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ABSTRACT
In the past years Internet of Things (IoT) has received increasing at-
tention by academia and industry due to the potential use in several
human activities; however, IoT devices are vulnerable to various
types of attacks. Many existing intrusion detection proposals in
the IoT leverage complex machine learning architectures, which
may provide one separate model per device or per attack. These
solutions are not suited to the dynamicity and scale of modern IoT
environments. This paper proposes an initial analysis of the prob-
lem in the context of deep autoencoders and the detection of botnet
attacks. Our findings, obtained by means of the N-BaIoT dataset,
indicate that it is relatively easy to achieve impressive detection re-
sults by training-testing separate and minimal deep autoenconders
on the top of the data individual IoT devices. More important, our
all-in-one deep autoencoding proposal, which consists in training
a single model with the benign traffic collected from different IoT
devices, allows to preserve the overall detection performance ob-
tained through separate autoencoders. The all-in-one model can
pave the way for more scalable intrusion detection solutions in the
context of IoT.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation; Intrusion detection systems;
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1 INTRODUCTION
Internet of Things (IoT) devices underlie many critical assets of
our daily lives. Assuring security in face of threats and attacks is a
primary concern, as IoT devices can be infected in order to form a
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botnet that can be leveraged to conduct malicious activities. The
body of scientific literature on machine learning and (deep) neural
networks applied to intrusion detection systems (IDS) for IoT is
huge and ever-increasing. This trend is pushed by the large number
of public IoT datasets, such as MedBIoT1, N-BaIoT2 and IoTID203
–just to mention a few– and the availability of ready-to-use deep
learning frameworks (e.g., Keras, TensorFlow, PyTorch). As a result,
a wide community of academics and practitioners can conduct
measurement studies at the intersection of machine learning and
intrusion detection for the IoT. The “pattern” followed by many
paper on intrusion detection, deep learning and IoT is typically the
same: (i) proposal of an algorithm or architecture based on neural
networks (possibly deep ones), (ii) training-testing with one (more)
public dataset(s), (iii) demonstration of impressive detection results
(typically close to 100%).

We observe that many existing proposals in the area of deep
learning and IoT do not really address the gap between development
and operation. Beside the machine learning exercise, “brilliant” and
highly-complex deep networks proposed for intrusion detection
so far, such as Convolutional Neural Network (CNN) and Long
short-term memory (LSTM), might find no or limited adoption
in real-life production IoT environments. In fact, operational IoT
security andmachine learning are evolving as independent research
areas, being addressed by different communities. In order to be
usefully deployed in practice, intrusion detection in IoT should opt
for unsupervised and semi-supervised approaches over supervised
ones. It is unlikely that attacks are known beforehand; as such,
unsupervised and semi-supervised approaches are more widely
applicable. Given the ever-growing number and heterogeneity of
devices and traffic volume, intrusion detection in IoT should pursue
simplicity over complexity (e.g., small-footprint neural networks)
in order to assure low detection latency, portability and energy
efficiency. Another issue pertains to the learning assumptions. For
example, recent contributions in the area tend to create individual
models per IoT device [13] or per attack [9], which is not suited to
the dynamicity and scale of IoT environments and security threats.

This paper proposes an initial exploration of the problem in the
context of deep autoencoders (AEs) and the detection of botnet
attacks available in the widely-used N-BaIoT dataset, which pro-
vides benign and attack traffic data collected with different IoT
devices and arranged into individual datasets –one per device– in
the form of records of 115 features. Among the wide corpus of
existing proposals in intrusion detection for IoT, multiple AEs (pos-
sibly complemented by sophisticated feature selection methods)

1https://cs.taltech.ee/research/data/medbiot/
2http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
3https://sites.google.com/view/iot-network-intrusion-dataset/home
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are often used in complex cascade and ensemble configurations.
Our proposal develops around the intuition that this complexity
is not justified because a single autoencoder is enough to obtain
remarkable detection figures. We assess three different AEs con-
sisting of 3, 5 and 7 hidden layers, respectively. AEs are trained
in a semi-supervised manner, in that only benign traffic is used
for training. Our experiment is twofold. First, we conduct a fine-
grain experiment by training the AEs with the benign traffic of
the individual IoT devices, separately (i.e., one separate model per
device); second, we train the AEs with the benign traffic of all the
IoT devices (i.e, all-in-one model). We assess the detection capa-
bility of the AEs –separate and all-in-one model– by means of the
typical metrics of recall, precision, false positive rate and F1 score,
computed through benign and attack traffic held-out from training.

The results indicate that a simple and “minimal” AE of 3 hidden
layers is enough to achieve satisfactory results, e.g., recall in the
range 0.999-1.0 and precision within 0.990-0.999, in case the AE is
trained-tested with the data of the IoT devices, separately. As for
the all-in-one model, the AE of 7 hidden layers assures the best
results, i.e., 0.999 recall for all the IoT devices, while the recall of the
AE of 3 hidden layers ranges between 0.355-0.785 depending on the
device. We observe that it is relatively easy to achieve impressive
detection figures by training-testing amodel on the top of individual
devices (i.e., the experimental setting of the original N-BaIoT paper);
however, this approach underlies the need for maintaining one
model per device, which poses major scalability issues in large-
scale IoT networks. Different from this perspective, our all-in-one
deep autoencoding approach indicates that it is possible to train a
single model with benign traffic collected from different devices,
which paves the way for more scalable IoT intrusion detection
solutions. It is worth noting that privacy issues due to the adoption
of the all-in-one model are not in the scope of this exploratory
paper. Our long-term objective is to capitalize on federated learning
[16] and to leverage the decentralized data concept to cope with
privacy facets.

The rest of the paper is organized as follows. Sect. 2 discusses
related work in the area. Sect. 3 provides the background on deep
autoencoders and datasets. Sect. 4 addresses training and validation
of the autoencoders. Sect. 5 presents the results of our study, while
Sect. 6 concludes the paper.

2 RELATEDWORK
Security challenges pose a significant barrier to the widespread
adoption and deployment of IoT devices. The security vulnera-
bilities introduced by heterogeneity and interconnectivity of IoT
devices and applications pave the way for the development of in-
creasingly sophisticated anomaly detectors. Over the last few years,
the use of machine learning for anomaly detection in the IoT has be-
come extremely important [3]. Al-Fuqaha et al. [1] surveyed some
challenges and issues for the design and the deployment of IoT
applications. In order to tune and test machine learning techniques,
many ready-to-use public intrusion detection IoT datasets have
been produced. Most of these datasets are collected in synthetic
environments under normative conditions and different intrusion
scenarios. Some popular public IoT intrusion detection datasets are:
MedBIoT, N-BaIoT [13] and IoTID20 [17].

Lopez-Martin et al. [12] propose a novel network intrusion de-
tection method specifically developed for an IoT network. The ap-
proach is based on a Conditional Variational Autoencoder (CVAE)
which integrates the intrusion labels inside the decoder layers. The
proposed method is less complex than other methods based on
a variational autoencoder and it provides better classification re-
sults than other familiar classifiers. The authors of [10], instead,
propose a network intrusion detection system design for the IoT,
which is based on a deep learning model comprising a customized
feed-forward neural network. They tested the efficacy of the mod-
els for binary and multi-class classification. The results obtained
show the efficacy of the proposed technique. In particular, the per-
formance of the binary classifier was found to be close to 99.99%,
while a detection accuracy of approximately 99.79% was achieved
for multi-class classification. Almieani et al. [2] propose a model
that uses multi-layered recurrent neural networks designed to be
implemented for Fog computing security that is very close to the
end-users and IoT devices. However, the authors show the valid-
ity of the proposal by using a balanced version of the NSL-KDD
dataset. It is an obsolete dataset, not specifically conceived for IoT
applications. As shown in [4], this issue might lead to the lack
of transferability of the impressive results obtained on reference
datasets (possibly outdated and not free from statistical biasing)
in even slightly-different data collection settings, such as the en-
ablement of defense modules [7]. The detection of different classes
of anomalies has been recently addressed by means of system log
analysis and a deep autoencoder [6]: the proposed approach, called
AutoLog, is based solely on a deep autoencoder network without
any kind of artifice in the infrastructure.

The work closest to our proposal is Kitsune [14], an unsuper-
vised learning approach to detect attacks online. Kitsune’s core
algorithm is KitNet, which uses a collection of auto-encoder neural
networks to distinguish between normative and abnormal traffic.
The approach involves the integration of multiple autoencoders
into a classifier. The experimental results show that Kitsune is effec-
tive with different attacks, and its performance is as outstanding as
offline detectors. Similarly, the authors in [13] propose a network-
based anomaly detectionmethodwhich extracts behavior snapshots
of the network and uses deep autoencoders to detect anomalous
network traffic emanating from compromised IoT devices. Finally,
in [9] an IoT micro-security add-on is presented that is hosted in
the device and uses a CNN model for detecting URL based attacks
directed to a client’s IoT devices. It is worth pointing out that the
aforementioned methods –different from our approach– create in-
dividual models per IoT device [14] or per attack [9], which might
not be suited to the ever-evolving IoT environments and threats.

3 BACKGROUND, DATASET AND ANOMALY
DETECTION METHOD

3.1 Autoencoders (AE)
The core of the proposed method is the use of a deep autoencoder.
In general, an autoencoder is a specific type of neural network
where the input layer has the same dimension as the output layer.
An autoencoder compresses the input into a lower-dimensional
representation at the middle hidden layer and then it reconstructs
the output from the representation. The middle hidden layer of an
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Figure 1: Representation of an autoencoder.

autoencoder is also known as the bottleneck layer and its dimen-
sion is lower than the input/output layer. Deep learning can be
applied to autoencoders. In particular, multiple hidden layers can
be used to provide depth: the resulting network is known as deep
or stacked autoencoder [18]. Figure 1 shows the representation of
an autoencoder with three hidden layers.

An autoencoder consists of two parts: encoder and decoder.
Let x be an input vector of n real numbers [x1,x2,...,xn], the encoder
maps x to a code vector –or hidden representation– y at the bot-
tleneck layer. On the other hand, the decoder transforms y into
a vector of n real numbers z = [z1, z2, ..., zn ]. In the autoencoder
terminology, z is called the reconstruction of the input vector x.
Encoding-decoding formulas are given in Eq. 1 and Eq. 2. They
represent the case of a simple autoencoder with one hidden layer:

y = σ (Wx + b) (1)

z = σ ′(W ′y + b ′) (2)
whereW ,W ′, b and b ′ are weight matrices and bias vectors, while
σ and σ ′ are activation functions.

When suitably trained, an autoencoder will reconstruct the input
as accurately as possible. The quality of the reconstruction is given
by the reconstruction error (RE), which measures the difference
between the reconstructed, i.e., z, and the original version of the
input, i.e., x:

RE =
1
N

n∑
i=1

(zi − xi )
2 (3)

where zi and xi (with 1≤i≤n) denote the components of the output
and input vector, and n is the dimensionality.

3.2 AE for anomaly detection
An autoencoder can reconstruct accurately, i.e., low reconstruction
error (RE), future points “similar” to those used for training. Based
on this principle, in order to pursue anomaly detection we train
the autoencoder solely by means of normal data points, so that
the autoencoder learns a latent subspace of normal data points
[15]. After training, the autoencoder will embed a model of the
“normal profile”, and it can –in principle– identify any instance not
conforming to the normal profile as anomalies.

The reconstruction error (RE) is a viable anomaly indicator. Since
the AE is trained using only normative data points, it will experience

(i) low RE (good reconstructed representation) for future normative
inputs, and (ii) high RE (bad reconstructed representation) for future
anomalous inputs. More specifically, we use the AE to capture a
normative baseline: when it tries to reconstruct a data point that
is different from the norm –and thus a potential anomaly– it will
report an increment of the RE value because it was never trained
to reconstruct anomalies. The reconstruction error is a measure of
the anomaly degree.

According to Chandola et al. [8] the approach adopted in this pa-
per is termed semi-supervised anomaly detection, which means
that it does not need anomalies at training time. Moreover, as for
any anomaly detection technique assigning a score to data points
(RE in our approach), we rely on a cut-off anomaly threshold
to discriminate normal from anomalous data points. In particular,
detection is based on the use of the threshold value: the data points
producing RE values under the threshold are considered normative,
and those with REs above the threshold are deemed anomalous.
Implementation details, including configuration and parametriza-
tion of the autoencoder for the datasets in hand, anomaly threshold
selection and any other pertinent aspects are addressed in Sect. 4.2.

3.3 Reference dataset: N-BaIoT
The dataset considered in this paper is N-BaIoT [13]. It provides a
public botnet IoT dataset collected from theUniversity of Califor-
nia at Irvine (UCI) machine learning repository. The dataset con-
tains a total number of 7,062,606 benign and attack records gathered
in a lab environment that replicates a typical organizational data
flow. Traffic data is collected from nine IoT devices, namely a ther-
mostat (Ecobee), a baby monitor (Philips B120N/10), a webcam
(Samsung SNH 1011 N), two doorbells (Danmini - Ennio), and
four security cameras (Provision PT-737E - Provision PT-838
- SimpleHome XCS7-1002-WHT - SimpleHome XCS7-1003-WHT)
connected via Wi-Fi to several access points, wire-connected to a
central switch which also connects to a router. In order to sniff the
network traffic, the port mirroring is performed on the switch, and
data is recorded by means of the Wireshark4 tool.

Malicious data is divided into ten attacks carried out by two
botnets namely Mirai and BASHLITE and collected from the IoT
devices. In particular, the BASHLITE botnet infects Linux-based IoT
devices by brute forcing default credentials of devices with open
Telnet ports. Once a new bot is connected to the Command and
Control (C&C) server and is under its control, this server is able to
command the infected device to launch attacks. The Mirai botnet,
instead, consists of a Command and Control (C&C) server and
a server with a scanner and loader. The scanner and the loader
scan and identify vulnerable IoT devices, and load the malware to
the vulnerable ones. After infection, the device automatically starts
scanning the network for new victimswhile waiting for instructions
from the C&C server. The types of BASHLITE attacks in the N-BaIoT
dataset are: Scan, Junk, Flooding (TCP/UDP), and COMBO. Also,
Mirai botnet comprises: Scan, Ack, Syn, UDP Flooding, and UDP
Plain attacks.

For each device, the data was obtained under both normal op-
erations and attack conditions. In fact, the dataset is released in
the form of comma separated values files (csv) for each device

4https://www.wireshark.org

https://www.wireshark.org
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and each of them has its own benign and attack data. The number
of instances varies for every device and attack. Each data point
is identified by 115 independent features, plus a class label to be
derived from the respective csv filename (e.g., “benign” or “TCP
attack”). Each feature models traffic statistics over several tempo-
ral windows. Given 23 recorded statistical features (e.g., size of
outbound packets –mean and variance– packet jitter –mean and
variance–, and so forth) and 5 values of decay factor λ= (0.01, 0.1, 1,
3, 5) –100ms, 500ms, 1.5sec, 10sec and 1min– which is used to forget
information over time, there are a total of 23 × 5 = 115 features.

It is worth pointing out that botnet infections consist of multiple
steps such as propagation, bot infection, communication with C&C
server, and performing other types of malicious activities [11]. Ac-
cording to [13], it is not enough to determine only the early stages
of infection. The N-BaIoT dataset focuses on the last stage of botnet,
when IoT bots begin launching attacks.

4 EXPERIMENTAL SETUP
Our experimentation is twofold. First, we pursue a “conventional”
learning approach, which consists in training an autoencoder with
the benign traffic of individual IoT devices, i.e., one separate model
per device. Later, different from similar work in the area, we train a
unique AE –and therefore all-in-one– whose training set is made
up by merging the benign traffic of different IoT devices.

4.1 Dataset partitioning
For our experiments we consider the Provision PT-737E security
camera, the Samsung SNH 1011 N webcam, the Ecobee thermostat
and the Philips B120N/10 baby monitor. Moreover, the exper-
iments refer to a binary classification scenario. As such, records
referring to different types of attacks are considered as belonging
to a unique class named ATTACK.

It is worth remarking that the N-BaIoT dataset is organized into
separate datasets, each containing both benign and attack traffic
corresponding to a single IoT device. For our experiments we split
the original datasets into three disjoint splits: training set, vali-
dation set and test set. While splitting the dataset corresponding
to a given IoT device, we adopt a stratified sampling strategy with
no replacement. This means that (i) the ratio between benign and
attack classes of the original datasets is preserved in the output
splits and (ii) each record of the original dataset is assigned to a
unique split. For each set of dataset, we obtain:

• Training set. It contains only BENIGN records and it is meant
for training the AE. Labels are removed.

• Validation set. It contains only BENIGN records and it is used
tomonitor overfitting and to set the anomaly threshold (more
on this later). Again, labels are removed.

• Test set. It contains both BENIGN and ATTACK records. Records
in this set are accompanied by the corresponding labels that
are checked to evaluate the correctness of the predictions.

Table 1 shows the cardinality of the three sets –training, valida-
tion and test– for the first group of experiments, i.e., separate AEs;
Table 2, instead, highlights the cardinality of the training, validation
and test sets for the second group of experiments, i.e., all-in-one
AE, where training/validation sets sum up to the cardinalities of
training/validation sets in Table 1. It is worth noting that for each

Table 1: Training, validation and test set size (separate AEs).

IoT device training set validation set test set
BENIGN BENIGN BENIGN ATTACK

Provision PT-737E 43 507 4350 9323 114 910
Samsung SNH 1011 N 36 505 3650 7822 48 458
Ecobee 9179 917 1966 123 408
Philips B120N/10 122 667 12 266 26 286 138 511

Table 2: Training, validation and test set size (all-in-one AE).

IoT device training set validation set test set
BENIGN BENIGN BENIGN ATTACK

Provision PT-737E 9323 114 910
Samsung SNH 1011 N 211 858 21 185 7822 48 458
Ecobee 1966 123 408
Philips B120N/10 26 286 138 511

group of experiments the cardinality of the validation set is 10% of
the training set. Moreover, test sets are “held-out” from training and
they will be used in Sect. 5 for measuring the detection capabilities
of the autoencoders.

4.2 AE design and training
In general, the design of an AE is optimized by selecting and tuning
various hyperparameters of the network, which range from the
number of layers, neurons per layers, activation functions and so
forth. At the time being, there is no specific rule for optimizing
the hyperparameters of an AE, and they are mostly determined by
the experience and intuition of the designer. Another set of critical
hyperparameters pertain to the learning process: epochs, batch
size, optimizer algorithm and learning rate. As for any machine
learning experiment, our selection was controlled by carrying out
experimental tests where we analyzed the outcome of the model
–RE in our study– with respect to the validation set.

4.2.1 Separate autoencoding. We found that the configuration
shown in Table 3 guarantees an effective design, i.e, low RE on
the validation set, for the separate AEs setting. The selected AE is
made up of 3 hidden layers. These layers include N -36-6-36-N
neurons, where N is the number of features identifying each data
point. The classical Rectified Linear Unit (ReLu) has been selected
for the encode layer, the decode layer and the bottleneck layer,
while for the output layer the Hyperbolic Tangent (Tanh) activa-
tion function has been used. We train an AE on BENIGN data points
of each IoT device for 100 epochs with batch size 1024 using the
RMSProp optimizer with learning rate value lr=0.0001.

4.2.2 All-in-one autoencoding. For the second set of experiments,
after testing different designs, i.e., N -36-6-36-N and N -64-36-12-36-
64-N , we found that addingwidth and depth to the AE is beneficial.
In particular, Table 4 shows a successful design for this case study.
The chosen AE is made up of 7 hidden layers. These layers include
N -64-36-12-6-12-36-64-N neurons. Again, ReLu has been selected
for the encode layer, the decode layer and the bottleneck layer,
while for the output layer the Tanh activation function has been
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Table 3: Separate autoencoding: layering structure of the AE
(all the layers are dense).

layer activation
Input -

Hidden 1 ReLU
Hidden 2 ReLU
Hidden 3 ReLU
Output tanh

Table 4: All-in-one autoencoding: layering structure of the
AE (all the layers are dense).

layer activation
Input -

Hidden 1 ReLU
Hidden 2 ReLU
Hidden 3 ReLU
Hidden 4 ReLU
Hidden 5 ReLU
Hidden 6 ReLU
Hidden 7 ReLU
Output tanh

used. We train the all-in-one AE on BENIGN the data points across
all IoT devices, setting the number of epochs to 100, with batch size
1024 and using again the RMSProp optimizer with learning rate
value lr=0.0001.

4.2.3 Notes on Training. Our semi-supervised training process –no
anomalies at training time– is crucial for both sets of experiments.
During the training phase, the weights and biases of the encoder
and decoder are calculated and optimized with respect to BENIGN
training data. As outlined in Sect. 3, during training the autoencoder
learns the relationships among the features in the training set. As for
any typical deep learning experiment, the AE neurons are randomly
initialized at the beginning of the training process, and input data
are presented in batches for a given number of epochs, 1024 and 100
in our study. The goal of training is to minimize the loss, setting
aside a small ratio of reserved data to validate the optimization
actions performed –modifications of the weights in the network–
so as to monitor the occurrence of overfitting. The loss describes the
objective that the AE tries to reach. Since our goal is to reconstruct
the input as accurately as possible, we compute the loss as themean
squared error at the output units; this matches the definition of
reconstruction error (RE) above.

4.2.4 Threshold selection. If an unseen data point is given to a
trained AE, it can reconstruct it with low RE as long as the data
point is similar to those encountered during training. If this condi-
tion does not hold, the AE cannot reconstruct the data point and the
related RE value is high. Therefore, any divergence from a “benign
behavior" could lead to a high reconstruction error, making it pos-
sible to recognize ATTACK records. As for many anomaly detection
techniques, we apply a threshold to the RE in order to discrimi-
nate good from bad reconstructions and, in turn, anomalies. We

choose the threshold value by using BENIGN instances, and hence
the training and validation procedure is semi-supervised.

The anomaly threshold is set with the following approach. First,
we apply an outlier detection algorithm to the BENIGN data points
of the validation set, which makes it possible to discriminate inliers
from outliers. Second, inliers and outliers are fed to the autoencoder
in order to obtain the corresponding REs. The threshold is the
highest RE value assuring that the number of inliers falling below
that RE is higher then the number of outliers. As the model, the
threshold is an output of the learning phase.

4.2.5 Implementation. AEs have been implemented in Python us-
ing the Keras5 (Version 2.7.0) library with TensorFlow6 (Version
2.7.0) as backend. All our experiments are conducted on a MacBook
Pro with an Intel Core i5 2.6 GHz processor and 8 GB of RAM.
It is worth pointing out that the training phase for a single AE
takes around 1 minute in the worst case. This time could be greatly
reduced using more powerful or ad hoc hardware (i.e., by GPU
acceleration).

5 RESULTS
This section presents our experimental results. We focus on the
following two points: (i) the performance of separate AEs, individ-
ually trained with the BENIGN traffic of each IoT device, and (ii) the
performance of the all-in-one AE (i.e., all-in-one autoencoding)
trained once with the BENIGN traffic of all devices.

We compute the typical metrics of recall (R), precision (P), false
positive rate (FPR), and F1 score as follows:

R =
TP

TP + FN
P =

TP

TP + FP
(4)

FPR =
FP

FP +TN
F1 score = 2 ·

P · R

P + R
(5)

where True Positive (TP) and True Negative (TN) represent the
points that are correctly classified, while False Positives (FP) and
False Negatives (FN) indicate misclassifications. For example, TP
is the set of ATTACK points whose RE is higher than the threshold;
similarly, TN is the set of BENIGN points whose RE is lower than
the threshold.

5.1 Separate autoencoding
We process the test sets of the datasets in hand with the four AEs
trained as described in Section 4. Again, we focus on the following
IoT devices: Provision PT-737E security camera, Samsung SNH
1011 N webcam, Ecobee thermostat and Philips B120N/10 baby
monitor. As highlighted in Section 4, we evaluate the performance
of each AE by means of the test sets of the corresponding device.
RE values produced by the four different AEs are accompanied by
the labels, which are used for evaluation.

For example, Figure 2 shows the REs for the Philips B120N/10
baby monitor device. It refers to the Philips B120N/10 baby moni-
tor test set (i.e, the split of BENIGN and ATTACK points held out from
training). Each data point is marked by a ◦. In order to separate
BENIGN points from ATTACK points, we superimpose a vertical con-
tinuous line. On the left side of the vertical line there are BENIGN
5https://keras.io/
6https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/
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Figure 2: Separate autoencoding: RE of the test set for the
Philips B120N/10 baby monitor device.

IoT device recall precision FPR F1 score
Provision PT-737E 0.999 0.999 0.0086 0.999
Samsung SNH 1011 N 0.999 0.997 0.0136 0.998

Ecobee 1.0 0.999 0.0274 0.999
Philips B120N/10 0.999 0.990 0.0503 0.995

Table 5: Separate autoencoding: evaluation metrics (AE con-
figuration N − 36 − 6 − 36 − N ).

points, while on the right side of the vertical line there are ATTACK
points. A semi-logarithmic scale (x-axis in linear scale and y-axis in
log scale) is used to better visualize the RE values. The y-axis is the
RE; the x-axis is the id of the points in the test set. The horizontal
dashed line identifies the anomaly threshold obtained after training.

Figure 2 shows that almost all ATTACK points have a high RE
and are well above the threshold. The BENIGN data points, instead,
have a low RE and, except for a few exceptions, they are below the
threshold. It is worth noting that rendering and resolution of Figure
2 overemphasize BENIGN points above the threshold; in practice,
the number of BENIGN points above the threshold is 1322, which is
significantly lower than those falling below the threshold (24964).

Table 5 provides the evaluation metrics for all the selected IoT
devices. Results prove that individual AEs are notable in detecting
attacks based on the recall, precision, false positive rate and F1
score values. For example, recall is in the range 0.999-1.0 and preci-
sion within 0.990-0.999. While the best result is obtained with the
Provision PT-737E device, the outcome of the remaining devices
is notable, since each AE achieves a recall, precision and an F1 score
very close to 1.0 –exactly 1.0 for the Ecobee device– on all three
devices, while maintaining a reasonably low false positive rate.
Finding: Different from similar proposals in the area, which rely
on complex cascades and ensembles of autoencoders –possibly
complemented by feature selection methods– if not other schemes,
such as CNNs and LSTMs, a “minimal” and simple autoencoder
with 3 hidden layers is more than enough to obtain remarkable
results when train-test is done for each device, separately.
While the results are outstanding, the hypothesis of training an

AE for each device remains unrealistic, especially if the intrusion
detection system is intended to be deployed in a large-scale and
dynamic IoT environment.

Figure 3: All-in-one autoencoding: RE of the test set for the
Philips B120N/10 baby monitor device.

IoT device recall precision FPR F1 score
Provision PT-737E 0.999 0.983 0.2096 0.991
Samsung SNH 1011 N 0.999 0.993 0.0421 0.996

Ecobee 0.999 0.999 0.0503 0.999
Philips B120N/10 0.999 0.993 0.0352 0.996

Table 6: All-in-one autoencoding: evaluation metrics (N −

64 − 36 − 12 − 6 − 12 − 36 − 64 − N ) .

5.2 All-in-one autoencoding
An all-in-one detector is certainly more viable in a complex IoT
scenario. We evaluate the performance of the all-in-one AE, trained
with the BENIGN traffic of all IoT devices, by running the test sets
related to the Provision PT-737E security camera, Samsung SNH
1011 N webcam, Ecobee thermostat and Philips B120N/10 baby
monitor. As for the previous experiment, Figure 3 shows the REs for
the Philips B120N/10 baby monitor device. Also in this case the
horizontal dashed line well discriminates BENIGN data points from
the ATTACK ones. We observe that the ATTACK points are almost
all over the threshold. Almost all BENIGN points are below the
threshold; the number of BENIGN points above the threshold –thus
misclassified– is 926 out of 26286. Table 6 provides the evaluation
metrics of the AEwith 7 hidden layers. For the sake of completeness,
we show in Table 7 and Table 8 the evaluation metrics for two
“smaller” configurations (i.e., N − 36− 6− 36−N and N − 64− 36−
12 − 36 − 64 − N ), which are less performing.

It is worth pointing out that the all-in-one model with 7 hidden
layers is comparable to the separate autoencoding solution. The
results are outstanding especially by testing the AE with the test
set of the Samsung SNH 1011 N webcam, Ecobee thermostat and
Philips B120N/10 baby monitor; for Provision PT-737E perfor-
mance is worse, especially in terms of FPR. Most notably, by using
the same AE architecture of the separate autoencoding experiment
(retrained with the all-in-one dataset), performance degrades. For
example, the recall dramatically drops to 0.355 for the Samsung SNH
1011 N webcam device. The same is true for a slightly deeper and
wider network (N − 64− 36− 12− 36− 64−N ). This indicates that,
with respect to the problem addressed and data in hand, deepening
and widening the autoencoder can improve anomaly detection in
the all-in-one setting.
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IoT device recall precision FPR F1 score
Provision PT-737E 0.727 0.999 0.0087 0.842
Samsung SNH 1011 N 0.355 0.989 0.0233 0.522

Ecobee 0.757 0.999 0.0371 0.861
Philips B120N/10 0.785 0.991 0.0342 0.876

Table 7: All-in-one autoencoding: evaluation metrics (N −

36 − 6 − 36 − N ).

IoT device recall precision FPR F1 score
Provision PT-737E 0.727 0.998 0.0127 0.841
Samsung SNH 1011 N 0.355 0.983 0.0369 0.521

Ecobee 0.757 0.998 0.0600 0.861
Philips B120N/10 0.785 0.992 0.0302 0.876

Table 8: All-in-one autoencoding: evaluation metrics (N −

64 − 36 − 12 − 36 − 64 − N ).

Finding: The all-in-one AE solution assures remarkable detection
figures when compared to the separate autoencoders. Although
the AE is a wider and deeper network with respect to separate
autoencoding, the training time is still negligible –in the order of
minutes on a computer laptop– and the detection latency per record
is acceptable (about 1 microsecond per record).
The results indicate that it is possible to train a single model with

benign traffic collected from different devices. While the findings
of this paper should be contextualized with respect to the attacks
and devices of N-BaIoT, we believe there is room to conceive more
scalable and centralized intrusion detection solutions in the context
of IoT based on the notion of all-in-one models.

6 CONCLUSION
IoT plays a key role in our lives; however, due to some factors,
such as the vulnerabilities of devices, IoT applications are attack
prone. The ever-growing sophistication of the attacks has attracted
a significant interest by the research community, which focused
on specialized machine learning attacks detection mechanisms.
Frequently, IoT intrusion detectors are implemented by means of
deep learning techniques with individual models per IoT devices or
per attack. These assumptions might be not suited to high-scalable
and dynamic IoT environments.

This paper proposed an initial solution to the problem in the
context of deep autoencoders (AEs) and the detection of botnet
attacks available in the widely-used N-BaIoT dataset. Our results
show that it is relatively easy to achieve remarkable detection
results by training-testing a model on the top of individual devices;
however, this poses a major issue in large-scale IoT networks. Our
all-in-one deep autoencoding approach proves that it is possible,
by preserving the overall performance, to train a single model with
the benign traffic collected from different devices. This allows the
setup of more scalable intrusion detection solutions in the context
of IoT.

We are aware that the study is based on one dataset; however,
we are not striving for general findings at this stage, as the findings
of this paper should be contextualized with respect to the attacks

and devices of N-BaIoT. As future work we will investigate the
possibility of fitting our solution to the modern context of the
federated learning, which is a widely-used solution in the anomaly
detection context [16]. We will also extend the analysis to further
datasets, including traditional network datasets [5], attacks and
victim devices.
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