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ABSTRACT
Semantic matching is an important component of a product search
pipeline. Its goal is to capture the semantic intent of the search
query as opposed to the syntactic matching performed by a lexical
matching system. A semantic matching model captures relation-
ships like synonyms, and also captures common behavioral patterns
to retrieve relevant results by generalizing from purchase data. Se-
mantic matching models however suffer from lack of availability of
informative negative examples for model training. Various methods
have been proposed in the past to address this issue based upon
hard-negative mining and contrastive learning.

In this work, we propose a novel method for semantic match-
ing based on one-class classification called SMOCC. Given a query
and a relevant product, SMOCC generates the representation of an
informative negative which is then used to train the model. Our
method is based on the idea of generating negatives by using ad-
versarial search in the neighborhood of the positive examples. We
also propose a novel approach for selecting the radius to generate
adversarial negative products around queries based on the model’s
understanding of the query. Depending on howwe select the radius,
we propose two variants of our method: SMOCC-QS, that quan-
tizes the queries using their specificity, and SMOCC-EM, that uses
expectation-maximization paradigm to iteratively learn the best
radius. We show that our method outperforms the state-of-the-art
hard negative mining approaches by increasing the purchase recall
by 3 percentage points, and improving the percentage of exacts
retrieved by up to 5 percentage points while reducing irrelevant
results by 1.8 percentage points.
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1 INTRODUCTION
Modern Search Engines combine benefits from matches obtained
through lexical, behavioral and semantic sources. The lexicalmatches
allow the product search engine to scale to potentially 100s of mil-
lions of products, all within the constraints of a realtime search. The
lexical matches are in particular useful when the vocabulary used
to describe the product is the same as that used by the customer to
search for it. The behavioral matches help the search system “mem-
orize” the essential associations its customers have already taught
it through their behavior. Through behavioral matches, the search
engine memorizes that customers buy a “Samsung Galaxy Flip3”
phone when searching for a “flip”, but a “highend memory foam
mattress” when they search for “restful sleep”. On the other hand,
semantic matches aid the search systems generalize and generate
relevant matches even when the vocabulary of the product descrip-
tion does not overlap with that of the customer’s query terms. Such
matches help the search engine realize that “baking moulds”, for
example, qualify for the search query “mother’s day gifts”.

In this work, we concern ourselves with generation of semantic
matches for product search engines. Typical approach to training
such semantic search models is to use the historical click/add-to-
cart/purchase inputs from customers, albeit in an impersonal man-
ner, and use those to learn two-tower language models, typically
with a shared vocabulary across the two towers [23]. Two-tower

1012

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3539597.3570488
https://doi.org/10.1145/3539597.3570488
https://doi.org/10.1145/3539597.3570488
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539597.3570488&domain=pdf&date_stamp=2023-02-27


WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Arindam Bhattacharya et al.

based architectures are very popular in literature and practice to
build semantic similarity models in product search. These models
formulate the matching problem as a metric learning task where
semantic embeddings of queries and products are learnt in a joint
embedding space and approximate nearest neighbor based lookups
are then performed to find semantically similar products to a query
in realtime [13, 15, 18, 23, 39]. However, while the positive train-
ing data is available in abundance in such a setting, in terms of
the customer behavior, high-quality negatives are hard to come by.
Hence, multiple works [4, 11, 18, 36] have approached the problem
through use of contrastive learning, while explicitly trying to find
high-quality “hard negative” examples that could improve the qual-
ity of the semantic matching model. These works have inferred
that the quality of the model, measured in terms of the percentage
of exact matches in its output, improves with better quality hard
negatives. However, in this work, we ask ourselves the question if
the need for generating hard negative samples in semantic search
models can completely be side-stepped instead by modeling the
problem as a one-class classification problem.

This work contributes to the literature in the following manner:
(1) We propose a one-class classification approach to building se-

mantic matching models for product search. In our understand-
ing, this work represents the first reported effort with the ap-
proach.

(2) While the approach we take for one-class classification is heav-
ily influenced by [9], we carry out necessary modifications to
the method to expand its applicability to language models. In
particular, we realize that, unlike image datasets explored in [9],
perturbations to the positive samples in the input space do not
yield negative samples for language-related applications. We
instead carry out such perturbations to intermediate represen-
tations to generate negative samples to train on.

(3) Most previous works of semantic matching, including [9] oper-
ate under the assumption of a fixed radius or high-dimensional
annular around positive examples. Irrespective of the charac-
teristics of the query, positive product examples are embedded
within this radial or annular structure and negative examples
are forced out. In this work, we posit that the size of such a
radial or annular structure should be a function of the charac-
teristics of the query issued by the customers. In particular, if a
query is highly specific, the size of the annular structure should
be small, while if the query is generic in nature, then the size
of the annular structure can be relatively larger.

(4) Even when we build localized query-specific loss structures
around positive samples, there are two potential approaches.
One approach is to force-fit a query characteristic dependent yet
pre-decided rigid loss structure around the positive examples. In
such an approach, introduced as SMOCC-QS later in the paper,
we hope to use the flexibility associated with high-dimensional
training of query and product embeddings to adapt itself to
the pre-decided rigid loss structure. The second approach, in-
troduced as SMOCC-EM, which we find to be superior, is to
parameterize the query characteristic dependent loss structure
and learn its parameters jointly while learning the semantic
matching model.

This paper is organized as follows. Section 2 discusses previous
work carried out in literature, while Section 3 introduces our pro-
posed method. Section 4 provides the details of the experiments
we have carried out to evaluate the relative performance of vari-
ous proposed methods against current state-of-the-art baselines.
Sections 4.4 and 5 discuss the results and conclude the paper.

2 BACKGROUND AND RELATEDWORKS
Product Search. With advancements in Natural Language Pro-

cessing (NLP), various search engine systems have adopted seman-
tic based retrieval in their pipelines [6, 12, 18]. Word2Vec [21] revo-
lutionized NLP by representing words as dense vectors, so that two
semantically similar words would have similar representations. As
a result, many studies have been conducted in semantic matching
to represent queries and documents as dense vectors and use them
for document retrieval. Some related works with this approach are
DSSM [13], CDSSM [33] and Product Semantic Search [23]. Seman-
tic matching for products has also been explored using extreme
multilabel classification systems. These algorithms use sparse TF-
IDF features on textual inputs and leverage different partitioning
techniques on the label space to reduce complexity [2].

In the last couple of years, transformers [35] and large language
models like BERT [5] and RoBERTa [17] have achieved state-of-
the-art in various NLP tasks, and transformer-based models have
emerged as the de-facto standard for generating text-based em-
beddings. These language models learn high quality query and
document representations using a self-attention mechanism - every
input word interacts with every other input word to produce a con-
textualised representation. Furthermore, the model is pretrained
by generating labeled training data from massive amounts of un-
supervised data, which helps achieve good performance with less
data [16]. While such embedding generation models have advanced,
they still require a considerable number of positive and negative
pairs to build an effective production-level product matching model
to ensure only relevant products are sourced for queries [16].

Hard Negative Mining. Traditionally, in order to train semantic
matching models, methods have needed both positive and nega-
tive <query, product> pairs to be obtained. Historical anonymized
customer session logs containing queries, clicks and purchase data
are leveraged to generate relevant samples [23]. For example, if
many customers search for the term “shoes” but ultimately in the
same session end up purchasing “sneakers”, then the model learns
that “shoes” and “sneakers” are relevant to each other. Negative
pairs are usually generated randomly. But, [30] showed that model
trained using only random negatives places two dis-similar queries
closer to each other in the embedding space, especially when such
queries have shared tokens. For instance, queries such as “thread
cutter scissors” and “nut cutters”. Also, [38] showed that semantic
matching models trained on hard negative samples perform better
than those trained with randomly selected negatives. While hard
negative mining is popular, much of the literature is concentrated
in the field of computer vision [10, 37] and classification applica-
tion [32]. This makes it hard to apply the existing techniques for the
search retrieval application which operates on a discrete domain
and also does not have a concept of “classes”.
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Contrastive learning is one of the common techniques to mine
difficult negatives in machine learning. Recently, it has been ex-
plored in NLP to learn sentence embedding [3, 7, 40]. The disadvan-
tage of contrastive learning methods for negative sampling is that
they have a low probability of obtaining any significant negatives
from random samples, thereby limiting the number of meaningful
negatives one can obtain. For obtaining more negatives, [4, 10] keep
a queue of features from recent batches as a memory bank. [14]
built upon [10] by generating hard negative examples through mix-
ing positive and negative examples in the memory bank. [30] used
product taxonomy information to generate hard negatives.

One Class Classification. One-class classification deals with
training classification models in the absence of more than one class
labels. There exists a wide variety of approaches towards one-class
classification [29], which are widely divided into SVM based ap-
proaches, projection based approaches, and deep neural network
based approaches [9, 28]. SVM based approaches formulate the
one-class classification problems as a constrained optimization by
either creating a hyper-sphere to contain the normal points [31],
or to learn a hyper-plane separating the origin from the normal
points [34]. Projection based approaches use randomprojections [1],
histogram based binning [8] or density estimation [25] to reduce
the dimension of the data, and uses some form of clustering to
obtain the decision boundaries. Deep neural network based ap-
proaches either learn representation of the normal points and use
SVM based approach to determine the boundaries [28], perform
adversarial training [24], or generating negative examples using
optimization [9]. We adopt the approachmentioned in [9] and adapt
it for semantic matching task.

3 PROPOSED METHOD
In this section, we present the proposed approach for semantic
matching using one-class classification (SMOCC). Figure 1 shows
the overall architectural diagram for the proposed method. In se-
mantic product matching, given a input query 𝑞𝑖 , the task is to
retrieve all the relevant products 𝑝𝑖 from the catalog within the
latency constraints of a realtime search. As noted in Section 1, most
approaches have tried to solve the problem of building accurate
semantic matching models through methods that find high quality
negative examples for the models to train on. In this work, we use
one-class classification based formulation to adversarially generate
hard negative products for a query and train semantic matching
models. SMOCC is based on the hypothesis that the set of rele-
vant products for a query lie on a locally linear low-dimensional
manifold, within the high-dimensional embedding space in which
the queries and products are embedded. Under this assumption, as
manifolds are locally Euclidean in nature, we can use the standard
𝑙2 distance function to compare the embeddings of products within
a small neighborhood of a query embedding. Typically, in such
a setting, majority of the points outside a small radius are found
to be irrelevant to the query. We use query specific radius values
to ensure that the generated products are ‘hard’ for a query. For
e.g.: for generic queries like ‘men’s shirts’ and ‘phone under $500’,
we choose high radius values as compared to radius for specific
queries such as ‘arrow black printed shirt for men’ and ‘iphone pro
12’. This information allows us to synthetically generate negative

products while training via a gradient ascent phase similar to adver-
sarial training [19]. Our method is based on DROCC [9] and it uses
gradient ascent phase to adaptively add generated irrelevant query-
product pairs to our training set, and a gradient descent phase to
minimize the classification loss by learning a representation and a
classifier to separate relevant query-product pairs from generated
irrelevant ones.

3.1 DROCC overview
Deep robust one-class classification (DROCC) [9] is based on a low-
dimensional manifold assumption on the positive class for anomaly
detection. It synthetically and adaptively generates negative exam-
ples to provide a robust approach for one-class classification. Let
𝑆 = {𝑥1, 𝑥2, . . . 𝑥𝑛} denote the set of non-anomalous points, then
DROCC learns a function 𝑓\ : R → {−1, 1} such that 𝑓\ (𝑥) = 1
when 𝑥 ∈ 𝑆 and 𝑓\ (𝑥) = −1when 𝑥 ∉ 𝑆 . The anomaly classification
model 𝑓 is parametrized by parameters \ . Mathematically, DROCC
optimizes the following loss function -

min
\

{
_∥\ ∥2+

𝑛∑︁
𝑖=1

𝐿(𝑓\ (𝑥𝑖 ), 1) + ` max
�̃�𝑖 ∈𝑁𝑖 (𝑟 )

𝐿(𝑓\ (𝑥𝑖 ),−1)
}

𝑁𝑖 (𝑟 )
def
= 𝑟 ≤ ∥𝑥𝑖 − 𝑥𝑖 ∥2 ≤ 𝛾 .𝑟

(1)

where, _, ` are regularization parameters; 𝐿 denotes the loss func-
tion such as cross-entropy loss; 𝑁𝑖 (𝑟 ) denotes the points that are
not on the manifold, and are at least 𝑟 distance away from a given
point and upper bounded by 𝛾 · 𝑟 ;𝛾 ≥ 1. The objective here is to
classify the given non-anomalous 𝑥𝑖 ’s as positives and generated
anomalous points 𝑥𝑖 ’s as negatives. DROCC first computes the loss
of the network w.r.t a negative label and then maximizes this loss
in order to find the most effective adversarial negative point via
gradient ascent. The generated negative point is used along with
the given positive point to minimize the classification loss.

In this work, we use a two-tower bi-encoder model inspired
from [23] to learn query and product representations (see Figure 1)
consisting of embedding, pooling, normalization and a couple of
fully-connected dense layers. We also experiment with BERT based
bi-encoder models and show results in Section 4.7. However, deploy-
ing BERT-based models in online scenarios is challenging because
of latency constraints.

3.2 Obtaining Embeddings in Low-dimensional
Manifold

DROCC [9] is motivated by the key observation that generally,
the typical data of interest lies within a low-dimensional mani-
fold. It works by perturbing a normal input point in the input
space by a certain distance. The perturbation is done by a ran-
dom vector with a certain norm, called the radius. This kind of
perturbation works only if the input space is Euclidean and the
non-anomalous points lie within a low dimensional manifold of
the input space. This hypothesis holds true for many domains
such as images and speech where input pixels or signals can be
perturbed. However, in the natural language domain used for se-
mantic matching, this is not straightforward. To address this, in
SMOCC, we perform a pre-training phase to obtain embeddings
of text that satisfy this criteria. First, we define few notations. Let
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S = {𝑞𝑖 , 𝑝𝑖 } denote the set of relevant query-product pairs. Us-
ing SMOCC, we generate adversarial negatives 𝑝 , and learn func-
tions 𝑓\1 , 𝑓\2 to get representations of queries and products respec-
tively such that the similarity of relevant query-product pair is
higher than the similarity of irrelevant query-product pair, i.e.,
∥ 𝑓\1 (𝑞) − 𝑓\2 (𝑝)∥2 < ∥ 𝑓\1 (𝑞) − 𝑓\2 (𝑝)∥2,∀𝑝, 𝑞, 𝑝 .

For this phase, we generate𝑚 negative examples per query by
randomly shuffling the products corresponding to the queries. This
gives us the set of negative examples N = {(𝑞𝑖 , 𝑝 𝑗 )}𝑛×𝑚𝑖,𝑗∈1,𝑖≠𝑗 . We
use S ∪N to pre-train the two-tower bi-encoder model using an
Euclidean distance based similarity measure defined as

𝑠𝑖𝑚(𝑝, 𝑞) = 1 − tanh(∥ 𝑓\1 (𝑞) − 𝑓\2 (𝑝)∥
2) (2)

where 𝑓\1 (𝑞) and 𝑓\2 (𝑝) are query and product embeddings, re-
spectively. This similarity score is used with MSE loss to train the
two-tower model in SMOCC in the pre-training phase. Because of
the Euclidean distance based similarity measure, the resultant em-
beddings of queries and products tend to confirm to the hypothesis
that the input points should lie in the embedding space. Specifically,
for semantic matching, given a pair (𝑝, 𝑞) ∈ S, the intermediate
representation 𝑓 𝑙

\1
(𝑞) and 𝑓 𝑙

\2
(𝑝) from layer 𝑙 of the network are

such that perturbing 𝑓 𝑙
\2
(𝑝) by a distance 𝑟 results in a pair (𝑞, 𝑝)

such that (𝑞, 𝑝) ∉ S (refer to architectural diagram in Figure 1).
Note that the architecture may be modified to share the parameters
of query and product embeddings.

3.3 SMOCC formulation
Mathematically, we optimize the following optimization problem
in SMOCC -

min
\1,\2

{
𝛼 ∥\1∥2+ 𝛽 ∥\2∥2+

𝑛∑︁
𝑖=1

𝐿
(
𝑓\1 (𝑞𝑖 ), 𝑓\2 (𝑝𝑖 ), 𝑓\2 (𝑝𝑖 )

)}
𝑝𝑖 = max

�̃�𝑖 ∈𝑁𝑖 (𝑟𝑖 )
𝐿

(
𝑓 𝑙
\1
(𝑞𝑖 ), 𝑓 𝑙\2 (𝑝𝑖 ), 𝑓

𝑙
\2
(𝑝𝑖 )

)
,where ,

𝐿(𝑝, 𝑞, 𝑝) = log(1 + 𝑒 ( ∥ 𝑓\1 (𝑞)−𝑓\2 (𝑝 ) ∥
2−∥ 𝑓\1 (𝑞)−𝑓\2 (�̃� ) ∥

2 ) )

𝑁𝑖 (𝑟𝑖 )
def
= 𝑟𝑖 ≤ ∥ 𝑓\1 (𝑞𝑖 ) − 𝑓\2 (𝑝𝑖 )∥

2 ≤ 𝑟𝑖 + 𝛾

(3)

𝛼, 𝛽 are regularization parameters; \1 and \2 are the learnable pa-
rameters of query and product arms respectively in the bi-encoder
model, L denotes the triplet loss function between positive and
negative query-product pairs; 𝑁𝑖 (𝑟𝑖 ) records products off the mani-
fold of relevant products for a query 𝑞𝑖 and are between distance
𝑟𝑖 and (𝑟𝑖 + 𝛾) from the query; 𝑝𝑖 denotes an adversarial negative
product for the query 𝑞𝑖 ; 𝑓 𝑙\1 and 𝑓 𝑙

\2
are outputs corresponding to

intermediate layer of the bi-encoder network.

The goal of SMOCC is to rank relevant query-product pairs
(𝑞𝑖 , 𝑝𝑖 ), 𝑖 ∈ S higher than the generated adversarial query-product
pairs (𝑞𝑖 , 𝑝𝑖 ). SMOCC achieves this by minimizing a ranking loss
using triplet loss between {𝑝𝑖 , 𝑞𝑖 , 𝑝𝑖 }. The adversarial products are
generated for a query by maximizing the triplet loss using the
intermediate representations of queries and products from the bi-
encoder network via gradient ascent. In the next few subsections,
we describe how the radius values 𝑟𝑖 are calculated for different
queries.

3.4 Radius selection for queries
Selection of right radius values (𝑟𝑖 ) for queries is extremely impor-
tant in SMOCC. Fixing a single radius value for all queries often
lead to suboptimal performance because the specificity levels of
queries are not same. We define query specificity is a measure of
how specific is the intent of the query (or conversely, how broad is
the intent). For example, a query such as ‘shoes’ has a broad intent
with a wide variety of products satisfying the intent of the query
whereas a query such as ‘black docker leather shoes’ has a specific
intent with fewer products satisfying the query intent. Hence, in
order to generate accurate hard negatives for a query, the radius
values have to be set appropriately based upon the specificity levels
of the query, i.e., broader the intent of the query, higher the radius.
As part of SMOCC, we have proposed two novel radius selection
algorithms (described in below subsections), one based upon esti-
mation of query specificity levels of queries, called SMOCC-QS and
another based upon expectation-maximization (EM) framework,
called SMOCC-EM, to alternatively predict radius values and learn
the semantic matching model. For both the methods, we initialize
the radius values based on the embedding distances after the warm-
up steps. As the model learns better embeddings, the choice of radii
improves for both the proposed methods.

3.5 Radius selection using query specificity
estimation

We estimate query specificity empirically using historical behav-
ioral search logs. We use the distribution of clicks over products
for a query to compute its specificity. Queries with specific intent
receive clicks on fewer products than queries with broad intent. As
a result, the distribution of clicks is less spread in specific queries
compared to broad queries. To characterize the spread of a probabil-
ity distribution, we use a common statistical measure – information
entropy. We use last 1 year search logs to aggregate the total count
of clicks per product for a query. We use this aggregated data to
generate the probability distribution of clicks over all products for
a query. We compute the information entropy of the probability dis-
tribution to get the click-entropy score for the query. The negative
of click-entropy score represents the query specificity (𝑄𝑆).

𝑄𝑆 =
∑︁
𝑖

𝑃𝑖 · log(𝑃𝑖 ) (4)

where 𝑃 represents the probability distribution of clicks over prod-
ucts. We compute 𝑄𝑆 score for all queries in the training dataset
and divide the queries into 𝑄0 bins based upon their specificity
scores. For each bin, we select a radius value proportional to aver-
age distance between embeddings of positive query-product pairs
in that bin. We refer to this method as SMOCC-QS and present the
complete SMOCC algorithm for this approach in Algorithm 1.

We estimate query specificity from historical behavior informa-
tion about the query. One drawback of the above approach is that
it will not estimate specificity score for unseen queries or very low
frequency queries with insufficient historical information. However,
anecdotally we have seen that most such cases are very specific
queries with customers carrying out highly focussed searches.
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Normalization
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Mean Pooling Mean Pooling
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Normalization
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 = black nike men's air jordan
(specific query  small radius)

Adversarial Search
using Gradient Ascent

Figure 1: Architecture of SMOCC. Given the input query 𝑞𝑖 and product 𝑝𝑖 , the two tower architecture generates an intermediate
representation 𝑓 𝑙

\1
(𝑞𝑖 ) and 𝑓 𝑙

\2
(𝑝𝑖 ). The negative samples are generated using the intermediate representation using adversarial

search with a radius value determined by the regression model. The regression model decides the radius value based on query
attributes. Generic queries have larger radius. As the query specificity increases, the radius decreases as shown in the three
examples in the figure. Finally, the two tower model is trained using the positives and generated negatives using a triplet loss.

3.6 Radius selection using EM framework
In this section, we propose an Expectation-Maximization (EM)
based framework to alternatively estimate radius values for queries
and train SMOCC model using them. As SMOCC-QS cannot es-
timate radius values for unseen or low frequency queries, in this
approach, we build a tree-based regressor to estimate radius val-
ues for all kinds of queries. Also, the regressor here utilizes other
query signals such as product type in the query, order rate of the
query, percentage of the times query has been reformulated, etc.
along with query specificity scores to estimate the radius for query.
The target values for the regressor are determined from historical
behavior search logs. For a query, we find out all products that are
relevant to it in S and take the average value between the distance
of the query and the relevant products as the target of the regres-
sor for that query. Firstly, we initialize the SMOCC model with a
Euclidean distance based MSE loss (Equation 2). Secondly, we train
the regressor model to estimate radius values by defining the target
values from the learned embeddings. We alternate between these
two steps for 𝑒0 number of steps until the bi-encoder model starts
over-fitting or radius values for queries converges. We refer to this
approach as SMOCC-EM and present the algorithm in Algorithm 2.
Each iteration of the M step is similar to an iteration of SMOCC-QS.
The overhead added by the E step is small because the model used
is a simple tree based regressor with few features.

3.7 Curriculum Learning based training of
SMOCC

We train both SMOCC-QS and SMOCC-EM models with a cur-
riculum learning training strategy where a model is trained from
easier data to harder data. More specifically, the basic idea is to
first train SMOCC models with easier queries (queries with high
radius values), and then gradually increase the difficulty level of
queries. Queries with high radius values often have broader intent,
and it is easier to retrieve exact product matches for them at the
top than the very specific queries because of low number of exacts
for them in the catalog. In SMOCC-QS, we train model from higher
score bins to lower score bins. And in SMOCC-EM, we sort the
queries based upon descending values of their radii and pass them
to M step in that particular order. Curriculum learning helps us in
improving the generalization capacity of the SMOCC models.

4 EXPERIMENTS
We now compare the performance of the SMOCC methods with the
state-of-the-art baselines for semantic matching in product search.
In the rest of the section, we discuss the dataset, experimental setup,
the evaluation criteria and the results. We also discuss the effects
of curriculum learning and the sensitivity to various parameters in
both SMOCC methods.
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Algorithm 1: Semantic matching model training via
SMOCC-QS
Input Dataset: Relevant query-product pairs
𝐷 = {𝑞𝑖 , 𝑝𝑖 }𝑛𝑖=1
Learnable Parameters: \1, \2, 𝑟𝑖
Pre-training: For 𝑏0 batches,
(1) Add positive pairs (𝑞𝑖 , 𝑝𝑖 ) in the batch.
(2) For every query 𝑞𝑖 , add𝑚 random negatives ((𝑞𝑖 , 𝑝 𝑗 )’s, 𝑗 ≠ 𝑖)

in the batch.
(3) Compute loss based upon MSE distance (Equation 2)
(4) Backpropagate loss and update weights \1 and \2 in the

network.
Radius Estimation for queries:
(1) Divide queries (𝑞𝑖 ’s) into 𝑄0 bins based upon their QS scores

(Equation 4).
(2) For each bin 𝑏 ∈ 𝑄0, radius is

𝑎𝑣𝑔𝑖 (∥ 𝑓\1 (𝑞𝑖 ) − 𝑓\2 (𝑝𝑖 )∥2),∀𝑖 ∈ 𝑏).
(3) Query radius 𝑟𝑖 = radius of bin to which it is assigned.
One-class classification training: For 𝑏′0 batches,
(1) Get 𝑝𝑖 by performing adversarial search using gradient ascent

∀𝑞𝑖 in the batch. It is done by taking intermediate
representations from layer 𝑙 in the bi-encoder network
(Equation 3).

(2) Compute triplet loss between 𝑞𝑖 , 𝑝𝑖 and 𝑝𝑖 .
(3) Backpropagate loss and update weights \1 and \2 in the

network.

Algorithm 2: Semantic matching model training via
SMOCC-EM
Input Dataset: Relevant query-product pairs
𝐷 = {𝑞𝑖 , 𝑝𝑖 }𝑛𝑖=1
Learnable Parameters: \1, \2, 𝑟𝑖
Pre-training: Same as SMOCC-QS
EM algorithm: While the model does not overfit or radius
values 𝑟𝑖 do not converge:
• E step - radius estimation for queries:
(1) Get query attributes such as query product type, query

specificity scores, etc. to build a regressor.
(2) Set the target values in regressor based upon M step. For a

query 𝑞𝑖 , retrieve all 𝑝𝑖 ’s such that (𝑞𝑖 , 𝑝𝑖 ) ∈ S and set the
target to 𝑎𝑣𝑔𝑖 (∥ 𝑓\1 (𝑞𝑖 ) − 𝑓\2 (𝑝𝑖 )∥2).

(3) Train regressor and ∀𝑞𝑖 , predict 𝑟𝑖 .
• M step - one-class classification training: For 𝑏′0 batches,
(1) Get 𝑝𝑖 by performing adversarial search using gradient

ascent for ∀𝑞𝑖 in the batch with 𝑟𝑖 from E-step. It is done by
taking intermediate representations from layer 𝑙 in the
bi-encoder network (Equation 3).

(2) Compute triplet loss between 𝑞𝑖 , 𝑝𝑖 and 𝑝𝑖 .
(3) Backpropagate loss and update weights \1 and \2 in the

network.

4.1 Dataset and Experimental Setup
We perform our experiments on the historical purchase data from
a popular eCommerce product site. We randomly sample one year
of purchases and the corresponding customer search queries from

the marketplace, of which we use the first 10 months as training
data and one month of data each for model validation and testing
respectively. Using above random sampling, we create training
and validation datasets containing 3 million and 1 million relevant
query-product pairs respectively. For model evaluation, we create
a test dataset containing 10K queries and 205K products randomly
sampled from the testing period. We evaluate the queries in test
dataset in a retrieval setting.

In addition, we also the KDDCup 2022 ESCI challenge dataset
provided by Amazon [26]. We filter the data on US locale. The
dataset contains 1.25 million query-product pairs each labelled
with ESCI labels. We split the dataset into training, validation and
test set consisting 80%, 10% and 10% of the data, respectively.

We use query keyword and title of the product as input in all
our baselines and proposed models. We fix the embedding sizes
of queries and products to 256 in all the methods. We use a batch
size of 256. Note that unlike some baselines where we mine hard
negatives in batch, SMOCC is not sensitive to the batch size. The
methods were implemented using PyTorch on a machine running
on 64 core Intel Xeon CPU @ 2.30GHz 16 Tesla K80 GPUs with 11
GB memory. We train the SMOCC models using AdamW optimizer
with exponential learning rate decay with initial learning rate of
0.05. All the models are trained for 40 epochs and pre-trained for
10 epochs. For SMOCC-QS, we train the model by dividing the
query specificity into 𝑄0=5 bins. Later in the section, we show
the effect of changing the number of bins. 𝛼, 𝛽, and 𝛾 are set to
0.01, 0.01 and 1 respectively. Random forest regressor is used as
regressor in SMOCC-EM. In SMOCC-EM, each M step constitute 10
epochs of training of bi-encoder model, i.e., after initial 10 epochs
of pre-training, we alternate the 𝐸-step of training the regression
model using query attributes, and 𝑀-step of training the one-class
classification model for 10 epochs.

4.2 Evaluation metrics
We obtain the learned representation of queries and products for
models under contention. Then, a KNN index using approximate
nearest neighbor method (HNSW [20]) is built for 206K products
from the test dataset. To evaluate the efficacy of our approach, we
retrieve the top-𝑘 semantically similar products for a given search
query in the index and evaluate them on following metrics -
• ESCI% in top-𝑘 [27]: This metric is used to evaluate the rele-
vancy of results returned by the model. We fix 𝑘 = 100 in all our
experiments for internal dataset, and 𝑘 = 5 for public dataset
(due to lack of sufficient samples for higher 𝑘), and compute
percentage of exacts, substitutes, complements and irrelevants
in top-k. Exact means product is relevant to the query; substi-
tute is somewhat relevant to the query; complement does not
fulfill the query, but could be used in combination with an exact
product corresponding to the query; and irrelevant fails to fulfill
a central aspect of the query. We evaluate all the models using
our in-house deep classification model trained on human labeled
data to get the ESCI labels.

• PR@100:: This metric computes the purchase recall of queries in
top-100 retrieved results, i.e., the percentage of query purchases
that the model is able to retrieve in top-100 results during testing
period.
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Table 1: Comparison of ESCI@100 and Purchase Recall@100
of SMOCC with baselines on internal dataset. Each number
represents the change in percentage over Random Negatives
baseline

Method E S C I PR@100

SMOCC-EM +12.37 +1.17 -5.46 -8.08 +9.76
SMOCC-QS +9.28 +2.67 -4.87 -7.08 +8.32
DROCC [9] +8.41 +2.15 -4.12 -6.91 +7.89
MoCo [4] +7.41 +3.12 -2.91 -6.76 +6.02
Hard Negatives +6.37 +2.27 -2.82 -5.82 +6.56
InfoNCE [3] +5.89 +2.81 -2.52 -4.31 +5.12

4.3 Baselines
We perform exhaustive evaluation of proposed SMOCC approaches
against following baselines -
Random Negatives: In this baseline, we randomly selects 3 neg-
ative products for a relevant product to the query, and train the
model with euclidean distance based MSE loss. This is similar to
pre-training step in SMOCC.
Hard Negatives: This bi-encoder model is similar to [23] but
instead of a two part hinge loss, we use a hard negative triplet loss
as we observed that it performs much better empirically. In this
approach also, we warm-up the training of bi-encoder models with
Euclidean distance based MSE loss. Next, we train the model with a
ranking based triplet loss (defined in SMOCC). For every query 𝑞𝑖
and its relevant product 𝑝𝑖 in the batch, we compute hard negatives
within batch on the fly and compute the loss. Hard negative for
query 𝑞𝑖 is the product 𝑝𝑖 which lie closest to it in the batch in
terms of Euclidean distance and 𝑖 ≠ 𝑗 .
InfoNCE [3]: In this methodology, all the products (𝑝 𝑗 | 𝑗 ≠ 𝑖) in
a minibatch for a query 𝑞𝑖 are considered as negatives and all the
queries (𝑞𝑘 |𝑘 ≠ 𝑖) in a mini batch are treated as negatives for the
product 𝑝𝑖 . There is no sampling of negatives explicitly. If batch
size is 𝑁 , we treat the other 2(𝑁 − 1) augmented examples within
a minibatch as negative examples for given a positive pair. The
loss function used here is the normalized temperature-scaled cross
entropy loss with temperature 𝜏 = 0.2.
MoCo [4]: MoCo computes hard negative based upon dictionary
look-up and is mainly used in the visual representation learning. It
builds a dynamic dictionary with a queue and a moving-averaged
encoder. This facilitates MoCo to perform on-the-fly contrastive
learning.
DROCC [9]: This method is explained in Section 3.1

4.4 Results and Discussion
Table 1 shows the main results of our experiments. We report all
the numbers relative to a random negatives baseline, i.e. absolute
percentage points improvement over random negatives baseline
because of legal restrictions. We can see that the performance of
the SMOCC methods are significantly better at retrieving the exact
matches than the baselines. In particular SMOCC-EM gives up to 5
percentage points better exacts than the best baseline. In addition
to that, SMOCC methods also reduce the irrelevant matches by 1.2

Table 2: Comparison of ESCI@5 of SMOCC with baselines
on public dataset. Each number represents the change in
percentage over Random Negatives baseline

Method E S C I

SMOCC-EM +9.31 +2.25 -2.41 -6.32
SMOCC-QS +7.36 +3.12 -2.75 -5.28
DROCC +6.81 +2.97 -3.01 -5.91
MoCo +5.76 +1.81 -2.36 -4.86
Hard Negatives +4.63 +1.59 -1.81 -4.79
InfoNCE +4.51 +1.73 -3.56 -3.89

Table 3: Effect of Curriculum Learning (CL) on SMOCC com-
pared to random shuffling of data. Each number represents
the percentage change in ESCI and Purchase Recall over Ran-
dom Negatives baseline

Method Learning E S C I PR@100

SMOCC CL +12.37 +1.17 -5.46 -8.08 +9.76
-EM Random +7.47 +1.17 -1.82 -6.82 +7.95

SMOCC CL +9.28 +2.67 -4.87 -7.08 +8.32
-QS Random +2.37 -0.66 +3.82 -5.43 +4.41

percentage points compared to the best baseline, which significantly
improves the user experience.

Table 2 shows the results on KDD Cup ’22 dataset. As noted
above, we choose to present ESCI@5 because of limited availability
of exact products per query. We note a similar trend with the public
dataset as with the internal data. SMOCC-EM outperforms the base-
lines significantly. SMOCC-EM achieves up to 3.5 percentage points
better exacts than the best performing baseline, while reducing the
irrelevants by 1.5 percentage points.

As noted in Section 3.7, we use curriculum learning to improve
the performance of SMOCC methods. Table 3 shows the effect
of curriculum learning on the performance of both the SMOCC
methods. For curriculum learning, we perform the pre-training as
before for 10 epochs. We then split the data into 𝑘 bins based on
ranges of query specificity for SMOCC-QS, or based on ranges of
radii for SMOCC-EM. We present the results for 𝑘 = 3. The data in
each bin is trained for 3× 10 epochs, which is equivalent to training
on the entire data for 40 epochs. Using curriculum learning provides
a boost of 7 percent more exacts for SMOCC-QS and 5 percent
more exacts for SMOCC-EM. It is interesting to note that SMOCC-
QS with curriculum learning outperforms SMOCC-EM without
curriculum learning. This is because curriculum learning helps the
model generalize better and reduces the impact of potentially noisy
labels obtained from other models.

4.5 Effect of Radius and Convergence of
SMOCC-EM

We now show the effect of varying the radius on performance of
SMOCC methods. Figure 2a shows how the radius converges with
each E step of SMOCC-EM. We notice that the difference in the
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(a) Convergence of radius in E step and loss in corresponding
M step SMOCC-EM.

(b) Radius used for SMOCC-EM, SMOCC-QS and DROCC, and
their corresponding losses.

Figure 2: Effect of varying radius on SMOCC methods

radius between each E step decreases with iterations. This means
that the distances between the query and the relevant product em-
beddings decrease with each each M step, and thus the regression
model returns a smaller radius. We also note that after certain E
steps, the radius shrinks so low that some relevant product em-
beddings lie outside of the radius. This leads to an increase in the
validation loss. We use this as an indication to terminate the EM
steps.

Figure 2b shows the effect of varying the radius on the per-
formance of SMOCC methods. This shows the power of SMOCC
algorithms over the fixed radius of DROCC. We also notice that
using radius values provided by the regression model significantly
improves the convergence rate as well as the value of the loss for
SMOCC-EM when compared with stepped decrease of SMOCC-QS.

4.6 Effect of Quantization of SMOCC-QS
In this section we will show the effect of varying the quantiza-
tion of query specificity in SMOCC-QS. We show the results for 3
bins, 5 bins and 7 bins. We notice that the performance increases
when increasing the bins from 3 to 5, but the change from 5 to 7 is
insignificant.

Figure 3: Effect of varying the number of bins on the perfor-
mance of SMOCC-QS.

Table 4: ESCI comparison of sBERT based SMOCC

Method E S C I PR@100

SMOCC-EM +33.36 -11.67 -10.45 -11.14 +12.92
SMOCC-QS +30.28 -10.11 -10.11 -10.14 +12.21
DROCC +26.47 -9.32 -9.21 -10.03 +8.65

4.7 BERT based SMOCC
The goal of developing SMOCCwas to create a fast semantic match-
ing model that can be used in real-world applications requiring low
latency. In this section, we present the results of our experiments
on BERT-based SMOCC. These use the same algorithms presented
in Section 3 but use BERT as the underlying model instead of a two-
tower model presented. Specifically, we use sentence-BERT trained
on MS MARCO [22]. MS MARCO is a large scale information re-
trieval corpus that was created based on real user search queries
using Bing search engine. Table 4 shows the results of our experi-
ments on BERT-based SMOCC. We notice that the performance of
BERT-based SMOCC is significantly better than the performance
of shallow non-BERT based models, but the latency is prohibitively
large for any real time applications.

5 CONCLUSIONS
In this paper we presented a novel approach to semantic matching
for product search based on one-class classification called SMOCC.
SMOCC works in two steps: 1) It generates the representation of a
negative product using adversarial search, and 2) It uses the nega-
tive product along with the query and positive product to train the
model using triplet loss. We also propose two novel methods for
determining the radius when performing adversarial search. This
gives us two variants of our methods: SMOCC-QS uses quantized
radius values based on query specificity and SMOCC-EM learns the
optimal radius using a regression model and expectation maximiza-
tion paradigm. We show that both of these methods outperform
the state of the art baselines by increasing the exact matches by up
to 5%, reducing the irrelevant matches by 1.8% and increasing the
purchase recall at 100 by more than 3%. We also perform extensive
analysis showing the impact of curriculum learning and radius
selection, and how it results in improved performance.
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