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ABSTRACT
With a good code search engine, developers can reuse existing code
snippets and accelerate software development process. Current code
search methods can be divided into two categories: traditional infor-
mation retrieval (IR) based and deep learning (DL) based approaches.
DL-based approaches include the cross-encoder paradigm and the
bi-encoder paradigm. However, both approaches have certain limi-
tations. The inference of IR-based and bi-encoder models are fast,
however, they are not accurate enough; while cross-encoder models
can achieve higher search accuracy but consume more time. In this
work, we propose TOSS, a two-stage fusion code search framework
that can combine the advantages of different code search methods.
TOSS first uses IR-based and bi-encoder models to efficiently recall
a small number of top-K code candidates, and then uses fine-grained
cross-encoders for finer ranking. Furthermore, we conduct exten-
sive experiments on different code candidate volumes and multiple
programming languages to verify the effectiveness of TOSS. We
also compare TOSS with six data fusion methods. Experimental
results show that TOSS is not only efficient, but also achieves state-
of-the-art accuracy with an overall mean reciprocal ranking (MRR)
score of 0.763, compared to the best baseline result on the Code-
SearchNet benchmark of 0.713. Our source code and experimental
data are available at: https://github.com/fly-dragon211/TOSS.
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1 INTRODUCTION
Code search is an important task in software engineering as it
helps software development and maintenance [16, 27]. With a well-
developed code search system, developers can search for code snip-
pets with natural language and reuse previously written code to
accelerate software development.

Existing code search methods can be mainly divided into two
categories, traditional information retrieval (IR) based (text match-
ing) methods [10, 15, 17, 17, 20, 22, 29, 32] and deep learning (DL)
based methods [3, 4, 7–9, 11, 13, 21, 25]. However, neither is ideal
for applying the techniques to real world scenarios, especially when
the size of the searched codebase is huge. (1) IR-based methods are
fast in terms of inference time, however, they are often not accurate.
(2) On the contrary, DL-based methods can achieve higher perfor-
mance, however, they are usually slower because of large models.
Specifically, there are mainly two paradigms of model architecture
in existing DL-based code search methods: cross-encoder paradigm
[4, 11] and bi-encoder paradigm [8, 9, 13, 21]. As described in Fig-
ure 1, cross-encoders perform full-attention over the input pairs of
query and code, while bi-encoders map each input (query or code)
independently into a dense vector space. The trade-off of efficiency
and effectiveness also exist between these two paradigms: cross-
encoders achieves better accuracy than bi-encoders. As the code
embeddings can be pre-calculated and stored, bi-encoders are more
efficient than cross-encoders. For many applications cross-encoders
are not practical as they cannot produce separate embeddings for
effective comparing or searching.

In this work, we systematically study the trade-offs between
effectiveness and efficiency of existing code search methods. We
aim to find out a combined solution that can not only keep the high
search performance of cross-encoders but also reduce searching
time. We select and reproduce nine code search methods with pub-
licly available implementations on the CodeSearchNet [13] dataset.
Firstly, we study the effect of different pre-processing operations
in the code search task and find a proper pre-processing method
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Figure 1: The concept diagram of bi-encoder and cross-
encoder code search models. Bi-encoder models are fast as
the code embeddings can be pre-calculated offline. While
cross-encoder models perform full-attention over the input
pair of query and code, which could gain more information.

that can boost the code search performance of text matching meth-
ods. Secondly, we systematically analyze the search performance,
inference time, and recall results of these methods. We find that
different methods are complementary to a certain extent. Therefore,
adopting the classic two-stage or multi-stage retrieval idea in the
field of information retrieval, we design TOSS, a TwO-Stage fuSion
code Search framework. The first stage recalls a certain number
(top-K) of code snippets using text matching or bi-encoder methods
and the second stage uses fine-grained cross-encoders for rerank-
ing the code snippets recalled in the first stage. Finally, through
extensive experiments, we find that improving recall diversity by
combining the recalled code snippets from different first-stage mod-
els can improve the overall code search performance. Our proposed
method in the two-stage paradigm is not only efficient but also
effective - it achieves the state-of-the-art results with an overall
mean reciprocal ranking (MRR) score of 0.763, which is 7.1% higher
than the best baseline method. Besides, with the retrieval results
of different models, one may consider the data fusion methods of
IR, such as Max, Min, and so on. We also compare TOSS with the
six data fusion methods described in Section 2.2. We position this
work as a starting point research for exploring multi-stage retrieval
in the code search task.

The contributions of this work can be summarized as:
• We build a two-stage recall & rerank framework for the code
search task and adapt existing methods to this framework
to improve the effectiveness and efficiency of code search.

• We propose a multi-channel recall method that improves
recall diversity and code search performance in the two-
stage paradigm.

• Through extensive experiments, we show the effectiveness of
the proposed two-stage paradigm under different scenarios
and data volumes.

2 RELATEDWORK
2.1 Code search methods
Early explorations [10, 15, 17, 20, 22, 29, 32] on code search mainly
apply information retrieval (IR) techniques directly, which regard

code search as a text matching task. Queries and code snippets
are both regarded as plain text. The traditional text matching al-
gorithms include BOW (bag-of-words) [23], Jaccard [14], TF-IDF
(term frequency-inverse document frequency) [19], BM25 [18], and
extended boolean model [15].

Since the cross-modal semantic gap is the major challenge for
IR-based code search methods, researchers have explored many
machine learning/deep learning based approaches [4, 8, 9, 11–13,
21, 26, 28] to capture the correlation between query and code from
large-scale training data. Machine learning based code search mod-
els [8, 21] typically learn an embedding for query and code, and
then calculate cross-modal similarity in a shared vector space. Early
work on neural approaches to code search includes CODEnn [8],
which uses RNN to jointly embed code snippets and natural lan-
guage queries into a high-dimensional vector space. Husain et al.
[13] proposed the CodeSearchNet benchmark and four baselines
for code search, i.e., NBoW, 1D-CNN, biRNN, and SelfAtt. After the
large-scale pre-training model BERT [2] was proposed, Feng et al.
[4] proposed CodeBERT, which is a model pre-trained on unlabeled
source code and comments.

For transformer-based code search methods, there are mainly
two types of methods: bi-encoder and cross-encoder architecture.
GraphCodeBERT [9] is a bi-encoder method, which encodes query
and code into dense embeddings independently. CodeBERT [4] and
CoCLR [11] are cross-encoders, where query and code are jointly
encoded and we get a score that predicts whether a code answers
a given query. Cross-encoder models process the query paired
with each candidate code sequence, which is helpful to capture
the relationship between two modalities (natural language and
programming language). The concept diagram of bi-encoder and
cross-encoder model is shown on Figure 1.

2.2 Fusion methods
In the code search field, the fusion of IR, bi-encoder and cross-
encoder code search methods are rarely explored. Some researchers
have tried to use IR-based methods to improve the ML code search
models. Sachdev et al. [21] used Word2vec method to get word
embedding and aggregate representation of all the words with TF-
IDF weights. Xie et al. [31] calculated code similarity based on
Siamese Neural Network. The weights of the word embeddings are
fitted by TF-IDF. Recently, Gotmare et al. [6] proposed CasCode
to fuse bi-encoder and cross-encoder models. However, CasCode
only fuses the recall results of one bi-encoder model. In contrast,
we propose a two-stage paradigm to fuse IR, bi-encoder and cross-
encoder code search methods, which significantly improve the
search performance and have a relatively fast search speed.

For fusion of the retrieval results of different source, one may
consider the unsupervised data fusion method proposed in the
information retrieval community, such as CombANZ [5, 24], Max,
Min, CombMNZ [5, 24], CombSUM [5, 24] and BordaCount [1]. The
CombANZ method combines the similarity scores by computing
the average of the non-zero scores. The Max and Min methods
combine the similarity score sets by selecting the maximum or
minimum one as the final score. The CombMNZ combines the
similarity scores bymultiplying the summation of all scoreswith the
number of non-zero scores assigned to the method. The CombSUM
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combines the similarity scores by simply summing up their scores.
The Borda count converts the similarity scores into ranks - codes
with higher scores would obtain smaller ranks. For each element,
this method sums up the ranking points of an element given by a set
of models. The ranking point of a code is defined as the substraction
of the code’s rank in the list from the total number of codes in the
codebase.

Our two-stage code search paradigm TOSS is different from data
fusion methods. Instead of fusing similarity score sets, TOSS first
recalls high-quality code snippets with first stage models, and then
re-ranks this candidate set according to the second stage model.

3 FRAMEWORK
3.1 Preliminaries
Given a query 𝑞 and a codebase𝐶 , the goal of code search is to find
the best code snippet that matches the query 𝑞 from the codebase
𝐶 . Current code search methods can be uniformly formulated as
follows:

max
𝑐∈𝐶

M(𝑐, 𝑞), (1)

where M(·, ·) is a similarity function to compute the match degree
of the given query and a code snippet. The main difference of
various code search methods is the design of the similarity function
M(·, ·).

For a traditional IR-based code search method, the similarity
function M𝐼𝑅 (·, ·) is designed as a text-based matching function.
For a bi-encoder deep-learning model, we first transform the textual
representations of the query 𝑞 and the code snippets 𝑐 to vector
representations 𝑒𝑞 and 𝑒𝑐 by neural network encoders, and then
calculate the similarity (or distance) measures in Euclidean space
such as Cosine similarity or Euclidean distance to obtain the cross-
modal similarity score 𝑠𝑏𝑖 . The calculation can be formalized as
follows: 

eq = Γ(𝑞)
ec = Γ′ (𝑐), 𝑐 ∈ 𝐶
𝑠𝑏𝑖 = 𝑠𝑖𝑚(eq, ec)

(2)

where Γ and Γ′ are two well-trained neural network encoders that
can be the same networks or different networks according to the
customized settings.

For a cross-encoder deep-learning model, we concatenate the
query and the code snippet, and input them to a neural network
model to directly calculate the cross-modal similarity 𝑠𝑜 :

𝑠𝑜 = M𝑂 ( [𝑞, < 𝑆𝐸𝑃 >, 𝑐]), (3)

where < 𝑆𝐸𝑃 > represents the separator between query and code.
Since the embeddings of code snippets cannot be calculated offline,
the search speed is always slower than the other two types of
methods.

3.2 Two-stage code search paradigm
Figure 2 depicts the overall framework of our two-stage code search
paradigm TOSS. Instead of directly selecting the best code snippet
according to the overall target Eq. (1), the two-stage code search
paradigm firstly recalls a candidate set of code snippets with a

recall similarity function M𝑟𝑒𝑐𝑎𝑙𝑙 and then re-ranks the candidate
set according to a ranking similarity functionM𝑟𝑎𝑛𝑘 . Formally:

First Stage : Csub = argmax
C′⊂C, |C′ |=K

∑︁
c∈C′

Mrecall (c, q), (4)

Second Stage : c∗ = argmax
c∈Csub

Mrank (c, q), (5)

where 𝐶𝑠𝑢𝑏 is the candidate set that contains top 𝐾 code snippets
with the recall similarity function M𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝑐∗ is the final se-
lected code snippet after re-ranking. This code search paradigm
enables a more accurate but time-consuming similarity function
M𝑟𝑎𝑛𝑘 , especially when the code base is very large.

In addition, by applying multiple search methods in the recall
stage, we can incorporate the advantages of different methods and
increase the diversity of the candidate set. TOSS uses𝑚 fast first-
stage models for recall, and then combine those returned code
snippet sets as the final candidate set. It can be formalized as:

𝐶
(𝑖 )
𝑠𝑢𝑏

= argmax
𝐶′⊂𝐶

∑︁
𝑐∈𝐶′, |𝐶′ |=𝐾

M (𝑖 )
𝑟𝑒𝑐𝑎𝑙𝑙

(𝑐, 𝑞), for 0 < i ≤ m (6)

𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒 =

𝑚⋃
𝑖

𝐶
(𝑖 )
𝑠𝑢𝑏

, (7)

where𝐶 (𝑖 )
𝑠𝑢𝑏

is the recalled top 𝐾 candidate set according to the 𝑖-th
recall method, and 𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒 is the final candidate set.

In conclusion, we expect this two-stage framework to accomplish
two objectives: improved search performance and reduced search
time. More specifically: (1) High-quality code snippets can be re-
called in the first stage and ranked higher in the fine-grained second
stage re-ranking. (2) The two-stage paradigm should considerably
reduce research time by recalling a small set of code candidates for
second stage re-ranking.

4 EXPERIMENTAL DESIGN
4.1 Datasets
We conduct experiments on the widely used CodeSearchNet [13]
dataset. Following Guo et al. [9], we filter low-quality queries and
expand the retrieval set to the whole code corpus. Note that we use
the CodeSearchNet Python dataset, which contains 14,918 queries
and 43,827 code candidates, in most of the experiments. We also
generalize our findings to multiple programming languages with
the full CodeSearchNet dataset in Section 5.5.

4.2 Baselines
We select code search baselines to study based on their represen-
tativeness and their availability. The baselines that satisfy the fol-
lowing three criteria are chosen: 1) The source code is publicly
available. 2) The overall model is adaptable to all the six program-
ming languages in the CodeSearchNet dataset. 3) The paper is peer
reviewed if it is proposed in a research paper. As a result, we select
nine code search baselines and divide them into three categories: IR-
based text matching methods (Jaccard [14], BOW [23], TFIDF [19],
and BM25 [18]), cross-encoder deep learning based methods (Code-
BERT [4] and CoCLR [11]), and bi-encoder deep learning based
methods (CODEnn [8], GraphCodeBERT [9] and CodeBERT-bi).
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Figure 2: The overall framework of our two-stage paradigm TOSS.

• Jaccard.We use jaccard_score1 from the sklearn python
package to implement the Jaccard similarity method.

• BOW. We use CountVectorizer2 to convert a query or
code to a vector of token counts. The cross-modal similarity
is then calculated by cosine similarity of code and query
vectors.

• TFIDF. We use TfidfVectorizer3 to convert a query or
code to a vector of TF-IDF features. The cross-modal sim-
ilarity is calculated by cosine similarity of code and query
TF-IDF features.

• BM25. We use the python package Rank-BM254 to imple-
ment the BM25 similarity.

• CODEnn.CODEnn is proposed in DeepCS [8], which jointly
embeds code snippets and natural language descriptions into
a high-dimensional vector space with LSTM. We use the
implementation from their released repository5.

• CodeBERT. A bi-encoder Transformer-based pre-trained
model for programming language and natural language. We
use the implementation from their released repository.6

• CoCLR.ACodeBERT-based contrastive learning method for
code search. We use the implementation from their released
repository.7

• GraphCodeBERT. A dataflow aware pre-trained model
based on CodeBERT. We use the implementation from their
released repository.8

• CodeBERT-bi. CodeBERT bi-encoder variant described in
the Appendix of the original paper [4], where CodeBERT
first encodes query and code separately, and then calculates
the similarity by dot product.

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.
html
2https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.
CountVectorizer.html
3https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.
TfidfVectorizer.html
4https://pypi.org/project/rank-bm25/
5https://github.com/guxd/deep-code-search
6https://github.com/microsoft/CodeBERT
7https://github.com/Jun-jie-Huang/CoCLR
8https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch

Table 1: The code search performance (MRR) of different text
matching methods with different text pre-processing tools.

Pre-processing tool Text matching method
SPS DS RS POS Jaccard BOW TF-IDF BM25 Overall

× × × × 0.1122 0.0949 0.1341 0.2914 0.1582
✓ × × × 0.1823 0.1580 0.2274 0.4250 0.2482 (56.9% ↑)
× ✓ × × 0.1353 0.1079 0.1251 0.3056 0.1685 (6.5% ↑)
× × ✓ × 0.1842 0.1627 0.2326 0.4215 0.2503 (58.2% ↑)
× × × ✓ 0.1162 0.1010 0.1384 0.2921 0.1619 (2.39% ↑)
✓ ✓ × × 0.2321 0.1955 0.2194 0.4438 0.2727 (72.4% ↑)
✓ ✓ ✓ × 0.2366 0.2012 0.2257 0.4444 0.2770 (75.1% ↑)
✓ ✓ ✓ ✓ 0.2425 0.2220 0.2397 0.4523 0.2891 (82.8% ↑)

4.3 Evaluation metrics
To evaluate the performance of code search models, we apply two
popular evaluation metrics on the test set: MRR (Mean Reciprocal
Ranking) and R@K (top-K accuracy, K=1, 5, 10, 100, 1000). They are
commonly used for in previous code search studies [4, 8, 9, 11, 13,
15, 21]. The higher the MRR and R@K values, the better the code
search performance. In addition, we report per query search time
as the efficiency measure.

4.4 Experimental settings
For training, we use the default hyper-parameter settings provided
by each method. For evaluation, the batch size is 256. For bi-encoder
models, since source code can be processed offline, we do not in-
clude this computation cost in search time calculation. All exper-
iments are conducted on a machine with Intel Xeon E5-2698v4
2.2Ghz 20-Core CPU and one Tesla V100 32GB GPU.

5 EXPERIMENTAL RESULTS

5.1 The impact of different pre-processing
operations

With the advent of deep learning approaches for code search, tradi-
tional IR-based code search approaches are often considered weak
baselines [9, 13]. However, the IR-based approaches also have their
own advantages, such as simplicity, training-free, and fast search

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://pypi.org/project/rank-bm25/
https://github.com/guxd/deep-code-search
https://github.com/microsoft/CodeBERT
https://github.com/Jun-jie-Huang/CoCLR
https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch
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Table 2: The code search performance of nine baseline methods. Per query time is the average retrieval seconds for randomly
selected 100 queries. We repeat each time calculating experiment three times and report the mean and standard deviation. The
cross-encoder DL models are time-consuming because the code features cannot be calculated offline.

Model MRR Need training Per query time / s R@1 R@5 R@10 R@100 R@1000

Text matching IR model
Jaccard 0.2425 No 0.0130 ± 0.0004 17.7 30.7 36.7 59.4 83.0
BOW 0.2220 No 0.0011 ± 0.0000 16.1 28.1 33.6 56.6 82.6
TFIDF 0.2397 No 0.0011 ± 0.0001 16.9 30.8 37.1 62.9 87.1
BM25 0.4523 No 0.0062 ± 0.0003 35.6 56.4 63.4 81.0 92.0

Bi-encoder DL model
CODEnn 0.1775 Yes 0.0033 ± 0.0001 11.1 23.9 30.7 57.3 82.3
CodeBERT-bi 0.6669 Yes 0.0021 ± 0.0003 57.4 77.9 83.3 94.6 98.8
GraphCodeBERT 0.6948 Yes 0.0048 ± 0.0002 59.3 82.1 87.3 96.5 99.1

Cross-encoder DL model
CodeBERT 0.7015 Yes 802.43 ± 51.29 62.4 79.2 83.7 94.5 98.7
CoCLR 0.6349 Yes 766.27 ± 47.79 51.6 78.3 84.6 95.7 99.0

speed, etc. Since text search methods are very sensitive to data
pre-processing methods [30], we investigate the effect of four data
pre-processing operations that are commonly used in previous
work on code search:

• SPS: Split pascal and snake case. For example, it splits
“TwoStageMethod” to “Two Stage Method” and “vector-
izer_param” to “vectorizer param”. We use the regular ex-
pression (re) package9 to implement SPS.

• DS: Delete the English stop-words, such as “both”, “more”,
“some” and so on. We use stop-words implementation from
the NLTK package.10

• RS: Ronin Split, such as splitting "showtraceback" to "show
trace back". We use ronin from spiral11.

• POS: Part-of-speech restoration. For example, it restores
“configs” to “config”. We use the WordNetLemmatizer from
the NLTK package12 for implementation.

To study the influence of different data pre-processing operations
and find a suitable combination, we conduct a series of experiments
on their combinations and evaluate the search performance (in
MRR). As shown in Table 1, different data pre-processing methods
can affect the overall performance by a large margin. The effect of
using RS alone is the most obvious, with an average MRR improve-
ment of 58.2%. With all pre-processing methods, four text matching
methods achieve best overall search performance.

In summary, we find that:

• Different text pre-processing methods can affect the overall
performance by a noticeable margin.

• SPS+DS+RS+POS is the recommended code pre-processing
method, as the overall performance is best.

9https://docs.python.org/3/library/re.html
10https://www.nltk.org/api/nltk.corpus.html
11https://github.com/casics/spiral
12https://www.nltk.org/api/nltk.stem.html

5.2 Analysis of baseline methods
In order to explore the complementary of various baselines, we
study the nine baseline methods in the following aspects:

• Search performance measure: MRR and R@k.
• Need training: whether the method requires training data.
• Search efficiency measure: per query time.

As shown in Table 2, we observe that in general, most deep
learning-based code search methods (CodeBERT, CodeBERT-bi,
CoCLR, and GraphCodeBERT) perform better than IR-based text
matching methods (Jaccard, BOW, TFIDF, and BM25). This result is
consistent with previous work, as DL-based code search methods
are data driven, which could learn embedding and find patterns
from training data of different modalities (programming languages
and natural languages).While text matchingmethods are rule based,
which are sub-optimal compared with deep search methods espe-
cially in the code search scenario with different modalities. How-
ever, rule-based methods need no training data and less comput-
ing resource, which is more practical in industrial scenarios. The
cross-encoder model CodeBERT performs the best among the nine
methods in terms of search performance. However, in terms of time
efficiency (inference time), bi-encoders and text matching methods
greatly outperforms cross-encoder methods CodeBERT and CoCLR.
Since cross-encoder methods cannot calculate code features offline,
they require a lot of computing resources and may not be suitable
for code search in industry scenarios with a large codebase.

With the above analysis, we conclude following key points:
• Most deep code search methods perform better than text match-
ing methods, while the latter methods need no training data
and less computing resource.

• The cross-encoder model CodeBERT performs the best among
the nine methods.

• Cross-encoder models are time consuming and not suitable for
retrieval in large codebases.

• Different baselines have their own characteristics. If we can
integrate them well, the search performance and efficiency
could be improved.

https://docs.python.org/3/library/re.html
https://www.nltk.org/api/nltk.corpus.html
https://github.com/casics/spiral
https://www.nltk.org/api/nltk.stem.html
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(a) GT, BM25 and Jaccard. (b) GT, GraphCodeBERT and CodeBERT-bi (c) GT, GraphCodeBERT and BM25

GT GraphCodeBERT

BM25

GT GraphCodeBERT

CodeBERT-bi

GT BM25

Jaccard

(a) GT+BM25+Jaccard (b) GT+GraphCodeBERT+CodeBERT-bi (c) GT+GraphCodeBERT+BM25Figure 3: Visualization results of the top-1 recalled samples based on the four baselines being used and ground truth (GT) in
the CodeSearchNet python test set. The diversity of recalled code candidates is higher for methods of different paradigms. The
coincident number of recalls for fusing (GraphCodeBERT and BM25) is 5,108, which is less than text matching methods (BM25
and Jaccad) (5,222) and deep code search methods (GraphCodeBERT and CodeBERT-bi) (8,071). Besides, different methods can
recall a part of unique ground truth code snippets. Best viewed in color.

Table 3: The two-stage code search performance of different baseline combinations. Per query time is the average retrieval
seconds for randomly selected 100 queries. We repeat each experiment three times and report the mean and standard deviation.
Stage 2 model: CodeBERT.

Combination MRR Per Query Time / s
Top 5 Top 10 Top 100 Top 5 Top 10 Top 100

Single stage1 model + CodeBERT
TOSS [𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 0.5428 0.5852 0.6884 0.076 ± 0.002 0.127 ± 0.002 1.149 ± 0.006
TOSS [𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 ]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 0.7392 0.7512 0.7589 0.539 ± 0.001 0.593 ± 0.001 1.619 ± 0.007
TOSS [𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇−𝑏𝑖 ]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 0.6911 0.7163 0.7566 0.163 ± 0.006 0.219 ± 0.005 1.210 ± 0.047
TOSS [ 𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 ]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 0.3093 0.3530 0.5264 0.064 ± 0.001 0.123 ± 0.002 1.137 ± 0.009

Multiple stage1 models + CodeBERT
TOSS [𝐵𝑀25+𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 ]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 0.5706 0.6110 0.7058 0.133 ± 0.003 0.241 ± 0.001 2.278 ± 0.017
TOSS [𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇−𝑏𝑖+𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 ]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 0.7548 0.7588 0.7608 0.695 ± 0.004 0.806 ± 0.007 2.847 ± 0.010
TOSS [𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇+𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 0.7553 0.7595 0.7607 0.598 ± 0.001 0.712 ± 0.000 2.746 ± 0.009
TOSS [𝐴𝐿𝐿 𝑆𝑡𝑎𝑔𝑒1 𝑀𝑒𝑡ℎ𝑜𝑑𝑠 ]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 0.7293 0.7462 0.7593 0.819 ± 0.003 1.043 ± 0.003 5.087 ± 0.049

Table 4: MRR performance of different IR data fusion meth-
ods. Fusion data includes the similarity scores of GraphCode-
BERT and BM25, and the re-ranking score of CodeBERTwith
top-K code snippets recalled.

Fusion methods MRR
Top 5 Top 10 Top 100

CombANZ 0.5897 0.5846 0.4787
Max 0.4892 0.4923 0.4938
Min 0.5524 0.6286 0.6290
CombMNZ 0.5770 0.6154 0.5787
CombSUM 0.5825 0.6175 0.5787
BordaCount 0.5406 0.6061 0.6138

TOSS 0.7553 0.7595 0.7607

5.3 Effectiveness of the proposed paradigm
TOSS

In this section, we want to explore the effectiveness of our pro-
posed two-stage framework. The first-stage models are chosen
from text matching and bi-encoder models. The second-stage mod-
els are chosen from cross-encoder models, which have the slow
time performance but full attention to the input pair of query and
code. We first explore the performance of a single first-stage model
+ second-stage model. Then we try multiple first-stage models
+ second-stage model. We find the best two-stage model TOSS
[𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇+𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 . Finally, we analyze the recall
results of different first-stage models and find that multi-channel
recalls have more overlap with the ground truth (GT), which leads
to the boosting search performance of our proposed TOSS.

For first-stage models selection, We select 4 models with better
accuracy and time performance from IR and bi-encoder models,
i.e. GraphCodeBERT, CodeBERT-bi, BM25 and Jaccard. We put the
top-K (K=5, 10, 100) code snippets recalled from the first-stage
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Figure 4: Performance curves with different code volumes. We set the code volume to be from 200 to 40000. TOSS refers to TOSS
[𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇+𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 . Since we randomly select a specific number of codes from the CSN python code candidates, we
repeat each calculation three times and report the average results and the error bounds.

model into the second-stage model for re-ranking. We report MRR
for search performance, per query time for efficiency measurement.

The results of CodeBERT as the second-stage model are shown
in Table 3. We observe that compared with the model used alone,
the TOSS method can significantly improve the code search per-
formance. TOSS [𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇+𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 achieves best
performance. Compared with the best single-model CodeBERT, the
MRR is improved by 8.6%, and the retrieval time is reduced to 1/1400
of the original method.

We also find that using multiple stage1 models for recall per-
forms better than using single stage1 models. We attribute it to
the complementarity of multiple models in the first stage, which
can improve the recall ratio of the ground truth. To validate our
assumption and explore how much complementarity the first-stage
model recall have, we visualize the three combinations top 1 re-
call of the first-stage models, i.e., ground truth (GT) with two text
matching methods (BM25 and Jaccad), two bi-encoder DL methods
(GraphCodeBERT and CodeBERT-bi) and fusing methods (Graph-
CodeBERT and BM25). The result is shown in Figure 3. We obtain
two keypoints. First, the recall results of different models vary
greatly, and the intersection accounts for a small proportion of
the total. Second, for the diversity of recalled results, the model
from the two different paradigms are more diverse. The coincident
number of recalls for fusing (GraphCodeBERT and BM25) is 5,108,
which is less than text matching methods (BM25 and Jaccad) (5,222)
and deep code search methods (GraphCodeBERT and CodeBERT-bi)
(8,071). The performace of TOSS [𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇+𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇
is better than that of TOSS [𝐵𝑀25+𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 ]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 and TOSS
[𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇−𝑏𝑖+𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 ]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 , which proves that the
fusion of two different channel recall is effective. The performance
of TOSS [𝐴𝐿𝐿 𝑆𝑡𝑎𝑔𝑒1 𝑀𝑒𝑡ℎ𝑜𝑑𝑠 ]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 is not the best, which
means that using too many first-stage models may introduce more
negative samples, resulting in lower performance. The visualization

of the speed versus accuracy trade-off of nine baselines and TOSS
is shown on Figure 5.

We also evaluate the search performance of TOSS with six IR
data fusion methods presented in Section 2.2. We try to fuse the
similarity scores of GraphCodeBERT and BM25with the top-K (K=5,
10, 100) re-ranking CodeBERT similarity scores. Note that we use
zero-one normalization to make the similarity scores comparable.
The Mean Reciprocal Ranking (MRR) results are shown in Table 4.
As we can see, TOSS outperforms all six fusion methods.

With above analysis, we conclude four key points:

• TOSS can significantly improve the code search accuracy with
acceptable time consumption.

• The variant TOSS [𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇+𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇
achieves the best code search performance.

• Compared to single-channel method, multi-channel methods
can recall more high-quality code candidates and boost the
search performance.

• TOSS is more effective than the six selected data fusion meth-
ods.

5.4 Analysis of different code volumes
In this section, to demonstrate the advantage of TOSS in differ-
ent scenarios with different codebase sizes, especially when code
search techniques are applied to real world applications with huge
codebase, we study the impact of different code volumes for TOSS
and baselines. We choose four methods for comparison, i.e., BM25
(text matching), GraphCodeBERT (bi-encoder), CodeBERT (cross-
encoder) and our TOSS [𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇+𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 (our two-
stage paradigm). Each method is the best model in their respective
categories. Due to the size limitation of the CodeSearchNet python
dataset, the codebase cannot grow infinitely. We set the code vol-
ume to increase from 200 to 40,000. Since we randomly select a
specific number of codes from the CodeSearchNet python code
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Table 5: MRR performance on six languages of the CodeSearchNet dataset. TOSS refers to TOSS [𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇+𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 .

Model / Method Ruby JavaScript Go Python Java PHP Overall

BOW 0.2303 0.1841 0.3502 0.2220 0.2447 0.1929 0.2374
TF 0.2390 0.2042 0.3625 0.2397 0.2620 0.2149 0.2537
Jaccard 0.2202 0.1913 0.3453 0.2425 0.2354 0.1822 0.2362
BM25 0.5054 0.3932 0.5723 0.4523 0.4261 0.3352 0.4474
CODEnn 0.3420 0.3550 0.4951 0.1775 0.1083 0.1407 0.2698
CodeBERT-bi 0.6790 0.6200 0.8820 0.6669 0.6760 0.6280 0.6920
GraphCodeBERT 0.7030 0.6440 0.8970 0.6920 0.6910 0.6490 0.7127

TOSS 0.7645 (8.7%↑) 0.6962 (8.1%↑) 0.9181 (2.4%↑) 0.7595 (9.8%↑) 0.7497 (8.5%↑) 0.6922 (6.7%↑) 0.7634 (7.1%↑)
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Figure 5: Visualization of the speed versus accuracy trade-
off of nine baselines and our two-stage method. Dataset:
CodeSearchNet python test set. The area of the circle is pro-
portional to the size of the model. The two-stage method
TOSS refers to TOSS [𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇+𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 . With
two-stage method, we are able to achieve top performance
comparable to the best single model CodeBERT, while re-
quiring substantially lesser inference time.

candidates, we repeat each calculation three times and report the
average results and the error bounds.

We show the search performance MRR and per query time (log)
with different code volumes in Figure 4. According to the results,
we can observe that as the code volume increases, the search per-
formance of each method decreases and the search time increases.

For MRR performance, as shown in Figure 4(a), among these
models TOSS has consistently the best accuracy under different
code volumes. Under small code volume, GraphCodeBERT performs
well. While as the code volume increases, the search performance of
GraphCodeBERT drops rapidly, which indicates that it is reasonable
in our model TOSS to put GraphCodeBERT in the first stage and
re-rank the small number of code candidates that are recalled.

For search time performance, as shown in Figure 4(b), text match-
ing method BM25 has the shortest total time and cross-encoder
method CodeBERT has the longest total time. Since the calculation

time of the second stage is much larger than that of the first stage,
and the calculation time of the second stage only depends on the
size of k and has no dependency on the size of the original codebase,
the search time of TOSS basically does not change much with the
code volume.

In summary, we obtain two key findings:

• As the code volume increases, the search performance of each
method decreases and the search time increases.

• The code search performance of TOSS is robust across differ-
ent code volumes, and the computation time is fast and stable.
Therefore, TOSS is a promising paradigm for real-world appli-
cations with large codebases.

5.5 Compare with the baselines in multiple
programming languages

In this section, we compare the overall search performance of TOSS
with baselines and study whether the performance improvement of
TOSS still holds for other programming languages. As CodeBERT
and CoCLR are time-consuming and doesn’t suitable for large-scale
retrieval, these two cross-encoder methods are not included. We
show the Mean Reciprocal Ranking (MRR) results in Table 5. As
we can see, TOSS outperforms all baseline methods on all the six
programming languages. The average MRR of TOSS is 0.763, bring
a 7.1% gain to the best baseline method GraphCodeBERT.

6 CONCLUSION
In this paper, we present TOSS, a two-stage recall & rerank frame-
work for code search. It adapts existing methods to this framework
to improve both effectiveness and efficiency of code search. With
multi-channel first stage method, we improve recall diversity and
further improve code search performance in the two-stage para-
digm. We evaluate different two stage model combinations and find
the best two-stage model TOSS [𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇+𝐵𝑀25]+𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 ,
which means that GraphCodeBERT and BM25 are used as the first
stage methods and CodeBERT is used as the second stage method.
We conduct extensive experiments on large-scale benchmark Code-
SearchNet with six programming languages (Ruby, JavaScript, Go,
Python, Java, PHP) and the results confirm its effectiveness in dif-
ferent scenarios and with different data volumes.
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