
Blurring-Sharpening Process Models for Collaborative Filtering
Jeongwhan Choi

Yonsei University

Seoul, South Korea

jeongwhan.choi@yonsei.ac.kr

Seoyoung Hong

Yonsei University

Seoul, South Korea

seoyoungh@yonsei.ac.kr

Noseong Park

Yonsei University

Seoul, South Korea

noseong@yonsei.ac.kr

Sung-Bae Cho

Yonsei University

Seoul, South Korea

sbcho@yonsei.ac.kr

ABSTRACT
Collaborative filtering is one of the most fundamental topics for

recommender systems. Various methods have been proposed for

collaborative filtering, ranging from matrix factorization to graph

convolutional methods. Being inspired by recent successes of graph

filtering-based methods and score-based generative models (SGMs),

we present a novel concept of blurring-sharpening process model

(BSPM). SGMs and BSPMs share the same processing philosophy

that new information can be discovered (e.g., new images are gen-

erated in the case of SGMs) while original information is first per-

turbed and then recovered to its original form. However, SGMs

and our BSPMs deal with different types of information, and their

optimal perturbation and recovery processes have fundamental

discrepancies. Therefore, our BSPMs have different forms from

SGMs. In addition, our concept not only theoretically subsumes

many existing collaborative filtering models but also outperforms

them in terms of Recall and NDCG in the three benchmark datasets,

Gowalla, Yelp2018, and Amazon-book. In addition, the processing

time of our method is comparable to other fast baselines. Our pro-

posed concept has much potential in the future to be enhanced by

designing better blurring (i.e., perturbation) and sharpening (i.e.,

recovery) processes than what we use in this paper.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Collaborative Filtering, Blurring-Sharpening Process

ACM Reference Format:
Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. 2023.

Blurring-Sharpening Process Models for Collaborative Filtering. In Pro-
ceedings of Proceedings of the 46th International ACM SIGIR Conference
on Research and Development in Information Retrieval, July 23–27, 2023,
Taipei, Taiwan (SIGIR ’23). ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Backward process
(noise → data)

Forward process

(data → noise)

(a) Score-based generative models (SGMs) use two stochastic processes, one for the

forward perturbation and the other for the backward recovery. Since the recovery

process is stochastic, it does not typically converge to the original sample 𝒙 (0) but to
another similar sample. After training, only the recovery process is used to generate

fake samples from random noisy vectors 𝒙 (𝑇) ∼ N(𝝁,𝝈) .

Sharpening

 process

Blurring
process

(b) Our blurring-sharpening process models (BSPMs) use two deterministic blurring

and sharpening processes. Unlike SGMs trained with many images, our BSPMs process

only one interaction matrix and therefore, we use the deterministic processes.

Figure 1: The comparison between SGMs and our proposed
BSPMs. SGMs, a recently proposed paradigm for deep gen-
erative task, outperform generative adversarial networks
(GANs), variational autoencoders (VAEs), and many other
generative models.

1 INTRODUCTION
Recommender systems are one representative topic of information

filtering. These days a non-trivial portion of the revenue of many

global information technology (IT) companies is from advertising

and recommendation. In this regard, recommender systems are

of utmost interest in real-world environments. Among various

technologies, collaborative filtering (CF) is one of the most popular

approaches of recommender systems, and many CF-based methods

have been proposed.

In particular, graph convolution-based CF methods currently

show state-of-the-art accuracy [10, 18, 25, 35, 43]. They represent

user-item interactions as a bipartite graph and apply the graph

convolutional technology. Among various graph convolutional op-

erations, they all use relatively simple linear or low-pass filters.

Surprisingly, these approaches now beat other classical and deep

learning-based methods.

ar
X

iv
:2

21
1.

09
32

4v
2

 [
cs

.I
R

]
 6

 A
pr

 2
02

3

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Choi, et al.

Table 1: Comparison of existing methods. Our BSPMs not
only combine the blurring and the sharpening processes but
also interpret them in a continuous time domain.

Model Blurring Sharpening

LightGCN Discrete with heat equation X

LT-OCF Continuous with heat equation X

GF-CF Discrete with low pass & ideal filters X

BSPM Continuous with various filters Continuous with a filter

In this paper, we propose a novel paradigm ofBlurring-Sharpening
Process Model (BSPM) for CF. Our blurring and sharpening pro-

cesses are formulated as differential equations — we will also show

that some of the existing graph convolution-based CF methods are

special cases of our model.

Our method is greatly inspired by i) score-based generative

models (SGMs [44–46]) which are considered as state-of-the-art

methods for deep generative tasks, and ii) GF-CF and its following

work [22, 30, 37, 38, 43, 62] which are simple and computationally

efficient but show state-of-the-art accuracy. GF-CF does not learn

embedding vectors for users/items but directly processes the user-

item interaction matrix to derive unknown user-item interactions.

Although GF-CF has shown encouraging results, we found that

our proposed perturbation-recovery paradigm, called BSPM, can

significantly outperform it. Similar successes were already made

for image generation. For instance, SGMs show the state-of-the-

art quality in the domain of image generation. In SGMs, specific

types of stochastic differential equations (SDEs) are adopted to de-

scribe the forward and the backward processes (cf. Fig. 1 (a)) — the

backward process is considered as a generative model.

Our overall model design has a perturbation-recovery archi-

tecture, i.e., the blurring process corrupts (or perturbs) original

information in the user-item interaction matrix, and the sharpen-

ing process tries to recover the original information in conjunction

with promising additional information (cf. Fig. 1 (b)). We apply the

blurring and the sharpening processes directly to the interaction

matrix in a continuous-time manner whereas existing methods,

such as GF-CF, apply certain blurring filters to the matrix in a

discrete-time manner (cf. Table 1). To our knowledge, we are the

first proposing the blurring-sharpening process paradigm for CF.

Therefore, the key in our model is how to define the blurring

and the sharpening processes. Both of them are written as ordinary

differential equations (ODEs) in our case (cf. Eqs. (8) and (13)). We

customize various well-known blurring and sharpening functions

proposed in various domains different from CF.

After defining our blurring and sharpening processes, we design

two variants of BSPM: BSPM-LM and BSPM-EM. These variants

differ from each other in how to connect the blurring and the

sharpening processes. We then show that some popular existing

methods are special cases of our method.

We conduct experiments with 3 benchmark datasets and 43

baselines. Surprisingly, our method beats all existing popular CF

algorithms by large margins. There are no existing methods that

are comparable to our method in all datasets.

Moreover, our proposed model can also be properly understood

from the perspective of classical graph convolutional processing.

Therefore, we emphasize that our proposed model has strong theo-

retical grounds, and it is not by chance that our model marks the

best accuracy. Our contributions can be summarized as follows:

(1) There are two research trends, which inspire us: i) GF-CF

and its following work, which are some of the state-of-the-

art methods for collaborative filtering, directly process the

user-item interaction matrix to reveal unknown user-item

interactions without learning embedding vectors, and ii)

SGMs adopt the perturbation-recovery paradigm to generate

fake images.

(2) We design a perturbation-recovery concept, called Blurring-
Sharpening Process Model (BSPM).

(3) Our BSPMs directly perturb (blur) the user-item interaction

matrix, and recover (sharpen) the blurred matrix to derive

unknown user-item interactions.

(4) Our method outperforms all existing 43 popular CF methods

in the three benchmark datasets.

(5) To our knowledge, we are the first adopting the perturbation-

recovery paradigm for CF. Therefore, one can consider that

we propose a new paradigm for CF, and we think that it has

much potential in the future by discovering better perturba-

tion and recovery processes than ours.

2 PRELIMINARIES & RELATEDWORK
In this section, we review related work and preliminary knowledge:

collaborative filter (CF), score-based generative models (SGMs), and

ordinary differential equations (ODEs).

2.1 Collaborative Filtering
Let 𝑹 ∈ {0, 1} |U |×|V |

, whereU is a set of users andV is a set of

items, be an interaction matrix. 𝑹𝑢,𝑣 is 1 iff an interaction (𝑢, 𝑣)
is observed in data, or otherwise 0. We also define the normal-

ized interaction matrix as
˜𝑹 = 𝑼− 1

2 𝑹𝑽− 1

2 , where 𝑼 = 𝐷𝑖𝑎𝑔(𝑹1),
𝑽 = 𝐷𝑖𝑎𝑔(1T𝑹), 1 means a column vector of ones, and

T
means

transpose. We also define the normalized item-item adjacency ma-

trix as
˜𝑷 = ˜𝑹T ˜𝑹.

Matrix Factorization-based Methods. The most common CF para-

digm is to learn latent features (also known as embedding vectors)

to represent users and items. The dot product of user and item em-

bedding vectors 𝒆𝑇𝑢 𝒆𝑖 approximates user 𝑢’s rating on item 𝑖 , which

is denoted by 𝑟𝑢𝑖 . Earlier CF models focused on low-rank matrix

factorization (MF) [26], which aims to approximate the interaction

matrix 𝑹𝑢,𝑣 . Singular value decomposition (SVD) was initially pro-

posed to learn the feature matrices, followed by many other MF

methods [6, 19, 36, 40, 41, 51, 64]. NCF [19] replaces the dot prod-

uct with a similarity learned with a multi-layer perceptron (MLP).

GRMF [40] smoothes MF through adding a graph Laplacian regu-

larizer. HOP-Rec [64] proposes a unified and efficient method that

incorporates both MF and graph-based models for CF. ENMF [6]

proposes a simple neural MF method without a negative sampling

strategy and uses an MSE loss function. MF-CCL [34] proposes a

neural MF model trained with a cosine contrastive loss, and shows

that it is superior to existing loss functions.

Blurring-Sharpening Process Models for Collaborative Filtering SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Graph-based Methods. From the perspective of the user-item

interaction graph, the individual interaction history is equivalent

to the first-order connectivity of the user. Thus, a natural extension

is to mine the higher-order connectivity from the user-item graph

structure. For example, the second-order connectivity of a user

consists of similar users who have co-interacted with the same

items. Fortunately, with the development and success of graph

convolutional networks (GCNs) for modeling graph structure data

in various machine learning areas, it recently became popular to

adopt GCNs for CF [8, 10, 18, 35, 43, 49, 52, 57, 65].

GC-MC [52] is the first work using GCNs for recommendations,

which is a graph-based auto-encoder framework for explicit matrix

completion. PinSage [65] first applies GCNs on web-scale recom-

mender systems and proposes the combination of efficient ran-

dom walks and GCNs. NGCF [57] then proposes an interaction

encoder to capture the collaboration signal among users and items,

using non-linear activations and transformation matrices. NIA-

GCN [49] explicitly models the relational information between

neighbor nodes and exploits the heterogeneous nature of the user-

item bipartite graph. Graph-based recommendation models have

achieved remarkable results, but their efficiency remains unsatisfac-

tory when confronted with large-scale recommendation scenarios.

Therefore, improving the efficiency of graph-based methods while

leaving high performance for recommendations has become a pop-

ular research question. Inspired by a simplified GCN (SGC) [60],

LightGCN [18] outperforms NGCF [57] by removing the non-linear

activation and feature transformation to improve both accuracy

and efficiency. Its linear graph convolutional layer definition is as

follows:

E(𝑙 + 1) = ÃE(𝑙), (1)

where E(0) ∈ R(|U |×|V |)×𝐷
is the learnable initial embedding ma-

trix of users and items, E(𝑙) denotes the embedding matrix at 𝑙-th

layer, and Ã is the normalized user-item adjacency matrix. Light-

GCN learns the initial embedding and uses the layer combination.

The model prediction is defined as the dot product of the user’s and

item’s final representation 𝒆𝑇𝑢 𝒆𝑖 .
Other variants of LightGCN also achieved competitive perfor-

mance [15, 22, 27, 34, 35, 58, 61]. For example, SGL-ED [61] contrasts

different node views that are generated by randomly masking the

edge connections on the graph and incorporating the proposed

self-supervised loss into LightGCN. DGCF [58] considers user-item

relationships at the finer granularity of user intents and generated

disentangled user and item representations. UltraGCN [35] pro-

poses a simplified CF that skips infinite layers of message passing

for an efficient recommendation, which generalizes multiple stan-

dard linkage scores. SimpleX [34] improves the CF methods with

the help of an appropriate negative sampling rate and proposed

cosine contrastive loss. LinkProp [15] proposes a new linkage score

for link prediction on a bipartite graph. MGDCF [22] generalizes

LightGCN and APPNP [24] with the Markov process for distance

learning. GTN [14] captures the adaptive reliability of the interac-

tions between users and items using the trend filter.

Recently, researchers argued that linear GCN-based models re-

semble heat equations, which describe the law of thermal diffusive

processes, i.e., Newton’s Law of Cooling [10, 59]. LT-OCF [10]

Reverse SDE
Forward SDE (Brownian Motion)

(Data) (Noise)

Score function

Figure 2: The overall workflow of SGMs, where the score
function is approximated by a score network, i.e., 𝑆𝜃 (x, 𝑡) ≈
∇x log 𝑝𝑡 (x). We note that it means the gradient of the log
probability w.r.t. x at time 𝑡 .

redesigned LightGCN as a continuous diffusive process and outper-

forms LightGCN. LT-OCF also learns an optimal layer combination

rather than relying on a pre-defined architecture. The heat equation

is directly related to low pass filters and smoothness, which is one

of the key operations in graph signal processing. GF-CF [43] was

proposed from the perspective of the smoothness of graph signals.

It is the special case of existing CF methods: the low-rank matrix

factorization corresponds to the ideal low-pass filter, and Light-

GCN with infinitely embedding dimensionality corresponds to a

first-order linear filter. Therefore, GF-CF proposed a simple model

combining a linear filter and an ideal low-pass filter as follows:

ˆ𝑹 = 𝑹
(

˜𝑷 + 𝛽𝑽− 1

2 𝑼̄ 𝑼̄ T𝑽
1

2

)
, (2)

where
ˆ𝑹 is an inferred interactionmatrix, and 𝑼̄ is the top-𝑘 singular

vectors of
˜𝑹. GF-CF only needs matrix multiplication operations to

calculate the recommendation scores thanks to its non-parametric

architecture. Both LT-OCF and GF-CF use blurring processes with

the heat equation and the low-pass filter, respectively, but no sharp-

ening processes. In Table 1, we compare recent methods.

2.2 Score-based Generative Models (SGMs)
Fig. 1 (a) depicts the basic mechanism behind SGMs [44–46]. The

forward process is written as the following stochastic differential

equation:

𝑑x = f (x, 𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑w, (3)

where f (x, 𝑡) = 𝑓 (𝑡)x, and its reverse SDE (i.e., backward process)

is defined as follows:

𝑑x =
(
f (x, 𝑡) − 𝑔2 (𝑡)∇x log𝑝𝑡 (x)

)
𝑑𝑡 + 𝑔(𝑡)𝑑w, (4)

where this reverse SDE process is a generative process. Depending

on the types of 𝑓 and 𝑔, various sub-types of SGMs are defined.

In order to solve the reverse SDE, we need to know the gradi-

ent of the log-probability of the forward SDE (i.e., ∇x log𝑝𝑡 (x)).
We typically train a neural network, called score network, to ap-

proximate it (cf. Fig. 2). There exists a well-established theory for

training the score network. After training the score network with

the data collected during the forward process, one can generate fake

data from noisy vectors using only the reverse SDE. We formally

compare our BSPMs with SGMs as follows since they share similar

processing philosophy:

(1) SGMs are for images. One image dataset includes many im-

ages and therefore, the entire process should be described in

stochastic differential equations (SDEs).

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Choi, et al.

Table 2: The comparison between SGMs and our BSPMs

SGM Our proposed BSPM

Type SDEs ODEs

Perturbation Adding noises to images Blurring interaction matrix

Recovery Denoising images Sharpening blurred matrix

Data Many images One interaction matrix

What to Learn Score function N/A

(2) BSPMs deal with the user-item interaction matrix. One CF

dataset includes only one such matrix and therefore, the

entire process can be described by deterministic ordinary

differential equations (ODEs).

(3) In bothmodels, we expect that new information is discovered

during the recovery process. For instance, the denoising

process is a generative process in SGMs and in our case,

user-specific items are recommended during the sharpening

process.

(4) Except that a series of perturbation-recovery processes are

used in both models, however, they differ at many detailed

points. In BSPMs, most importantly, there does not exist

anything to learn since we directly blur and sharpen the

interaction matrix 𝑹.
(5) In Table 2, we summarize key differences.

2.3 Ordinary Differential Equations (ODEs)
The initial value problem (IVP) of ordinary differential equations

can be written as follows:

𝒙 (𝑇) = 𝒙 (0) +
∫ 𝑇

0

𝑓 (𝒙 (𝑡))𝑑𝑡, (5)

where 𝒙 (0) is an initial value at time 𝑡 = 0, and 𝑓 : Rdim(𝒙) →
Rdim(𝒙)

is an ODE function describing the time-derivative of 𝒙 ,

denoted by
𝑑𝒙 (𝑡)
𝑑𝑡

1
. Therefore, integrating the time-derivative of 𝒙

until 𝑡 = 𝑇 returns a solution 𝒙 (𝑇) at time 𝑡 = 𝑇 .

𝑓 is typically complicated in real-world applications and it is

frequently impossible to find an analytical solution of 𝒙 (𝑇). We

then typically use ODE solvers, such as the Euler method, the

Runge-Kutta method, the Dormand–Prince (DOPRI) method, and

so on [12]. The Euler method
2
is written as follows:

𝒙 (𝑡 + 𝑠) = 𝒙 (𝑡) + 𝜏 · 𝑓 (𝒙 (𝑡)), (6)

where 𝜏 is a pre-configured step size.

Other ODE solvers use more complicated methods to update

𝒙 (𝑡 + 𝜏) from 𝒙 (𝑡). For instance, the fourth-order Runge–Kutta

(RK4) method uses the following method:

𝒙 (𝑡 + 𝜏) = 𝒙 (𝑡) + 𝑠

6

(
𝑓1 + 2𝑓2 + 2𝑓3 + 𝑓4

)
, (7)

where 𝑓1 = 𝑓 (𝒙 (𝑡)), 𝑓2 = 𝑓 (𝒙 (𝑡) + 𝜏
2
𝑓1), 𝑓3 = 𝑓 (𝒙 (𝑡) + 𝜏

2
𝑓2), and

𝑓4 = 𝑓 (𝒙 (𝑡) + 𝜏 𝑓3).

1
In the case of neural ordinary differential equations (NODEs), 𝑓 is approximated by a

neural network, which means the time-derivative of 𝒙 is learned from data [node]. In

this paper, however, 𝑓 is not a neural network but a blurring/sharpening function.

2
Note that Eq. (6) is identical to a residual connection when 𝑠 = 1 and therefore,

NODEs are a continuous generalization of residual networks.

In order to solve the above integral problem, therefore, we need

to iterate one of the fixed-step ODE solvers ⌈𝑇 /𝜏⌉ times since each

iteration updates 𝒙 (𝑡) to 𝒙 (𝑡 + 𝜏). However, the DOPRI method

is an adaptive solver, which dynamically adjusts the step-size 𝜏

depending on estimated potential errors. Therefore, the number of

iterations is not deterministic for DOPRI. In general, DOPRI is con-

sidered one of the most advanced solvers. These solvers are already

implemented on many deep learning platforms, such as PyTorch

and TensorFlow. We test all those solvers for our experiments.

3 PROPOSED METHOD
We describe our BSPMs for CF, which consist of a blurring process

and a sharpening process. Our method is greatly inspired by the

recent successes of SGMs for deep generative tasks. In fact, there

already exists a research trend to use generative models for CF due

to the similarity in them [4, 5, 7, 48, 54–56] — revealing hidden

interactions between users and items means that we generate new

interactions.

3.1 Overall Workflow
Our overall workflow is as simple as i) applying a continuous blur-

ring process to the interaction matrix 𝑹 to derive its blurred matrix

𝑩(𝑇𝑏), and then ii) applying a continuous sharpening process to the

blurred matrix to derive its sharpening matrix 𝑺 (𝑇𝑠). After these
processes, we can recommend items as we will shortly describe.

We also make it clear that in our method, there does not exist

anything to train. During the processes, neural networks are not

used at all and we do not learn user/item embedding vectors. The

blurring and sharpening functions are all hand-crafted functions

(without any trainable parameters) in our method. Therefore, our

process is surprisingly simple and the overall computation can

be done quickly. However, our method outperforms all existing

popular methods by non-trivial margins.

Meaning of Blurring. The blurring process is a core of CF. Many

graph-based CF methods use graph convolutional filters that corre-

spond to blurring processes [1, 18, 43]. In general, popular items

are recommended to users after this process.

Meaning of Sharpening. The sharpening process is an inverse

of the blurring and therefore, it retrieves user-specific items — for

general GCNs, similar sharpening processes are used to emphasize

differences among node features [3, 9]. As we will show in our

experiment section, it actually increases the overall recommenda-

tion accuracy while mostly decreasing the degree of recommended

items. In other words, less popular items are also recommended to

users in conjunction with popular items.

3.2 Blurring Process
Blurring processes can be written as follows and solved by the ODE

solvers we reviewed in Sec. 2.3:

𝑩(𝑇𝑏) = 𝑩(0) +
∫ 𝑇𝑏

0

𝑏 (𝑩(𝑡))𝑑𝑡, (8)

where 𝑏 : Rdim(𝑩) → Rdim(𝑩)
is a blurring function which approx-

imates
𝑑𝑩 (𝑡)
𝑑𝑡

and 𝑩(0) is an interaction matrix 𝑹 in our setting.

Therefore, 𝑩(1) means a blurred interaction matrix.

Blurring-Sharpening Process Models for Collaborative Filtering SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Interation
Matrix

Inferred

Interaction

Matrix

(a) This model corresponds to GF-CF when we use i) the Euler

method with 𝑇𝑏 = 1 and 𝜏 = 1 to solve Eq. (8), and ii) a heat

capacity of 𝑘 = 1.

Interation
Matrix

Residual Connection

Inferred

Interaction

Matrix
+

(b) The late-merge, denoted BSPM-LM, merges the ideal low-pass filter at the last

moment.

Interation
Matrix +

Residual Connection

+
Inferred

Interaction
Matrix

(c) The early-merge, denoted BSPM-EM, merges the ideal low-pass filter before the

sharpening process begins.

Figure 3: Blue boxes mean blurring processes, and red boxes
mean sharpening processes. The red dotted path means the
residual connection, which is optional in our method. The
residual connection enhances the recommendation accu-
racy in one dataset in our experiments.

The exact blurring process depends on how we define the func-

tion 𝑏. In various domains, similar blurring functions have been

defined for various purposes. We introduce some key definitions

among them that are widely used in various domains.

We first articulate that all the aforementioned notations can be

naturally extended after considering the temporal nature of our

proposed blurring-sharpening process. For instance, 𝑩(𝑡) means a

blurred matrix of the original interaction matrix after 𝑡 following

our proposed blurring process iff 𝑩(0) = 𝑹.

Heat equation. The heat equation means the Newton’s law of

cooling, which describes the rate of heat loss in a body. This concept

is frequently used in image processing for blurring images. We use

the following definition of 𝑏:

𝑏𝐻𝐸 (𝑩(𝑡)) = 𝑘𝑩(𝑡)
(

˜𝑷 − 𝑰
)
, (9)

where 𝑘 ∈ R is a coefficient called heat capacity. This is a hyperpa-

rameter in our framework. This definition of 𝑏 has a resemblance

to the low-pass filter in the field of graph convolutions.

Ideal low-pass filter. In the field of graph convolutions, the fol-

lowing ideal low-pass filter is frequently used:

𝑏𝐼𝐷𝐿 (𝑩(𝑡)) = 𝑩(𝑡)
(
𝑽− 1

2 𝑼̄ 𝑼̄ T𝑽
1

2 − 𝑰
)
, (10)

where 𝑼̄ is the top-𝑘 singular vectors of
˜𝑹.

Our framework has a flexibility that one can also combine them,

for instance, as follows:

𝑏𝐺𝐹−𝐶𝐹 (𝑩(𝑡)) = 𝑘𝑩(𝑡)
(

˜𝑷 + 𝛽𝑽− 1

2 𝑼̄ 𝑼̄ T𝑽
1

2 − 𝑰
)
, (11)

where 𝛽 is a coefficient to (de-)emphasize the ideal low-pass filter.

In particular, Eq. (8) with 𝑏𝐺𝐹−𝐶𝐹 reduces to GF-CF [43] which

can be written as follows and solved by the ODE solvers we re-

viewed in Sec. 2.3:

ˆ𝑹 = 𝑩(0) +
∫ 𝑇𝑏

0

𝑏𝐺𝐹−𝐶𝐹 (𝑩(𝑡))𝑑𝑡, (12)

where 𝑩(0) = 𝑹, 𝑘 = 1, 𝑇𝑏 = 1,
ˆ𝑹 is an inferred interaction matrix,

andwe use the Eulermethodwith 𝜏 = 1. Therefore, one can consider

that GF-CF is a CF method based only on the blurring process (cf.

Fig. 3 (a)).

However, our work shows that it is sub-optimal to use only

the blurring process. The following sharpening process is able to

further enhance the recommendation accuracy. To our knowledge,

we are the first proposing the blurring-sharpening process-based

CF method.

3.3 Sharpening Process
Sharpening processes can also be written as follows and solved by

the ODE solvers we reviewed in Sec. 2.3:

𝑺 (𝑇𝑠) = 𝑺 (0) +
∫ 𝑇𝑠

0

𝑠 (𝑺 (𝑡))𝑑𝑡, (13)

where 𝑠 : Rdim(𝑺) → Rdim(𝑺)
is a sharpening function which

approximates
𝑑𝑺 (𝑡)
𝑑𝑡

, and 𝑺 (1) is a sharpened matrix from the input

matrix 𝑺 (0). The sharpening function 𝑠 can be defined as follows:

𝑠 (𝑺 (𝑡)) = −𝑺 (𝑡) ˜𝑷 , (14)

where the negative sign is added to emphasize the difference from

neighbors, i.e., sharpening.

3.4 Blurring-Sharpening Process Model (BSPM)
Using the blurring and sharpening processes, we can define a couple

of variations of BSPM. In BSPM-LM in Fig. 3 (b), we use the two

blurring processes but apply the sharpening process only to the heat

equation-based blurring outcome. We then merge the sharpened

interaction matrix with the matrix perturbed by the ideal low-pass

filter. This variant can be written as follows and solved by the ODE

solvers we reviewed in Sec. 2.3:

𝑩𝐻𝐸 (𝑇𝑏) = 𝑩(0) +
∫ 𝑇𝑏

0

𝑏𝐻𝐸 (𝑩(𝑡))𝑑𝑡,

𝑩𝐼𝐷𝐿 (𝑇𝑏) = 𝑩(0) +
∫ 𝑇𝑏

0

𝑏𝐼𝐷𝐿 (𝑩(𝑡))𝑑𝑡,

𝑺 (𝑇𝑠) = 𝑺 (0) +
∫ 𝑇𝑠

0

𝑠 (𝑺 (𝑡))𝑑𝑡,

ˆ𝑹 =

{
𝑺 (𝑇𝑠) + 𝑩𝐼𝐷𝐿 (𝑇𝑏) + 𝑩𝐻𝐸 (𝑇𝑏), if residual,
𝑺 (𝑇𝑠) + 𝑩𝐼𝐷𝐿 (𝑇𝑏), otherwise,

(15)

where 𝑩(0) = 𝑹, 𝑺 (0) = 𝑩𝐻𝐸 (𝑇𝑏), and ˆ𝑹 is an inferred interaction

matrix. Adding 𝑩𝐻𝐸 (𝑇𝑏) to ˆ𝑹 is optional in our method and is called

as residual connection.
In BSPM-EM in Fig. 3 (c), we merge the heat equation-based

and the ideal low-pass filter-based blurring outcomes as early as

before the sharpening process begins.We then apply the sharpening

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Choi, et al.

process. This can be written as follows and solved by the ODE

solvers we reviewed in Sec. 2.3:

𝑩𝐻𝐸 (𝑇𝑏) = 𝑩(0) +
∫ 𝑇𝑏

0

𝑏𝐻𝐸 (𝑩(𝑡))𝑑𝑡,

𝑩𝐼𝐷𝐿 (𝑇𝑏) = 𝑩(0) +
∫ 𝑇𝑏

0

𝑏𝐼𝐷𝐿 (𝑩(𝑡))𝑑𝑡,

𝑺 (𝑇𝑠) = 𝑺 (0) +
∫ 𝑇𝑠

0

𝑠 (𝑺 (𝑡))𝑑𝑡,

ˆ𝑹 =

{
𝑺 (𝑇𝑠) + 𝑺 (0), if residual,
𝑺 (𝑇𝑠), otherwise,

(16)

where 𝑩(0) = 𝑹, and 𝑺 (0) = 𝑩𝐻𝐸 (𝑇𝑏) + 𝑩𝐼𝐷𝐿 (𝑇𝑏). Adding 𝑺 (0) to
ˆ𝑹 is a residual connection.

3.5 Direct Inference without Training
We note that our proposed BSPM does not include any training

phase, which drastically reduces the total computation time. Since

we do not learn any embedding vectors but directly process the

interaction matrix 𝑹, there is no training process. Solving Eq. (15)

or (16) is enough to infer unknown user-item interactions, and

there exist many ODE solvers which can solve Eqs. (15) and (16)

efficiently. As a matter of fact, our method is one of the fastest

CF methods. In addition, our method shows the best accuracy in

almost all cases for our experiments.

3.6 Comparison with Other Methods
We already showed that GF-CF in Eq. (12) is a special case of BSPM.

Wewill show that other popular CF algorithms are also special cases

of our model: i) LightGCN is one of the most influential algorithms

for linear graph-based CF. Shen et al. [43] already proved that

LightGCNs with infinite-dimensional embeddings are theoretically

the same as a one-step heat equation process, which is equivalent

to our blurring process with 𝑇𝑏 = 1, the Euler method with a step

size of 1. LightGCN also does not have any sharpening processes. ii)

LT-OCF is a continuous generalization of LightGCN. Therefore, our

ODE-based blurring process with the heat equation conceptually

corresponds to the key idea of LT-OCF although it also has several

other contributions. No sharpening processes are used in LT-OCF.

iii) It is obvious that GF-CF is equivalent to the blurring process

with 𝑏𝐺𝐹−𝐶𝐹 and the Euler method of 𝑇𝑏 = 1 to solve it.

4 EXPERIMENTS
In this section, we describe our experimental environments and

results. The following software and hardware environments were

used for all experiments: Ubuntu 18.04 LTS, Python 3.6.6, Py-

Torch 1.9.0, Numpy 1.18, Scipy 1.5, sparsesvd 0.2.2, torchdiffeq

0.2.2, CUDA 11.4, NVIDIA Driver 470.42, i9 CPU, and RTX A6000.

4.1 Experimental Environments
4.1.1 Datasets and Baselines. In our experiments, we use the three

benchmark datasets that are the most frequently used in the liter-

ature: Gowalla, Yelp2018, and Amazon-book [8, 18, 57]. We sum-

marize the dataset statistics in Table 3. Fig. 4 shows the long tail

characteristic of the datasets. We compare our proposed BSPMwith

the following baseline models of different groups:

Table 3: Statistics of datasets

Dataset #Users #Items #Interactions Density

Gowalla 29,858 40,981 1,027,370 0.084%

Yelp2018 31,668 38,048 1,561,406 0.130%

Amazon-book 52,643 91,599 2,984,108 0.062%

100 101 102 103 104 105

Item rank

0

1000

2000

Ite
m

 d
eg

re
e Gowalla

Yelp2018
Amazon-book

Figure 4: The long-tail characteristic in all datasets.

(1) In the first group of baselines, we consider popular MF-based

methods and its variants: MF-BPR [41], Neu-MF [19], HOP-

Rec [64], GRMF [40], ENMF [6], and MF-CCL [34].

(2) The second group includes autoencoder-based methods for

CF: Mult-VAE [28], Macrid-VAE [33], and EASE
𝑅
[47].

(3) The third group includes popular network embedding meth-

ods: DeepWalk [39], LINE [50], Node2Vec [17], and Item2Vec [2].

(4) These three models are based on various deep learning

paradigms: YoutubeNet [11] is anMLP-basedmethod, CML [21]

is a metric learning-based method, and CMN [13] is a mem-

ory network-based model.

(5) The fifth group includes general GCN methods: GAT [53],

JKNet [63], APPNP [24], DisenGCN [32], and DropEdge [42].

(6) The last group includes GCN-based CFmethods: GC-MC [52],

NGCF [57], LR-GCCF [8], LightGCN [18], NIA-GCN [49],

DeosGCF [31], IMP-GCN [29], SGL-ED [61], HMLET [25],

DGCF [58], IA-GCN [66], BUIRNB [27], UltraGCN [35], Sim-

pleX [34], LT-OCF [10], GF-CF [43], LinkProp [15],MGDCF [22],

and GTN [14].

4.1.2 Evaluation Metrics and Hyperparameters. We adopt the two

widely used ranking metrics: Recall@20 and NDCG@20 [23]. All

items that do not have any interactions with a user are recommen-

dation candidates for the user. To keep the comparison fair with

previous studies, we use the same datasets and the same train/test

splits.

For other baselines, we use the recommended hyperparameters

and for our method, we test the following hyperparameters:

• For solving the integral problems of the blurring/sharpening

processes, we consider the following ODE solvers: the Euler

method, RK4, and DOPRI. However, we found that RK4 and

DOPRI produce almost the same results in our preliminary

experiments so we test only the Euler method and RK4.

• For the blurring process, the number of steps
𝑇𝑏
𝜏 for solvers

is in {1,2,3,4}, and the terminal time 𝑇𝑏 is set to 1 to 5.

• For the sharpening process, the number of steps
𝑇𝑠
𝜏 is in

{1,2,3,4}, and the terminal time 𝑇𝑠 is set to 1 to 5.

• The size of 𝛽 is in {0.0, 0.1, · · · , 1.0}.
• The heat capacity 𝑘 is in {0.1, · · · , 1.0}.

Blurring-Sharpening Process Models for Collaborative Filtering SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Among the test configurations, the best configuration set in each

data is as follows: In Gowalla,
𝑇𝑏
𝜏 = 1, 𝑇𝑏 = 1,

𝑇𝑠
𝜏 = 1, 𝑇𝑠 = 2.5,

𝑘 = 1.0, and 𝛽 = 0.2. In Yelp2018,
𝑇𝑏
𝜏 = 1, 𝑇𝑏 = 1,

𝑇𝑠
𝜏 = 1, 𝑇𝑠 = 1.2,

𝑘 = 1.0, and 𝛽 = 0.3. In Amazon-book,
𝑇𝑏
𝜏 = 1, 𝑇𝑏 = 1,

𝑇𝑠
𝜏 = 2,

𝑇𝑠 = 2.2, 𝑘 = 1.0, and 𝛽 = 0. In general, it is the best to use the Euler

method for the blurring process and RK4 for the sharpening process.

However, for Yelp2018, it is the best to use the Euler method for

sharpening.

4.2 Experimental Results
In Table 4, we summarize the overall accuracy in terms of Recall@20

and NDCG@20. Our specific choices of baselines cover almost all

representative CF methods, and the three datasets are widely used

in the literature. As reported, our method clearly marks the best

accuracy in all cases. In particular, BSPM-LM is the best method and

performs better than the LinkProp-Multi by 3.74% on NDCG@20

for Amazon-books. BSPM-EM is the best method for Yelp2018 and

Gowalla. In many cases, BSPM-LM and BSPM-EM mark the best

and the second-best methods, respectively, and their differences

are not significant.

Among the tested baselines, LinkProp-Multi, SimpleX, and GF-

CF work well in some cases. However, only LinkProp-Multi is com-

parable to our method for Gowalla and Amazon-book — however,

the accuracy gap between our method and LinkProp-Multi is still

non-trivial. For Yelp2018, SimpleX, GF-CF, and MGDCF show good

scores. For Amazon-book, GF-CF, LinkProp-Multi, and EASE
R
show

high performance. However, no existing methods are comparable

to our proposed method in all datasets. Therefore, we consider that

our proposed concept of BSPM opens a new era of CF.

LightGCN is worse than recent methods such as LT-OCF and

GF-CF, but its value is that it is the first method showing that

simple linear convolutions work better than non-linear ones. Being

inspired by it, many methods have been proposed, including ours.

Our blurring and sharpening processes are all linear operations.

One can adopt non-linear sharpening processes, but in general,

linear operations show reliable recommendations.

4.3 Ablation and Sensitivity Studies
We report some selected key sensitivity and ablation study results.

It is the case that our model is not significantly sensitive to a hyper-

parameter if not reported in this subsection. In general, our model

is sensitive to the hyperparameters of the sharpening process and

we focus on them.

4.3.1 Sensitivity on 𝑇𝑠 . By varying the terminal integral time 𝑇𝑠
of the sharpening process, we investigate how the model accuracy

changes in Fig. 5. For Gowalla and Amazon-book,𝑇𝑠 around 2.4 pro-

duces the best outcomes. After a certain point, however, the model

accuracy drastically decreases in all datasets. It is obvious that ap-

plying the sharpening too much (i.e., 𝑇𝑠 is too large) is not helpful

in the perspective of CF since the sharpening process emphasizes

user-specific information (rather than collaborative information).

In general, the blurring process can be considered as a collabora-

tive step, where a user’s interactions with items are mixed with its

neighbors.

Table 4: Overall performance comparison. Relative improve-
ment stands for the improvement of BSPM against the
second-best baseline.

Model

Gowalla Yelp2018 Amazon-book

Recall NDCG Recall NDCG Recall NDCG

MF-BPR 0.1291 0.1109 0.0433 0.0354 0.0250 0.0196

GRMF 0.1477 0.1205 0.0571 0.0462 0.0354 0.0270

GRMF-Norm 0.1557 0.1261 0.0561 0.0454 0.0352 0.0269

NeuMF 0.1399 0.1212 0.0451 0.0363 0.0258 0.0200

HOP-Rec 0.1399 0.1214 0.0517 0.0428 0.0309 0.0232

ENMF 0.1523 0.1315 0.0624 0.0515 0.0359 0.0281

MF-CCL 0.1837 0.1493 0.0698 0.0572 0.0559 0.0447

Mult-VAE 0.1641 0.1335 0.0584 0.0450 0.0407 0.0315

Macrid-VAE 0.1618 0.1202 0.0612 0.0495 0.0383 0.0295

EASE
R

0.1765 0.1467 0.0657 0.0552 0.0710 0.0567

YouTubeNet 0.1754 0.1473 0.0686 0.0567 0.0502 0.0388

CMN 0.1405 0.1221 0.0475 0.0369 0.0267 0.0218

CML 0.1670 0.1292 0.0622 0.0536 0.0522 0.0428

DeepWalk 0.1034 0.0740 0.0476 0.0378 0.0346 0.0264

LINE 0.1335 0.1056 0.0549 0.0446 0.0410 0.0318

Node2Vec 0.1019 0.0709 0.0452 0.0350 0.0402 0.0309

Item2Vec 0.1325 0.1057 0.0503 0.0411 0.0326 0.0251

GAT 0.1401 0.1236 0.0543 0.0431 0.0326 0.0235

JKNet 0.1622 0.1391 0.0608 0.0502 0.0268 0.0343

DropEdge 0.1627 0.1394 0.0614 0.0506 0.0342 0.0270

APPNP 0.1708 0.1462 0.0635 0.0521 0.0384 0.0299

DisenGCN 0.1356 0.1174 0.0558 0.0454 0.0329 0.0254

GC-MC 0.1395 0.1204 0.0462 0.0379 0.0288 0.0224

PinSage 0.1380 0.1196 0.0471 0.0393 0.0282 0.0219

NGCF 0.1570 0.1327 0.0579 0.0477 0.0344 0.0263

NIA-GCN 0.1359 0.1106 0.0599 0.0491 0.0369 0.0287

LR-GCCF 0.1701 0.1452 0.0604 0.0498 0.0375 0.0296

LightGCN 0.1830 0.1554 0.0649 0.0530 0.0411 0.0315

SGL-ED 0.1835 0.1539 0.0675 0.0555 0.0478 0.0379

DeosGCF 0.1784 0.1477 0.0626 0.0504 0.0410 0.0316

IMP-GCN 0.1845 0.1567 0.0653 0.0531 0.0460 0.0357

BUIRNB 0.1575 0.1301 0.0647 0.0526 0.0439 0.0346

DGCF 0.1842 0.1561 0.0654 0.0534 0.0422 0.0324

IA-GCN 0.1839 0.1562 0.0659 0.0537 0.0472 0.0373

UltraGCN 0.1862 0.1580 0.0683 0.0561 0.0681 0.0556

SimpleX 0.1872 0.1557 0.0701 0.0575 0.0583 0.0468

LT-OCF 0.1875 0.1574 0.0671 0.0549 0.0442 0.0341

GF-CF 0.1849 0.1518 0.0697 0.0571 0.0710 0.0584

HMLET 0.1874 0.1589 0.0675 0.0557 0.0482 0.0371

LinkProp 0.1814 0.1477 0.0676 0.0559 0.0684 0.0559

LinkProp-Multi 0.1908 0.1573 0.0690 0.0571 0.0721 0.0588

MGDCF 0.1864 0.1589 0.0696 0.0572 0.0490 0.0378

GTN 0.1870 0.1588 0.0679 0.0554 0.0450 0.0346

Only Blurring (HE) 0.1682 0.1331 0.0684 0.0565 0.0710 0.0584

Only Blurring (IDL) 0.1776 0.1489 0.0668 0.0549 0.0395 0.0316

Only Blurring (GF-CF) 0.1854 0.1518 0.0701 0.0575 0.0710 0.0584

BSPM-LM 0.1901 0.1570 0.0713 0.0584 0.0733 0.0610
BSPM-EM 0.1920 0.1597 0.0720 0.0593 0.0733 0.0609

Relative Improvement 0.63% 0.50% 2.71% 3.13% 1.66% 3.74%

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Choi, et al.

1.5 2.0 2.5
Ts

0.
19

0.
19

5
Re

ca
ll Recall NDCG

0.
15

6
0.
16

2
ND

CG

(a) Gowalla

1 2
Ts

0.
07

0.
07

25
Re

ca
ll

Recall NDCG

0.
05

8
0.
06

ND
CG

(b) Yelp2018

1.5 2.0 2.5
Ts

0.
07

3
0.
07

4
Re

ca
ll Recall NDCG

0.
06

1
0.
06

2
ND

CG

(c) Amazon-book

Figure 5: Performance by varying 𝑇𝑠

1 2 3 4
Ts/τ

0.
18

6
0.
19

2
Re

ca
ll

Recall NDCG

0.
15

6
0.
16

2
ND

CG

(a) Gowalla

1 2 3 4
Ts/τ

0.
07

0.
07

25
Re

ca
ll

Recall NDCG

0.
05

85
0.
06

ND
CG

(b) Yelp2018

1 2 3 4
Ts/τ

0.
07

3
0.
07

4
Re

ca
ll

Recall NDCG

0.
06

0.
06

15
ND

CG

(c) Amazon-book

Figure 6: Performance by varying 𝑇𝑠
𝜏

Ts/τ=1 Ts/τ=2
0.186
0.192
0.198

Re
ca

ll w/ residual w/o residual

(a) Recall in Gowalla

Ts/τ=1 Ts/τ=2
0.156
0.162

ND
CG w/ residual w/o residual

(b) NDCG in Gowalla

Ts/τ=1 Ts/τ=2
0.071
0.072

Re
ca

ll w/ residual w/o residual

(c) Recall in Yelp2018

Ts/τ=1 Ts/τ=2
0.059

0.060

ND
CG w/ residual w/o residual

(d) NDCG in Yelp2018

Ts/τ=1 Ts/τ=2
0.072

0.075

Re
ca

ll w/ residual w/o residual

(e) Recall in Amazon-book

Ts/τ=1 Ts/τ=2
0.060

0.062

ND
CG w/ residual w/o residual

(f) NDCG in Amazon-book

Figure 7: Performance by the residual connection

4.3.2 Sensitivity on 𝑇𝑠
𝜏 . By varying the number of steps

𝑇𝑠
𝜏 for

ODE solvers, we test our model. Fig 6 shows that we do not need to

use many steps in solving the integral problem of the sharpening

process, i.e., Eq. (13), which makes the overall runtime short. In

most cases, it shows the best outcomes when
𝑇𝑠
𝜏 is set to 1 or 2, i.e.,

𝜏 is set to 𝑇𝑠 or
𝑇𝑠
2
.

4.3.3 Ablation study. As ablation study models, we test the models

with only a blurring process, denoted ‘Only Blurring (HE)’, ‘Only

Blurring (IDL)’, and ‘Only Blurring (GF-CF)’ in Table 4, depending

on the used blurring function type. As shown, they do not show

reliable performance in comparison with our main model.

We also test whether the residual connection is helpful in each

dataset. As reported in Fig 7, it increases the accuracy in Yelp2018.

For other datasets, it is best not to use the residual connection.

Only Blurring
(GF-CF)

BSPM-EM0.184

0.188

0.192

Re
ca

ll Recall NDCG

0.152

0.16

ND
CG

(a) Gowalla

Only Blurring
(GF-CF)

BSPM-EM
60

80

Co
ve

ra
ge

(%
)

Coverage Novelty

8.8

8.9

No
ve

lty

(b) Gowalla

Only Blurring
(GF-CF)

BSPM-EM0.068

0.07

0.072

Re
ca

ll Recall NDCG

0.058

0.06

ND
CG

(c) Yelp2018

Only Blurring
(GF-CF)

BSPM-EM

30

60

Co
ve

ra
ge

(%
)

Coverage Novelty

6

8

No
ve

lty

(d) Yelp2018

Only Blurring
(GF-CF)

BSPM-LM0.07

0.072

0.074

Re
ca

ll Recall NDCG

0.057

0.06

0.063

ND
CG

(e) Amazon-book

Only Blurring
(GF-CF)

BSPM-LM

80

90

Co
ve

ra
ge

(%
)

Coverage Novelty

9
10
11

No
ve

lty

(f) Amazon-book

Figure 8: Accuracy and beyond-accuracy metrics compari-
son of Only Blurring (GF-CF) and BSPM

4.4 Efficacy of the Sharpening Process
As mentioned earlier, we are the first proposing to use the sharpen-

ing process for CF. Therefore, we conduct in-depth analyses on how

the sharpening process contributes. Other metrics for CF to mea-

sure the quality of recommendation, called beyond-accuracy metrics.
For these analyses, we use the following beyond-accuracy metrics:

novelty [67] and item coverage [20]. The item coverage refers to the

extent of items a recommender system can predict. A novel item

for a user is one the user has little or no knowledge about it [16].

The novelty measures the unexpectedness of recommended items

relative to their global popularity. Using these metrics provides a

broader picture of the contribution by the sharpening process. The

results are presented in Figs. 8 (b), (d), (f), the blurring-sharpening

process has higher novelty and coverage scores than the blurring

process in all datasets.

It’s worth mentioning that coverage increased by 73.20% on

Yelp2018, and the sharpening process improves the ability of the

method to recommend long-tail items that users purchase relatively

infrequently. In the case of novelty, it can be seen that the metric

is improved by 7.01% compared to that using only the blurring

process in Amazon-book. In Figs. 8 (a), (c), (e), we can see that the

sharpening process is able to enhance Recall and NDCG.

4.5 Runtime Analyses
We also report our pre-processing and inference time in Tables 5

and 6. Since our method does not include any training step, it is

much faster than other methods — however, our method requires

a pre-processing step to calculate
˜𝑹, ˜𝑷 , and so on. Among various

baselines, LightGCN is one of the simplest and most influential

graph convolutional methods, but its training time is several orders

of magnitude worse than our pre-processing time. GF-CF also does

Blurring-Sharpening Process Models for Collaborative Filtering SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Table 5: The training time of LightGCN, and the pre-
processing time of our method. Since our method does not
have any training step, we compare our pre-processing time
with LightGCN’s training time. GF-CF also requires the
same types of pre-processing and therefore has the samepre-
processing time as ours.

Model Gowalla Yelp2018 Amazon-book

Training of LightGCN 1.0 × 10
4
s 1.5 × 10

4
s 9.7 × 10

4
s

Training of LT-OCF 3.6 × 10
4
s 4.8 × 10

4
s 2.3 × 10

5
s

Pre-processing of BSPM 35.4s 42.3s 101.6s

Table 6: The inference time of BSPM and GF-CF with a mini-
batch size of 2048 users

Model Gowalla Yelp2018 Amazon-book

GF-CF 9.8s 10.6s 40.1s

BSPM-EM (Euler) 10.5s 11.0s 53.0s

BSPM-EM (RK4) 17.9s 19.8s 125.5s

BSPM-LM (Euler) 10.6s 11.2s 59.3s

BSPM-LM (RK4) 17.6s 19.6s 127.2s

not have any training step and its pre-processing time is the same

as our method. However, our model is more complicated than GF-

CF (cf. Eq. (12) for GF-CF vs. Eq. (15) or (16) for our method) and

has longer inference times. However, current official ODE solver

implementations on PyTorch do not support sparse matrices. Our

method will become much faster with sparse matrix computations.

4.6 Case Studies
We compare BSPM-EM and BSPM-LM with and without the sharp-

ening process in terms of Hits@20 to see how the sharpening

process changes recommended items. After the sharpening process,

more items are accurately recommended for all datasets, including

Gowalla, Yelp2018, and Amazon-book. Fig. 9 shows case studies for

several users on Amazon-book. After the sharpening process, a few

more items are accurately recommended for users A and B.

Interestingly, those additional hits, highlighted in orange in Fig. 9,

after the sharpening process has relatively low node degrees. In

Fig. 9 (b), the recommended items’ degrees are high when only

the blurring process is performed. In contrast, the degrees of the

extra hits after the sharpening process are as low as less than 85,

i.e., those additional hits are not popular items but specific to the

user. On Amazon-book, the average node degree of hits is 48.20

when only the blurring process is used, but it drops to 33.10 when

the sharpening process is added. Fig. 10 shows that the ratio of

hits with low item degrees increases after the sharpening process.

These results suggest that the model with the sharpening process

accurately recommends less popular but user-specific items.

The long-tail problem, i.e., how to recommendmore user-specific

items, is a major challenge in the recommender system. Benchmark

data also has long-tail characteristics, as shown in Fig. 4, making it

difficult to recommend user-specific items. Our case study results

show that the sharpening process allows for user-specific item

recommendations while also improving accuracy.

A0 A1 A2 A3 A4 A5 A6
Item index

0

200

400

Ite
m

 d
eg

re
e

Hits (Only Blurring)
Additional hits (BSPM-LM)

(a) User A

B0 B1 B2 B3 B4 B5 B6 B7
Item index

0
250
500
750

1000
1250

Ite
m

 d
eg

re
e

Hits (Only Blurring)
Additional hits (BSPM-LM)

(b) User B

Figure 9: Node degrees of hits (correctly recommended
items) by BSPM-LM on Amazon-book. Blue denotes hits
when the sharpening process is skipped. Orange means ad-
ditional hits after the sharpening process is performed.

0.3
0.4

67↑ 19↑ 11↑ 1↑0.0
0.1

Item degree

Hi
ts

 (%
) Only Blurring (GF-CF)

BSPM-LM

Figure 10: Histogram of Amazon-book’s node degrees of cor-
rectly recommended items (i.e., hits). In the Y-axis, the num-
ber of hits for each node degree bin is divided by the total
number of hits.

5 CONCLUSION & FUTUREWORK
We presented a novel paradigm of blurring-sharpening process

model (BSPM) for CF. Our work is greatly inspired by the recent two

research breakthroughs: i) graph filtering-based methods, e.g., GF-

CF, and ii) SGMs for generating fake images. As in SGMs, we adopt

the perturbation-recovery paradigm to discover new information.

As in GF-CF, we do not learn embedding vectors but directly process

the interaction matrix. After defining our BSPM paradigm, we

also design a couple of variants to enhance the recommendation

accuracy further. In addition, our BSPM is one of the fastest methods

ever designed for CF since it does not include any training phase but

directly infers unknown user-item interactions. In our experiments

with 43 baselines and 3 benchmark datasets, our method marks the

best accuracy by large margins. Since our method is not only the

most accurate but also one of the fastest methods, it has a significant

impact on real-world CF applications.

In the future, we hope that it can be further improved by adopting

better blurring and sharpening processes since we have focused on

designing the overall architecture by customizing popular filters.

In particular, we think that it is promising to learn optimal blurring

and sharpening processes from data.

ACKNOWLEDGMENTS
Noseong Park is the corresponding author. This work was sup-

ported by an IITP grant funded by the Korean government (MSIT)

(No.2020-0-01361, Artificial Intelligence Graduate School Program

(Yonsei University)) and an ETRI grant funded by the Korean gov-

ernment (23ZS1100, Core Technology Research for Self-Improving

Integrated Artificial Intelligence System).

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Choi, et al.

REFERENCES
[1] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien

Adam, and Paul Honeine. 2021. Analyzing the Expressive Power of Graph Neural

Networks in a Spectral Perspective. In ICLR.
[2] Oren Barkan and Noam Koenigstein. 2016. ITEM2VEC: Neural item embedding

for collaborative filtering. IEEE 26th International Workshop on Machine Learning
for Signal Processing (2016), 1–6.

[3] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond Low-frequency

Information in Graph Convolutional Networks. In AAAI.
[4] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jaeho Choi. 2019. Rating

Augmentation with Generative Adversarial Networks towards Accurate Collabo-

rative Filtering. In TheWebConf (former WWW).
[5] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. 2018. CFGAN:

A Generic Collaborative Filtering Framework Based on Generative Adversarial

Networks. In CIKM.

[6] Chong Chen, Min Zhang, Yongfeng Zhang, Yiqun Liu, and Shaoping Ma. 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation.

ACM Trans. Inf. Syst. 38, 2, Article 14 (2020), 28 pages.
[7] Honglong Chen, Shuai Wang, Nan Jiang, Zhe Li, Na Yan, and Leyi Shi. 2021.

Trust-aware generative adversarial network with recurrent neural network for

recommender systems. International Journal of Intelligent Systems 36, 2 (2021),
778–795.

[8] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting

Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional

Network Approach. In AAAI.
[9] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal

Generalized PageRank Graph Neural Network. In ICLR.
[10] Jeongwhan Choi, Jinsung Jeon, and Noseong Park. 2021. LT-OCF: Learnable-Time

ODE-based Collaborative Filtering. In CIKM.

[11] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. 191–198.

[12] J.R. Dormand and P.J. Prince. 1980. A family of embedded Runge-Kutta formulae.

J. Comput. Appl. Math. 6, 1 (1980), 19 – 26.

[13] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for

Recommendation Systems. In SIGIR.
[14] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. 2022.

Graph Trend Filtering Networks for Recommendation. In SIGIR. 112–121.
[15] Hao-Ming Fu, Patrick Poirson, Kwot Sin Lee, and Chen Wang. 2022. Revisiting

Neighborhood-based Link Prediction for Collaborative Filtering. In TheWebConf
(formerWWW)Workshop on Geometrical and Topological Representation Learning.

[16] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. 2010. Beyond

Accuracy: Evaluating Recommender Systems by Coverage and Serendipity. In

RecSys.
[17] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for

Networks. In KDD. 855–864.
[18] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng

Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. In SIGIR.
[19] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-seng

Chua. 2017. Neural Collaborative Filtering. In TheWebConf (former WWW).
[20] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.

2004. Evaluating Collaborative Filtering Recommender Systems. ACM Trans. Inf.
Syst. 22, 1 (2004), 5–53.

[21] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and

Deborah Estrin. 2017. Collaborative Metric Learning. In TheWebConf (former
WWW). 193–201.

[22] Jun Hu, Shengsheng Qian, Quan Fang, and Changsheng Xu. 2022. MGDCF:

Distance Learning via Markov Graph Diffusion for Neural Collaborative Filtering.

arXiv preprint arXiv: Arxiv-2204.02338 (2022).
[23] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-Based Evaluation

of IR Techniques. ACM Trans. Inf. Syst. 20, 4 (2002), 422–446.
[24] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In

ICLR.
[25] Taeyong Kong, Taeri Kim, Jinsung Jeon, Jeongwhan Choi, Yeon-Chang Lee,

Noseong Park, and Sang-Wook Kim. 2022. Linear, or Non-Linear, That is the

Question!. In WSDM. 517–525.

[26] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix Factorization Techniques for

Recommender Systems. Computer 42, 8 (2009), 30–37.
[27] Dongha Lee, SeongKu Kang, Hyunjun Ju, Chanyoung Park, and Hwanjo Yu.

2021. Bootstrapping User and Item Representations for One-Class Collaborative

Filtering. In SIGIR. 317–326.
[28] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.

Variational Autoencoders for Collaborative Filtering. In TheWebConf (former
WWW).

[29] Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. 2021. Interest-Aware

Message-Passing GCN for Recommendation. In TheWebConf (former WWW).
1296–1305.

[30] Jiahao Liu, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, and Ning Gu. 2022.

Parameter-free Dynamic Graph Embedding for Link Prediction. In NeurIPS.
[31] Zhiwei Liu, Lin Meng, Fei Jiang, Jiawei Zhang, and Philip S Yu. 2020. Deoscillated

Graph Collaborative Filtering. arXiv preprint arXiv:2011.02100 (2020).
[32] JianxinMa, Peng Cui, KunKuang, XinWang, andWenwuZhu. 2019. Disentangled

Graph Convolutional Networks. In ICML, Vol. 97. 4212–4221.
[33] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. 2019. Learn-

ing Disentangled Representations for Recommendation. In NeurIPS, Vol. 32.
[34] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,

and Xiuqiang He. 2021. SimpleX: A Simple and Strong Baseline for Collaborative

Filtering. In CIKM. 1243–1252.

[35] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.

2021. UltraGCN: Ultra Simplification of Graph Convolutional Networks for

Recommendation. In CIKM.

[36] Andriy Mnih and Russ R Salakhutdinov. 2007. Probabilistic Matrix Factorization.

In NeurIPS, Vol. 20.
[37] Shaowen Peng, Kazunari Sugiyama, and Tsunenori Mine. 2022. Less is More:

Reweighting Important Spectral Graph Features for Recommendation. In SIGIR.
1273–1282.

[38] Shaowen Peng, Kazunari Sugiyama, and Tsunenori Mine. 2022. SVD-GCN: A Sim-

plified Graph Convolution Paradigm for Recommendation. In CIKM. 1625–1634.

[39] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-

ing of Social Representations. In KDD. 701–710.
[40] Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. 2015. Col-

laborative Filtering with Graph Information: Consistency and Scalable Methods.

In NeurIPS.
[41] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI.
[42] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:

Towards Deep Graph Convolutional Networks on Node Classification. In ICLR.
[43] Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, B. Khaled Letaief, and

Dongsheng Li. 2021. How Powerful is Graph Convolution for Recommendation?.

In CIKM.

[44] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. 2021. Maximum

Likelihood Training of Score-Based Diffusion Models. In NeurIPS.
[45] Yang Song and Stefano Ermon. 2020. Improved Techniques for Training Score-

Based Generative Models. In NeurIPS.
[46] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Ste-

fano Ermon, and Ben Poole. 2021. Score-Based Generative Modeling through

Stochastic Differential Equations. In ICLR.
[47] Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. In

TheWebConf (former WWW). 3251–3257.
[48] Changfeng Sun, Han Liu, Meng Liu, Zhaochun Ren, Tian Gan, and Liqiang Nie.

2020. LARA: Attribute-to-Feature Adversarial Learning for New-Item Recommen-
dation.

[49] Jianing Sun, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Xiuqiang He,

ChenMa, andMark Coates. 2020. Neighbor Interaction Aware Graph Convolution

Networks for Recommendation. In SIGIR.
[50] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-Scale Information Network Embedding. In TheWebConf (former
WWW). 1067–1077.

[51] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent Relational Metric

Learning via Memory-based Attention for Collaborative Ranking. In TheWebConf
(former WWW).

[52] Rianne van den Berg, Thomas N. Kipf, and Max Welling. 2017. Graph Convolu-

tional Matrix Completion. In KDD.
[53] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[54] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng

Zhang, Xing Xie, and Minyi Guo. 2018. GraphGAN: Graph Representation

Learning with Generative Adversarial Nets. In AAAI.
[55] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng

Zhang, and Dell Zhang. 2017. IRGAN: A Minimax Game for Unifying Generative

and Discriminative Information Retrieval Models. In SIGIR.
[56] Qinyong Wang, Hongzhi Yin, Hao Wang, Quoc Viet Hung Nguyen, Zi Huang,

and Lizhen Cui. 2019. Enhancing Collaborative Filtering with Generative Aug-

mentation. In KDD.
[57] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural Graph Collaborative Filtering. In SIGIR.
[58] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.

2020. Disentangled Graph Collaborative Filtering. In SIGIR.
[59] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. 2021. Dissecting

the Diffusion Process in Linear Graph Convolutional Networks. In NeurIPS.
[60] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza, Christopher Fifty, Tao Yu,

and Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In

Blurring-Sharpening Process Models for Collaborative Filtering SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

ICML.
[61] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,

and Xing Xie. 2021. Self-Supervised Graph Learning for Recommendation. In

SIGIR. 726–735.
[62] Jiafeng Xia, Dongsheng Li, Hansu Gu, Jiahao Liu, Tun Lu, and Ning Gu. 2022. FIRE:

Fast Incremental Recommendation with Graph Signal Processing. In TheWebConf
(former WWW). 2360–2369.

[63] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. In ICML. 5453–5462.
[64] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.

HOP-rec: high-order proximity for implicit recommendation. In RecSys.

[65] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,

and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. In KDD.
[66] Yinan Zhang, Pei Wang, Xiwei Zhao, Hao Qi, Jie He, Junsheng Jin, Changping

Peng, Zhangang Lin, and Jingping Shao. 2022. IA-GCN: Interactive Graph Con-

volutional Network for Recommendation. arXiv preprint arXiv: Arxiv-2204.03827
(2022).

[67] Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo, Joseph Rushton Wakeling,

and Yi-Cheng Zhang. 2010. Solving the apparent diversity-accuracy dilemma of

recommender systems. Proceedings of the National Academy of Sciences 107, 10
(2010), 4511–4515.

	Abstract
	1 Introduction
	2 Preliminaries & Related Work
	2.1 Collaborative Filtering
	2.2 Score-based Generative Models (SGMs)
	2.3 Ordinary Differential Equations (ODEs)

	3 Proposed Method
	3.1 Overall Workflow
	3.2 Blurring Process
	3.3 Sharpening Process
	3.4 Blurring-Sharpening Process Model (BSPM)
	3.5 Direct Inference without Training
	3.6 Comparison with Other Methods

	4 Experiments
	4.1 Experimental Environments
	4.2 Experimental Results
	4.3 Ablation and Sensitivity Studies
	4.4 Efficacy of the Sharpening Process
	4.5 Runtime Analyses
	4.6 Case Studies

	5 Conclusion & Future Work
	Acknowledgments
	References

