual information, and
even profiling to set the reputation of a network entity. The work
by Bartos et al. [2], implemented in the NERD tool [1], uses up to
a 1-year-long history of intrusion detection alerts, honeypot logs,
presence of an entity on other blacklists, and other data sources to
generate so-called Future Misbehavior Probability (FMP) score. The
higher the FMP score is, the more likely it is that the network entity
will behave maliciously in the future. This approach is effective
in protecting against frequent abusers and long-lasting threats.
However, we may not know what kind of malicious activity will
the network entity perform in the future or where that will take
place.

2.2 Related Work

The first mentions of predictive blacklisting could be traced back
to the work of Zhang et al. [17, 18]. The authors illustrate how a
predictive blacklist achieves higher accuracy than simple blacklists
based on LWOL and GWOL. The authors’ approach is inspired
by Google’s PageRank algorithm. Soldo et al. [13, 14] used three
approaches to predict attacks and generate predictive blacklists.
The authors used time series-based predictions, adaptation of k-
NN clustering to reflect the similarity between the targets of the
same attackers, and a co-clustering algorithm that discovers the
groups of attackers attacking the same target at the same time.
Ma et al. [10] focused on the data from honeypots and creating
personalized blacklists. However, the accuracy of their approach is
lower.

While the earlier approaches typically used all the data they
had available, Freudiger et al. [4] focused on the shared data from
which the blacklists are generated in a collaborative environment.
The authors show that sharing only the data on common attacks is
almost as effective as sharing all data. Melis et al. [11] compared the
collaborative predictive blacklist in which the trusted peers see all
the data [13] to a privacy-preserving data sharing [4]. Their main
finding is that collaboration increases both the number of predicted
attacks and the false positives. Therefore, they present a hybrid
approach with better trade-offs of true and false positives.

Jeong and Tak [9] applied machine learning to the predictive IP
address blacklist. As they state, we are yet to see a mature ML-based
solution, but their approach mitigates open challenges and provides
a nearly 90 % reduction of incorrect blacklisting compared to the
performance of human experts.

The recent implementations of the attack prediction and pro-
jection systems capable of generating a predictive blacklist, such
as the NERD [1, 2] and AIDA framework [5, 6], were described in
the previous subsection. Their detailed comparison, including the
discussion of their usability, was recently published by Husak et

al. [7].
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To illustrate that IP addresses are not the only network entities
considered for a predictive blacklist, we would like to highlight two
representative works using other entities and use cases. Felegyhazy
et al. [3] discussed proactive domain blacklisting. The authors show
how to predict the maliciousness of a domain name by leveraging
its properties inherent to its registration and appearance in DNS
zone files. In another example, Prakash et al. [12] explored the use
of predictive blacklisting and its application to phishing detection.
The combinations of components of known malicious URLs are
used to infer new phishing URLs.

3 EXPERIMENT SETUP

In this section, we describe the experiment setup. First, we briefly
present the AIDA framework and the dataset that we used to gen-
erate the blacklists. Subsequently, we describe our approach to
blacklist analysis and the implementation of the two strategies to
limit the size of the blacklist. The results are summarized in the
following section.

3.1 Data and tools

In the experiment, we used the dataset [8] of intrusion detection
alerts collected from the SABU alert sharing platform. The same
dataset was used in previous works [5, 7], which shall allow for
comparison. The data was collected continuously as they appeared
in the SABU platform for the period of one week, from March 11
to March 17, 2019. Almost 12 million alerts were collected from 34
network-based IDS, honeypots, and other data sources deployed in
3 distinct organizations: national research and education network, a
large campus network, and a commercial Internet service provider.
The alerts are stored in the IDEA format and categorized using the
taxonomy of security events included in the IDEA definition. The
IP addresses in the alerts are anonymized.

The data were processed using the AIDA framework [6]. AIDA is
a modular framework for the stream-based analysis of intrusion de-
tection alerts using the concepts of big data processing, data mining,
and complex event processing. The framework receives intrusion
detection alerts and distributes them to several components that
perform the tasks of data sanitization, mining predictive rules, mak-
ing predictions, and calculating the accuracy of the predictions. The
framework uses Top-k sequential rule mining to infer predictive
rules. A predictive rule consists of two ordered sets of actions (e.g.,
network scanning, brute-force password attack, exploitation); the
first rule implies the other. For example, if a rule states A, B => C,
then if there is an IP address that was observed to perform actions
A and B, it is predicted that this IP address will also perform action
C. All the IP addresses that are predicted to perform such actions
are put on a predictive blacklist.

The AIDA framework was then deployed in a virtual machine
running Ubuntu 18.04 operating system and equipped with a 20 GB
hard drive, 6 GB RAM, and 2 CPU cores. Otherwise, the default
configuration of the AIDA framework was used. Following the ex-
periment setup of previous works [5, 7], we split the dataset into
seven parts, each corresponding to one day of malicious activities.
For each day, we used the AIDA framework’s data mining compo-
nent to infer the set of attack prediction rules. The rules from one
day are then used to predict an attack on a consecutive day, which is
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inspired by the real-world deployment of the AIDA framework [6].
For example, the rules inferred from Monday’s data are used to
predict the attacks in Tuesday’s data.

There is an issue with processing datasets with the AIDA frame-
work. In real-time data processing, the current time is used as a
timestamp of a prediction. When processing a dataset of older alerts,
the current time would not make much sense. Thus, the latest times-
tamp of an event on which the prediction is made is used as the
time of the prediction. For example, when having a rule A, B => C,
the timestamp of event B is used as a time when the prediction of
C was made. The time spent on forwarding the events from an IDS
to the AIDA framework and processing them in the framework is
neglected in this case.

3.2 Implementation details

In order to evaluate the effectiveness of blacklist entries, we de-
fined the 3-tuple (startTime, endTime, blockedAlerts) describing
the presence of an IP address on a blacklist. The entries (startTime,

endTime) show the time when the IP address was added to the
blacklist and removed from it. The BlockedAlerts is the number of
attacks observed within this time interval and originating from the
IP address. Such attacks could be prevented by the blacklist and are
also referred to as prevented attacks in the remainder of this paper.
Each IP address may have several 3-tuples assigned to it, namely
when it was removed from the blacklist and then inserted again.
The 3-tuples are stored in a list representing a blacklist.

The size limitation is implemented as follows. The blacklist of
size P is simulated as a priority queue of size P. The predictions
are processed sequentially from the oldest to the newest. The IP
address and the prediction time (named N, in seconds) are extracted
from the prediction. A new 3-tuple is created for the IP address and
added to the queue; the priority equals the number of processed
predictions, and the 3-tuple contains (N, N, 0). If the IP address is
already in the list, then its priority is overwritten. When the queue
is full, the IP address with the lowest priority is removed, and the
second value of its 3-tuple is set to N. When all the predictions are
processed, the second values of all the 3-tuples still on the blacklist
are set to the end of the processed day. The experiment was first
conducted with the initial blacklist size of 100. In the following
iterations, we increased the blacklist size by 500 each iteration until
we reached the number of unique IP addresses in the predicted
events.

The time expiration is implemented as follows. All unique IP
addresses in the predictions are iterated. Subsequently, the list of
values of time expiration is iterated, and the 3-tuples are created.
The 3-tuples have the form (N, N + P, 0), where N is the time when
the predicted event was detected, and P is the expiration time in
seconds. If the processed prediction has the detection time N in
the interval < startTime, endTime >, the endTime is set to N + P.
The experiment was rerun several times with different expiration
settings. We started with the value of 1,800 seconds (0.5 hour) and
then repeated the experiment with the value incremented by 1,800
seconds until we reached 24 hours.

Setting the final value of blockedAlerts is implemented in the
same way for both strategies. All the alerts were iterated, and if
they describe an attack originating from an IP address for which
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a 3-tuple is defined, the timestamp of the alert is checked against
the time interval in the 3-tuple. If the timestamp is within the time
interval of the 3-tuple, the blockedAlerts value is incremented by 1.

3.3 Watched metrics

The metrics watched throughout the experiment are as follows: me-
dian and average mitigation time, percentage of prevented attacks,
number of changes to the blacklist, and the maximal and average
size of the blacklist.

The mitigation time is the amount of time between the prediction
of an event by the AIDA framework and the subsequent detection of
this event in case it actually happens. This metric is highly valuable
in practice because a longer mitigation time gives the network
operators more time to react to the prediction, e.g., by putting in
on a blacklist and updating a firewall rule.

The percentage of prevented attacks is the number of observed
attacks originating from the IP addresses on the blacklist divided
by the total number of observed attacks. This metric shows how
many attacks could have been prevented if the blacklist had been
used.

The number of changes to the dataset is the number of operations
of inserting or deleting an IP address to or from a blacklist. Replacing
one IP address with another is considered two changes. The reason
we watch this metric is that the frequency of changes might be more
important than the size of the blacklist used by an active network
defense device. In practice, it may take even several minutes for a
new blacklist entry to propagate into a firewall or routing rule and
become efficient, namely at high-throughput network devices.

The maximal size of a blacklist is the highest number of IP ad-
dresses on a blacklist over time. The average size of a blacklist in
one hour is calculated as:

£+3600

Z Blacklist /3600 )
n=f
where f is the beginning of the considered hour. Blacklistf is the
size of the blacklist at f. The number of changes and the maximal
and average size of a blacklist are relevant for practical reasons,
namely the capacity of active network defense devices.

4 EXPERIMENT RESULTS

In this section, we present the experiment results. First, we show
the overview of the raw data, predictions, and unique IP addresses.
Subsequently, we show the overall blacklist accuracy and compare
the representative blacklists. Table 1 shows the detailed statistics of
the dataset and predicted events per day. For each day in the dataset,
we display the number of events on which we predicted the attacks
and the number of events with a predicted IP address. Subsequently,
we display the number of predictions and the number of unique IP
addresses in the predicted event. As we can see, many predictions
are related to the same IP address. Finally, the average and median
mitigation times of the predictions are displayed.

The first results are presented in two Figures illustrating the
effects of applying the two strategies to blacklist size reduction.
For recapitulation, the key metric is the percentage of prevented
attacks, i.e., the percentage of attacks that could be prevented by
restricting the network traffic of the IP addresses on the blacklist.
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Figure 1: Blacklist accuracy with various size limitations.
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Figure 2: Blacklist accuracy with various item expiration
times.

For comparison, the unlimited blacklist is capable of preventing
33.46 % of all the attacks, including the attacks from IP addresses
that were not predicted to behave maliciously. When considering
only the attacks from the predicted IP addresses, the unlimited
blacklist is capable of preventing 88.09 % of such attacks. In the
remainder of this section, we use the first metric.

Figure 1 shows the size of the blacklist on the horizontal axis and
the percentage of prevented attacks on the vertical axis. We could
see what would be the effect of using the blacklist if the limitation
of its size were applied. The red horizontal line displays the level
at which the size-limited blacklist would achieve 75 % accuracy
compared to the full-size blacklist. As we can see, such accuracy
would be achieved with a blacklist limited to approximately 9,100 IP
addresses. Such a blacklist prevented 25.26 % of the attacks and was
selected as the first representative blacklist for further evaluation.

Figure 2 illustrates the effect of the second strategy, the blacklist
item expiration. The vertical axis again shows the percentage of
prevented attacks. The horizontal axis shows the blacklisted item
expiration time in seconds. We again highlighted a level of 75 %
blacklist accuracy. As we can see, such a level would be achieved
with an expiration time set to around 10 hours. Such a blacklist
prevented 25.54 % of the attacks and was selected as the second
representative blacklist.

The detailed breakdown of the experiment results per day is
presented in Figure 3. Figures 3a and 3b show the maximal and
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Day

Tuesday ~Wednesday Thursday Friday
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Saturday Sunday Total

Number of events

1,664,838 1,548,300 1,607,747 1,710,206

1,776,281 1,699,196 10,006,568

Number of events with a predicted IP address 645,123 577,048 577,787 644,360 672,507 672,992 3,789,817
Number of predictions 45,046 46,992 39,240 39,410 42,418 41,451 254,557
Number of unique IP addresses in prediction 16,644 16,583 16,090 16,643 18,559 18,854 64,021
Average mitigation time of the predictions (in minutes) 65.59 54.90 62.91 61.07 65.22 69.45 64.90
Median mitigation time of the predictions (in minutes) 26.02 16.81 22.60 22.35 22.50 25.60 23.80
Table 1: Daily statistics of the experiment data.
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Figure 3: The maximal and average sizes and the number of changes to representative blacklists each day.
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Day Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | Total

Time expiration 25.91 26.88 23.77 24.60 25.58 25.81 25.54
Size limit 26.73 27.08 24.16 25.55 24.99 24.83 | 25.26
Unlimited blacklist 34.83 31.84 30.51 33.47 33.10 35.28 33.46

Table 2: Attacks prevented by representative blacklists (in percentages).

average sizes of the representative blacklists and their comparison
to unlimited blacklists. As we can see, the unlimited blacklists
grow in size continuously, while the limited blacklists reach their
capacity after around 10 hours and remain at it in case of size-
limited blacklists or oscillate around it in case of timed expiration
of entries. It is worth noting that the maximal size of the size-limited
blacklist is 49.46 % of the size of the unlimited blacklist, while the
maximal size of the blacklist with time expiration is 56.73 % of the
unlimited blacklist. Figure 3c shows the frequency of changes. As
we can see, the blacklists are similar in this regard. When compared
to Figure 3b, we may notice that the shorter the average size of the
blacklist is, the more changes it requires. Obviously, this is caused
by the frequent deletion of entries that are no longer necessary.
Finally, Table 2 shows the percentage of attacks prevented each
day.

5 CONCLUSION

The goal of this work was to find out how we can limit the number
of entities (e.g., IP addresses) in a predictive blacklist while main-
taining sufficient accuracy of the blacklist. We conducted an exper-
iment in which we used the AIDA framework, an attack prediction
framework, to generate a predictive blacklist out of a real-world
dataset obtained from an alert sharing platform. Subsequently, we
applied two strategies to limit the size of the blacklist with various
parameters. In particular, we set the maximal size of the blacklist
and implemented the expiration of blacklist entries.

The experiment results suggest that a blacklist reduced in size
may still display sufficient accuracy when compared to the use of
the full blacklist, namely when the most recent entries are used,
regardless of the strategy. A blacklist reduced to half of the size
may have an accuracy of around 75 % of the original blacklist. Nev-
ertheless, the final selection on which strategy to use lies on the
network operators and the available equipment. The important
metric to follow would be the number of changes to the blacklist.
If the change to the blacklist is a cheap operation, then the size
limitation of the blacklist seems to be more suitable.

In our future work, we would like to repeat the experiment in a
longer continuous time window and also in a real-world scenario
using active network defense devices with limited capacity. Thus,
we could observe delays caused by forwarding the blacklists, recon-
figuration of the device, and other practical issues. We believe our
work will help in the development of more precise active network
defense mechanisms that could make use of distributed equipment.
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