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ABSTRACT

Node classification is a fundamental graph-based task that aims to

predict the classes of unlabeled nodes, for which GraphNeural Net-

works (GNNs) are the state-of-the-art methods. Current GNNs as-

sume that nodes in the training set contribute equally during train-

ing. However, the quality of training nodes varies greatly, and the

performance of GNNs could be harmed by two types of low-quality

training nodes: (1) inter-class nodes situated near class boundaries

that lack the typical characteristics of their corresponding classes.

BecauseGNNs are data-driven approaches, training on these nodes

could degrade the accuracy. (2) mislabeled nodes. In real-world

graphs, nodes are oftenmislabeled, which can significantly degrade

the robustness of GNNs. To mitigate the detrimental effect of the

low-quality training nodes, we present CLNode, which employs a

selective training strategy to train GNN based on the quality of

nodes. Specifically, we first design a multi-perspective difficulty

measurer to accuratelymeasure the quality of training nodes. Then,

based on the measured qualities, we employ a training scheduler

that selects appropriate training nodes to train GNN in each epoch.

To evaluate the effectiveness of CLNode, we conduct extensive ex-

periments by incorporating it in six representative backboneGNNs.

Experimental results on real-world networks demonstrate that CLN-

ode is a general framework that can be combined with various

GNNs to improve their accuracy and robustness.

CCS CONCEPTS

• Theory of computation→ Graph algorithms analysis; • In-

formation systems→ Social networks; • Computing method-

ologies→ Neural networks.
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1 INTRODUCTION

Node classification is a fundamental graph-based task. Given a

graph with limited labeled nodes (training nodes), the task aims

to assign labels to unlabeled nodes [23]. The state-of-the-art node

classificationmethods are Graph Neural Networks (GNNs) [35, 40].

Generally, GNNs update the node representations by aggregating

the messages passed from their neighbors. Benefiting from this

aggregation mechanism, GNNs learn low-dimensional node rep-

resentations that preserve the topological information and node

feature attributes, which are then used to predict the labels. Al-

though many GNN-based node classification works [3, 10, 16, 22,

34] have been proposed, these works usually assume that all train-

ing nodes contribute equally. In fact, the quality of training nodes

varies widely. Being data-driven approaches, GNNs exhibit degraded

performance by training on the low-quality nodes.

To illustrate the quality of nodes, we define training nodeswhose

representations lack the typical characteristics of their label classes

as difficult nodes, because it is difficult for GNNs to learn class char-

acteristics from these low-quality nodes. In contrast, easy nodes

refer to high-quality nodes that have the typical representations

of their label classes. We illustrate difficult nodes and easy nodes

using the paper citation network in Figure 1. As illustrated, the

cross-field paper E1 connects papers from multiple classes. Dur-

ing neighborhood aggregation, E1 aggregates messages fromneigh-

bors {E2, E3, E4, E5, E6}. By aggregating messages {E4 → E1, E5 →

E1, E6 → E1} from classes {21, 22, 24}, E1 obtains an unclear repre-

sentation that mixes characteristics of different classes, indicating

that E1 is a difficult node. In contrast, all the aggregated messages of

E15 are from class 24, which makes it an easy node. Therefore, the

above observation raises the question of whether these uneven-

quality training nodes should be treated equally by GNNs.
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Figure 1: Illustration of node difficulty.
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Figure 2: Accuracy of GCN trained on difficult nodes or easy

nodes.

Easy nodes and difficult nodes play different roles during train-

ing. The representations of easy nodes are typical, and training on

such nodes helps GNNs find clear decision boundaries; whereas,

difficult nodes should be used carefully, as their representations

lack the typical characteristics of their classes. There are two types

of difficult nodes that degrade the performance of GNNs: (1) inter-

class nodes situated near class boundaries. By aggregating mes-

sages from neighbors, these nodes obtain unclear representations;

as a result, training on these nodes degrades the accuracy of GNNs.

(2)mislabeled nodes. Real-world graphs often contain label noise[5,

17, 20] and current GNNs are easily perturbed by training on these

mislabeled nodes. Figure 2 shows the accuracy of GCN [16] on

three paper citation networks [23], where the same number of dif-

ficult nodes or easy nodes are utilized for training. The node dif-

ficulty is evaluated using Eq.(11), which we will detail in Section

4. From the results, we can see that training on easy nodes leads

to higher accuracy. For example, on the Cora network, if all train-

ing nodes are easy nodes, the accuracy is 71.8%, and the accuracy

is only 23.6% when only difficult nodes are utilized. Based on the

above analysis, mitigating the detrimental effect of difficult nodes

can improve the accuracy and robustness of GNNs. In this paper,

we introduce curriculum learning [1] to mitigate the effect of these

low-quality training nodes.

In particular, curriculum learning is a training strategy that ini-

tially trains the machine learning models using an easier train-

ing subset and then gradually introduces more difficult samples.

By excluding low-quality difficult samples during initial training,

curriculum learning mitigates overfitting to data noise, and thus

improves models’ accuracy and robustness [19, 30, 41]. The most

critical component of curriculum learning is the difficulty mea-

surer, which estimates the difficulty (quality) of samples. In exist-

ing works, difficultymeasurers are often designed by observing the

sample features; for example, sentence length is a popular difficulty

measurer in NLP tasks because shorter sentences are often easier

for models to learn [21]. However, difficulty cannot be measured

directly from node features using a similar approach. One feasible

way is to utilize the graph structure, e.g., if a node connects neigh-

bors from multiple classes, it is likely to be an inter-class difficult

node. However, in the node classification task, this is challenging

due to the limited node labels.

In this paper, we attempt to address the above challenging prob-

lem by proposing a Curriculum Learning framework for Node

Classification, called CLNode. The key idea behind CLNode is to

enhance the performance of backbone GNN by incrementally in-

troducing nodes into the training process, starting with easy nodes

and progressing to harder ones. Specifically, we first propose to

assign pseudo-labels to unlabeled nodes. With the help of label in-

formation, we design a multi-perspective difficulty measurer, in

which two difficulty measurers from local and global perspectives

are proposed to measure the difficulty of training nodes. The lo-

cal difficulty measurer computes local label distribution to iden-

tify inter-class difficult nodes because their neighbors have diverse

labels; the global difficulty measurer identifies mislabeled difficult

nodes by analyzing the node feature. Based on the measured node

difficulty, we propose a continuous training scheduler that selects

appropriate training nodes in each epoch to mitigate the negative

effect of difficult nodes. CLNode is a general framework that can be

combined with various GNNs to improve their node classification

performance. The key contributions of this paper are summarized

as follows:

• We propose CLNode, a novel curriculum learning frame-

work for node classification. CLNode first accurately identi-

fies two types of difficult nodes, and then employs a selective

training strategy to mitigate the detrimental effect of these

nodes.

• We demonstrate that CLNode can be directly plugged into

existing GNNs.Without increasing the time complexity, CLN-

ode enhances backbone GNNs by simply feeding nodes to

the training process in order from easy to difficult.

• We conduct extensive experiments on five datasets. The re-

sults demonstrate that comparedwith baselinemethodswith-

out curriculum learning, CLNode effectively improves the

accuracies and enhances the robustness to label noise.

2 RELATED WORK

2.1 Node Classification and GNNs

Node classification [23] aims to predict labels for unlabeled nodes

in a given graph. As a fundamental task on graphs, node classifica-

tion has various applications, including fraud detection [7, 12, 39],
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security and privacy analytics [27], and community detection [11,

14].

Recently, GNNs have emerged as promising approaches for an-

alyzing graph data. Due to the long history of GNNs, we refer

readers to [35, 40] for a comprehensive review. Based on the def-

inition of graph convolution, GNNs can be broadly divided into

two categories, namely spectral-based [2, 16, 26] and spatial-based

[10, 37]. Bruna et al. [2] first explore spectral-based GNNs by uti-

lizing a spectral filter on the spectral space. In a follow-up work,

GCN [16] simplifies the graph convolution operation. SGC[34] pro-

poses to remove the nonlinearity in GCN and thereby speed up the

model. Different from spectral-based methods, spatial-based meth-

ods define convolutions directly on graphs by performing opera-

tions on spatially close neighbors. GraphSAGE [10] is a general

inductive framework that generates representations for nodes by

sampling local neighbors. JK-Net [37] devises an alternative graph

structure-based strategy to select neighbors for nodes. Although

GNNs have achieved great success, they simply assume all train-

ing nodes to make equal contributions; consequently, training on

the low-quality difficult nodes significantly degrades their accuracy

and robustness.

2.2 Curriculum Learning

Inspired by the learning principle underlying human cognitive pro-

cesses, curriculum learning [1] is proposed as a training strategy

that trains machine learning models from easier samples to harder

samples. Previous studies [1, 32, 33] have shown that curriculum

learning improves generalization capacity and guides themodel to-

wards a better parameter space. Motivated by this, scholars have

exploited the power of curriculum learning in a wide range of

fields, including computer vision (CV) [9, 13, 38], natural language

processing (NLP) [6, 28, 29] and graph classification [31], etc. To

the best of our knowledge, however, no work has yet attempted to

apply curriculum learning to node classification.

3 PRELIMINARIES

3.1 Notation

Let G = (V,E, - ) denote a graph, where V is the node set, E is

the edge set, and - is the node feature matrix. The input feature

of node 8 is G8 , and the neighborhood of node 8 is N(8). For the

node classification task, a labeled node setV! = {E1, ..., E; } is given

with .! denoting the input labels. C is the set of classes. The goal

of node classification is to predict the labels of unlabeled nodes in

the graph.

3.2 Graph Neural Networks

Generally, a GNN involves two key computations for each node 8 at

every layer: (1) neighborhood aggregation: aggregating messages

passed fromN(8). (2) update representation: updating 8’s represen-

tation from its representation in the previous layer and the aggre-

gated messages. Formally, the ;-th layer representation of node 8 is

given by:

ℎ;8 = Update(ℎ;−18 ,Aggregate({ℎ;−19 | 9 ∈ N (8)})). (1)

The final node representation ℎ!8 , i.e., the output of the last layer,

is used for various downstream tasks. For the node classification

task, after obtaining node representations, a multilayer perceptron

is often used to map them to the predicted labels.

3.3 Curriculum Learning

Curriculum learningmitigates the detrimental effect of low-quality

samples by using a curriculum to train the model. A curriculum is

a sequence of training criteria < &1, ..., &C , ..., &) > over) training

epochs. Each criterion &C is a training subset. The initial &1 con-

sists of easier samples; as C increases, more difficult samples are

gradually introduced into&C . In essence, designing such a curricu-

lum for node classification requires us to design a difficulty mea-

surer and a training scheduler. Here, the difficulty measurer es-

timates the difficulty of each training node; subsequently, based on

the difficulty, the training scheduler generates &C at any training

epoch C to train the model.

4 METHODOLOGY

In this section, we present the details of CLNode. As shown in Fig-

ure 3, CLNode comprises two components: (i) multi-perspective

difficulty measurer (Figure 3(a)). We first perform a standard node

classification to obtain additional label information, then two dif-

ficulty measurers from local and global perspectives are proposed

to measure the node difficulty. (ii) continuous training scheduler

(Figure 3(b)). After determining the node difficulty, we design a

training scheduler to train backbone GNNwith easy nodes initially

and continuously introduce harder training nodes. By paying less

attention to difficult nodes, CLNode improves the accuracy and ro-

bustness of backbone GNN. We detail the components of CLNode

in the following subsections.

4.1 Multi-perspective Difficulty Measurer

In general, neighborhood aggregation benefits from the homophily

of graphs, i.e., a node 8’s neighborsN(8) tend to have the same label

as 8 . However, the difficult nodes violate the homophily; for exam-

ple, the neighbors of an inter-class difficult node have diverse labels

because they belong to multiple classes. Taking a step further, the

difficulty of nodes can be measured with the help of label informa-

tion. Therefore, the first step is to assign pseudo-labels to unlabeled

nodes (see Figure 3(a)). Specifically, we first train a GNN 51 on the

whole training set V! to perform a standard node classification.

After the training process, 51 is used to get the pseudo-labels:

� = 51 (G), (2)

.% = "!% (� ), (3)

where � is the node representation matrix obtained by GNN 51
and .% is the pseudo-labels predicted by a multilayer perceptron.

However, directly using .% to measure node difficulty may lead to

inaccurate results, since .% of training nodes may be different from

the input labels.! . Therefore, to better measure node difficulty, we

retain the input labels for training nodes:

.̃ [8] =

{

.! [8] , 8 ∈ V!

.% [8] , >Cℎ4AF8B4 .
(4)
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Figure 3: An overall framework of the proposed CLNode.

Subsequently, to identify two types of difficult nodes, i.e., inter-

class nodes and mislabeled nodes, we propose two difficulty mea-

surers to capture both local and global information for measuring

the node difficulty.

4.1.1 Neighborhood-based Difficulty Measurer.

We first introduce how to identify difficult nodes from a local per-

spective. After obtaining .̃ , for each training node D , we calculate

its difficulty with reference to the label distribution of its neigh-

borhood. The first type of difficult nodes (inter-class nodes) have

diverse neighbors that belong to multiple classes. In order to iden-

tify these inter-class difficult nodes, we calculate the diversity of

neighborhood’s labels:

%2 (D) =
|{.̃ [E] = 2 | E ∈ N̂ (D)}|

|N̂ (D) |
, (5)

�;>20; (D) = −
∑

2∈�

%2 (D) ;>6(%2 (D)), (6)

where N̂ (D) denotesN(D) ∪{D} and %2 (D) denotes the proportion

of the neighborhood N̂ (D) belonging to class 2 . A larger �;>20;

indicates a more diverse neighborhood. Taking Figure 3(a) as an

example, the �;>20; of node 1 is 0.54, which is much larger than

�;>20; (8) = 0, indicating that node 1 has more diverse neighbors

than node 8. Nodes with larger �;>20; are more likely to be inter-

class nodes. As a result, during neighborhood aggregation, these

nodes aggregate neighbors’ features to get an unclear represen-

tation, making them difficult for GNNs to learn. By paying less

attention to these difficult nodes, CLNode learns more useful infor-

mation and effectively improves the accuracy of backbone GNNs.

4.1.2 Feature-based Difficulty Measurer.

Because the pseudo-labels could be inaccurate, mislabeled training

nodes may not be identified using local information. For instance,

consider the training node 7 in Figure 4, whose truth label is 23
but is mislabeled as 21. The label information of node 7 will affect

the pseudo-labels of its neighbors. As a result, the pseudo-label

of node 2 is likely to be predicted as the mislabeled class 21, thus

the local label distribution of node 7 is consistent, from which we

cannot identify it as a mislabeled node. Therefore, we propose to

use global feature information to identify mislabeled nodes.

Nodes of the same class have similar features, e.g., in a paper ci-

tation network, papers in the same field tend to contain the same

keywords. However, the mislabeled nodes violate this principle.

For instance, in Figure 4, the mislabeled node 7 has low feature

similarity to many nodes of its label class (e.g., node 10), since they

do not in fact belong to the same class. Conversely, node 7 has high

feature similarity to nodes in class 23(e.g., node 8). Therefore, by ex-

ploring the feature similarity, we can deduce that node 7 is likely

to bemislabeled. The input feature- is sparse in high-dimensional

space, instead, we use� (see Eq.(2)) as the node feature to compute

similarity. Let ℎE denote the feature of node E , then the representa-

tive feature of class 2 is defined as the average of the node features

in class 2:

V2 = {E | .̃ [E] = 2}, (7)

ℎ2 = Avg(ℎE | E ∈ V2 ), (8)

whereV2 denotes the nodes belonging to class 2 , and ℎ2 is the rep-

resentative feature of class 2 . To identify mislabeled difficult nodes,

for each training node D , we compute its feature similarity to the

label class:

( (D) =
4G? (ℎD · ℎ2D )

max2∈C 4G? (ℎD · ℎ2 )
, (9)
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where 2D denotes the label class of node D , ( (D) calculates the

feature similarity between ℎD and ℎ2D . Mislabeled nodes tend to

have smaller ( (D) than correctly labeled nodes. Based on ( (D), the

feature-based difficulty measurer is defined as:

�6;>10; (D) = 1 − ( (D). (10)

�6;>10; measures node difficulty from a global perspective. By

using �6;>10; to identify mislabeled training nodes, CLNode selec-

tively excludes these nodes from the training process, thus improv-

ing the robustness of the backbone GNNs to label noise. Consider-

ing two difficultymeasurers from local and global perspectives, we

finally define the difficulty of D as:

� (D) = �;>20; (D) + U · �6;>10; (D), (11)

whereU is a hyper-parameter that controls theweight of�6;>10; (D).

4.2 Continuous Training Scheduler

After measuring the node difficulty, we use a curriculum-based

training strategy to train a better GNN model (see Figure 3(b)). To

distinguish it from 51, we denote the model trained with curricu-

lum as 52. We propose a continuous training scheduler to generate

the easy-to-difficult curriculum. In more detail, we first sort the

training setV! in ascending order of node difficulty; subsequently,

a pacing function 6(C) is used to map each training epoch C to a

scalar _C whose range is (0, 1], meaning that a proportion _C of the

easiest training nodes are used as the training subset at the C-th

epoch. Let _0 denote the initial proportion of the available easiest

nodes, while) denotes the epoch when 6(C) reaches 1 for the first

time. We consider three pacing functions, namely linear, root, and

geometric:

• linear:

6(C) =<8=(1, _0 + (1 − _0) ∗
C

)
). (12)

• root:

6(C) =<8=(1,

√

_20 + (1 − _
2
0) ∗

C

)
). (13)

• geometric:

6(C) =<8=(1, 2;>62_0−;>62_0∗
C

) ). (14)

The visualization of these three pacing functions is presented

in Figure 5. As shown in the figure, the linear function increases

the difficulty of training nodes at a uniform rate; the root function

Training epoch ( t )
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0l

T

P
ro

p
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l

Figure 5: Visualization of three pacing functions.

introduces more difficult nodes in fewer epochs, while the geomet-

ric function trains for a greater number of epochs on the subset of

easy nodes. By using the pacing function to continuously introduce

training nodes into the training process, CLNode assigns appropri-

ate training weights to nodes of different levels of difficulty. Specif-

ically, the more difficult a training node is, the later it is introduced

into the training process, meaning it has a smaller training weight.

Moreover, we do not stop training immediately when C = ) ,

because at this time, the backbone GNN 52 may not have fully ex-

plored the knowledge of nodes which have been recently intro-

duced. Instead, when C > ) , we use the whole training set to train

52 until the test accuracy on validation set converges.

4.3 Pseudo-code and Complexity Analysis

In this subsection, we present the pseudo-code of CLNode and ex-

plore its time complexity. The process of CLNode is detailed in

Algorithm 1. Lines 2–7 describe the the process of measuring node

difficulty and lines 8–17 describe the process of training the back-

bone GNN 52 with a curriculum. After the training process, 52 is

finally used for node classification (see line 18). As the pseudo-code

shows, CLNode is easy to be plugged into any backbone GNN, as

it only changes the training set in each training epoch.

For the convenience of complexity analysis, we consider GCN

as the backbone. The time complexity of an !-layer GCN in one

epoch is$ (! |E|� +! |V |� 2), where � is the number of node feature

attributes.We assume that GCN converges after)1 epochs, thus its

time complexity is$ ()1 · (! |E|� +! |V|�
2)), which is also the time

complexity of training 51. Next, the time complexity of measuring

node difficulty is$ (;3 +; |C|� ), where 3 is the average node degree.

The time complexity of sortingV! is$ (; ·;>6 ;). Finally, we analyze

the time complexity of training 52. We first train) epochs using the

curriculum, after whichwe train 52 with thewholeV! until conver-

gence. The training of the first) epochs can be seen as pre-training

52 with high-quality training nodes. Therefore, 52 will converge be-

fore ) + )1 epochs. Because ; < |V| ≪ |E|, the upper bound on

the time complexity of CLNode is$ ((2)1 +) ) · (! |E|� +! |V|�
2)).

In our experiments, we observe that the running time of CLNode

is about twice that of the baseline GNN.

5 EXPERIMENTS

In this section, we first evaluate the improvement in accuracy achieved

by CLNode over various backbone GNNs. Further experiments are
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Algorithm 1: CLNode

Input: A graph G = (V,E, - ), the labeled node setV! ,

the input labels .! , the backbone GNN model, the

hyper-parameters U , _0, ) .

Output: The predicted labels .̂ .

1 Initialize parameters of two GNN models 51 and 52;

2 Train 51 on (G,V!, .!);

3 Predict pseudo-labels .% with 51;

4 .̃ ← Eq.(4);

5 for D ∈ V! do

6 Calculate node difficulty � (D) ← Eq.(11);

7 end

8 SortV! according to node difficulty in ascending order;

9 Let C = 1;

10 while C < ) or not converge do

11 _C ← 6(C);

12 Generate training subsetVC ←V! [1, ..., ⌊_C · ;⌋] ;

13 Use 52 to predict the labels .C ;

14 Calculate loss L on {.C [E], .! [E] | E ∈ VC };

15 Back-propagation on 52 for minimizing L;

16 C ← C + 1;

17 end

18 Predict .̂ with 52;

conducted on graphs with label noise to demonstrate the robust-

ness of CLNode. Subsequently, we conduct ablation studies to ver-

ify the effectiveness of components in CLNode. Finally, we discuss

the parameter sensitivity to hyper-parameters.

We conduct experiments on five benchmark datasets: Cora, Cite-

seer, PubMed [23], Amazon Computers (A-Computers), and Ama-

zon Photo (A-Photo) [24]. Cora, CiteSeer, and PubMed are paper

citation networks while A-Computers and A-Photo are product co-

purchase networks. Experiments are conducted on these datasets

with random splits and standard splits. The random splits follow

[25, 36] to randomly label a specific proportion of nodes as the

training set, and the label rates are listed in Table 1; the standard

splits follow [16, 26] in using 20 labeled nodes per class as the train-

ing set. In each dataset, we follow [26, 34] to use 500 nodes for

validation and 1000 nodes for testing.

We use six popular GNNs as the backbone models, namely GCN

[16], GraphSAGE [10], GAT [26], SuperGAT [15], JK-Net [37] and

GCNII [3], which are representative of a broad range of GNNs. In

more detail, GCN is a typical convolution-based GNN, GraphSAGE

can be applied to inductive learning, GAT and SuperGAT use atten-

tion mechanism in neighborhood aggregation, while JK-Net and

GCNII are deep GNNs. We use backbone GNNs without curricu-

lum learning as baselines to explore the improvement achieved by

CLNode. All models are implemented in PyTorch-geometric [8].

We use the Adam optimizer with a learning rate of 0.01 and the

weight decay is 5 × 10−4. The hidden unit is fixed at 16 in paper

citation networks and 64 in product co-purchase networks. We ap-

ply two graph convolutional layers for GCN, GAT, GraphSage, and

SuperGAT, 6 layers for JK-Net, and 64 layers for GCNII. To facili-

tate fair comparison, the backbone GNNs’ parameters of CLNode

are the same as the baselines. For CLNode, U is fixed at 1 because

we observe good performance at this value. We use the geometric

pacing function by default. The hyper-parameter _0 is searched in

the range of {0.25, 0.5, 0.75}, while the search space of) is {50, 100,

150}. The code is available at https://github.com/wxwmd/CLNode.

5.1 Node Classification

In this subsection, node classification experiments are conducted

on five datasets. For each baseline GNN, we compare its original ac-

curacy with the accuracy of being plugged into the CLNode frame-

work. We conduct each experiment for ten trials to report the av-

erage test accuracy and standard deviation.

Table 2 reports the experimental results under random splits.

The results demonstrate that CLNode can be combined with six

backbone GNNs and improve their accuracy on node classification.

For example, on the Cora dataset, CLNode improves the test accu-

racy of backbone GNNs by 3.5% (GCN), 2.0% (GraphSAGE), 2.9%

(GAT), 1.1% (SuperGAT), 2.8% (JK-Net), and 1.6% (GCNII). The re-

sults prove that CLNode effectively mitigates the detrimental effect

of difficult nodes, thereby enabling more useful information to be

learned from uneven-quality training nodes.
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Figure 6: Accuracy (%) on Cora with two kinds of label noise.

Moreover, we conduct node classification experiments under

different label rates. Table 3 shows the accuracy on Cora dataset

at label rates of 1%, 2%, 3%, respectively. We observe that when

there are fewer labeled training nodes, the improvement achieved

by CLNode is more obvious. This is because when there are more

training nodes, the detrimental effect of difficult nodes is mitigated

by a large number of easy nodes; conversely, when there are fewer

training nodes, difficult nodes easily mislead GNNs to learn the

wrong knowledge. Therefore, by excluding difficult nodes from ini-

tial training, CLNode significantly improves the accuracy of GNNs

at a low label rate. For many real-world graphs, the labeling pro-

cess is tedious and costly, resulting in limited labels, and it would

be highly beneficial to use CLNode in these situations.

5.2 Robustness to Noise

In this subsection, we investigate whether CLNode enhances the

robustness of backbone GNNs to label noise. In a noisily labeled

graph, the labels have a probability of ? to be flipped to other

https://github.com/wxwmd/CLNode
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Table 1: Statistics of five benchmark datasets.

Dataset Nodes Edges Features Classes Label rate

Cora 2708 5429 1433 7 2%
CiteSeer 3327 4732 3703 6 2%

PubMed 19717 88648 500 3 0.1%
A-Computers 13381 245778 767 10 1%

A-Photo 7487 119043 745 8 1%

Table 2: Node classification performance (Accuracy (%)±Std) on five datasets.

Method Cora CiteSeer PubMed A-Computers A-Photo

GCN

Original 73.5±0.8 62.8±2.6 64.3±2.9 79.0±3.7 89.1±0.8

+CLNode 77.0±0.7 65.5±2.3 65.9±1.3 84.7±0.5 90.8±1.0

(Improv.) 3.5% 2.7% 1.6% 5.7% 1.7%

GraphSAGE

Original 70.1±2.3 57.4±3.7 61.3±1.4 71.7±2.4 83.0±2.6

+CLNode 72.1±1.4 60.3±3.1 64.1±3.8 77.5±1.6 87.5±1.2
(Improv.) 2.0% 2.9% 2.8% 5.8% 4.5%

GAT

Original 74.2±1.2 63.7±2.8 64.6±2.5 80.2±0.8 89.4±1.8

+CLNode 77.1±1.1 65.3±2.6 68.2±2.6 82.6±1.1 90.1±1.1
(Improv.) 2.9% 1.6% 3.6% 2.4% 0.7%

SuperGAT

Original 74.4±4.3 64.8±3.3 67.4±4.3 81.2±2.0 87.3±2.0

+CLNode 75.5±2.7 63.0±3.2 72.2±3.0 83.4±2.4 88.8±1.2
(Improv.) 1.1% - 4.8% 2.2% 1.5%

JK-Net

Original 74.0±1.5 62.1±3.7 66.0±1.7 83.2±1.3 89.2±0.7

+CLNode 76.8±0.8 63.6±1.2 71.5±3.2 84.4±1.0 90.4±0.9
(Improv.) 2.8% 1.5% 5.5% 1.2% 1.2%

GCNII

Original 76.2±4.0 64.5±4.3 70.8±6.1 79.8±1.8 87.4±2.1

+CLNode 77.8±2.1 66.5±2.2 71.3±4.6 82.2±1.5 89.3±2.0
(Improv.) 1.6% 2.0% 0.5% 2.4% 1.9%

Table 3: Accuracy (%) on Cora under different label rates.

Method 1% 2% 3%

GCN
Original 62.4±2.7 73.5±0.8 78.6±0.6
+CLNode 66.9±1.2 77.0±0.7 79.7±0.6

GraphSage
Original 54.8±3.0 70.1±2.3 76.0±0.8
+CLNode 61.8±2.6 72.1±1.4 77.7±1.5

GAT
Original 65.2±2.4 74.2±1.2 78.8±1.0
+CLNode 68.5±2.0 77.1±1.1 79.9±0.5

SuperGAT
Original 65.5±6.0 74.4±4.3 78.7±1.6
+CLNode 67.9±3.2 75.5±2.7 78.5±2.4

JK-Net
Original 67.5±1.7 74.0±1.5 77.4±1.4
+CLNode 69.4±1.4 76.8±0.8 78.8±0.3

GCNII
Original 68.5±3.9 76.2±4.0 79.0±2.2
+CLNode 71.2±3.8 77.8±2.1 80.2±2.0

classes, where ? denotes the noise rate. Following [5, 18], we cor-

rupt the labels of the training and validation set with two kinds of

label noise:

• Uniform noise. The label has a probability of ? to be misla-

beled as any other class.

• Pair noise. We assume that nodes in one class can only be

mislabeled as their closest class; that is, labels have a proba-

bility ? to flip to their pair class.

We conduct experiments on Cora under standard splits and vary

? from {0, 5%,..., 30%} to compare the performance of CLNode and

the baseline GNNs under different levels of noise. We only report

the results using GCN and GAT as backbone GNNs because we

have similar observations for otherGNNs. CLNode(GCN) and CLN-

ode(GAT) denote the CLNodemethod using GCN and GAT as back-

bone GNN, respectively.

The results are shown in Figure 6, from which we observe that

as the noise rate increases, the performance of all baselines drops

dramatically. CLNode also suffers under conditions of increasing

noise rate; however, when there is more noise in the graph, the

performance gap between CLNode and the baseline increases. This

observation demonstrates that CLNode effectively enhances the ro-

bustness of backbone GNNs to two kinds of label noise, since CLN-

ode considers mislabeled training nodes as difficult nodes and selec-

tively excludes them from the training process, while the baseline
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Table 4: Comparisons between different difficulty measur-

ers.

Method Cora CiteSeer PubMed

GCN

original 69.6 55.3 69.4

+CLNode(local) 74.8 61.8 74.2

+CLNode(global) 72.3 62.5 73.2

+CLNode 75.4 63.1 74.4

Table 5: Comparisons between different pacing functions.

Pacing Function Cora CiteSeer PubMed

CLNode

linear 74.8 62.7 74.2

root 74.5 62.5 73.9

geometric 75.4 63.1 74.4

GNNs treat all training nodes as equal and consequently overfit to

noise.

5.3 Ablation Study

In this subsection, we conduct ablation studies to explore the effec-

tiveness of the multi-perspective difficulty measurer and the sensi-

tivity of CLNode to different pacing functions. Ablation studies are

conducted on three paper citation datasets under standard splits,

where the graphs are corrupted by uniform label noise and the

noise rate ? is set to 30%.

First, to verify themulti-perspective difficultymeasurer benefits

from combining the local and global information, we design two

difficulty measurers to replace it:

• Measuring difficulty only with local information, i.e., we

only use �;>20; to measure node difficulty.

• Measuring difficulty only with global information, i.e., we

only use �6;>10; to measure node difficulty.

We use these two difficulty measurers for ablation studies; in

the below, we refer to the ablated methods as CLNode(local) and

CLNode(global), respectively. GCN is used as the baseline method.

The results are reported in Table 4, from which we observe the

following: (1) both CLNode(local) and CLNode(global) outperform

the baseline method, which demonstrates that they measure the

node difficulty from different perspectives, and thus mitigate the

detrimental effect of different types of difficult nodes; (2) CLNode

achieves the best results in all experiments, proving that by com-

bining local and global perspectives to measure the node difficulty,

CLNode effectively identifies two types of difficult nodes, thus en-

hancing the accuracy and robustness of backbone GNNs.

In Table 5, we evaluate the sensitivity of CLNode to three pac-

ing functions: linear, root, and geometric. We find that the geo-

metric pacing function has a slight advantage on all datasets. As

shown in Figure 5, the geometric function trains for a greater num-

ber of epochs on the subset of easy nodes before introducing diffi-

cult nodes. Therefore, to mitigate the detrimental effect of difficult

nodes, we believe that the high-confidence knowledge in easy nodes

should be fully explored before more difficult nodes are introduced.
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Figure 7: Parameter sensitivity analysis on Cora.

5.4 Parameter Sensitivity Analysis

Last but not least, we investigate how the hyper-parameters _0 and

) affect the performance of CLNode. _0 controls the initial num-

ber of training nodes, while) controls the speed at which difficult

nodes are introduced to the training process. To explore the param-

eter sensitivity, we alter _0 and) from {0.1, 0.2,..., 0.9} and {20, 40,...,

200}, respectively. We use GCN as the backbone GNN and report

the results on Cora under random splits. The results in Figure 7

show the following: (1) Generally, with increasing _0, the perfor-

mance tends to first increase and then decrease; specifically, the

performance is relatively good when _0 is between 0.3 and 0.7. A

too small _0 results in few training nodes in the initial training pro-

cess, meaning that the model cannot learn efficiently. In contrast,

an overly large _0 introduces difficult nodes during initial training

and thus degrades the accuracy. (2) Similarly, as ) increases, the

test accuracy tends to first increase and then decrease. A too small

) will quickly introduce more difficult nodes, thus degrading the

backbone GNN’s performance; conversely, an extremely large )

causes the backbone GNN to be trained mainly on the easy subset,

causing a loss of the information contained in difficult nodes.

6 CONCLUSION

In this paper, we study the problem of training GNNs on uneven-

quality training nodes. Current GNNs assume that all training nodes

contribute equally during training; as a result, difficult nodes de-

grade their accuracy and robustness. To address these issues, we

propose a novel framework CLNode to mitigate the detrimental

effect of difficult nodes. Specifically, we design a multi-perspective

difficulty measurer to accurately measure node difficulty using lo-

cal and global information. Based on these measurements, a con-

tinuous training scheduler is proposed to feed nodes to the train-

ing progress in an easy-to-difficult curriculum. Extensive experi-

ments on five benchmark datasets demonstrate that CLNode is a

general framework that can be combined with six representative

backbone GNNs to improve their accuracy. Further experiments

are conducted on noisily labeled graphs to prove that CLNode en-

hances backbone GNNs’ robustness. An interesting future direc-

tion to expand the current work is to explore the application of

curriculum learning to more graph-related tasks, e.g., link predic-

tion.
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