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ABSTRACT

Reinforcement learning-based recommender systems have recently
gained popularity. However, the design of the reward function, on
which the agent relies to optimize its recommendation policy, is
often not straightforward. Exploring the causality underlying users’
behavior can take the place of the reward function in guiding the
agent to capture the dynamic interests of users. Moreover, due to
the typical limitations of simulation environments (e.g., data ineffi-
ciency), most of the work cannot be broadly applied in large-scale
situations. Although some works attempt to convert the offline
dataset into a simulator, data inefficiency makes the learning pro-
cess even slower. Because of the nature of reinforcement learning
(i.e., learning by interaction), it cannot collect enough data to train
during a single interaction. Furthermore, traditional reinforcement
learning algorithms do not have a solid capability like supervised
learning methods to learn from offline datasets directly. In this paper,
we propose a new model named the causal decision transformer for
recommender systems (CDT4Rec). CDT4Rec is an offline reinforce-
ment learning system that can learn from a dataset rather than from
online interaction. Moreover, CDT4Rec employs the transformer
architecture, which is capable of processing large offline datasets
and capturing both short-term and long-term dependencies within
the data to estimate the causal relationship between action, state,
and reward. To demonstrate the feasibility and superiority of our
model, we have conducted experiments on six real-world offline
datasets and one online simulator.
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1 INTRODUCTION

Reinforcement Learning (RL)-based Recommender Systems (RS)
have been proven effective in a wide range of applications, includ-
ing e-commerce, advertising, and streaming services, especially
considering that users’ interests are constantly changing in the real
world [6]. In RLRS, an agent interacts with the environment by
taking actions (e.g., recommending items to users) and receiving
feedback in the form of rewards (e.g., user actions on recommended
items). The agent uses the feedback to improve its policy over
time, with the ultimate goal of maximizing the long-term reward
(e.g., increasing user satisfaction or engagement with the system).
However, RLRS often face two major challenges: i) The reward
function used to reflect the user’s interest is hard to formulate; ii)
Due to the nature of the reinforcement learning algorithm, it can
only be trained in small-scale simulation platforms, and most of
the large existing datasets can not be directly used to optimize the
recommendation algorithms.

In RL, the reward function plays a crucial role in evaluating the
effectiveness of the current action. When it comes to RLRS, the
reward function is used to assess whether a recommended item is
a good fit for a specific user. This evaluation can be considered a
representation of the user’s interests or behavior logic. However,
defining the reward function can be a challenging task. Some re-
searchers have chosen to omit it altogether and instead learn the
recommendation policy directly from expert demonstrations [7, 8].
This approach, however, requires pre-training an expert agent in a
simulation environment. Unfortunately, the lack of suitable simula-
tion environments makes achieving this goal challenging. Mean-
while, the majority of recommendation algorithms proposed in
the literature rely on data-driven approaches, with offline datasets
used for both training and testing. However, such an approach
is incompatible with the reinforcement learning paradigm, which
necessitates online training and evaluation. To address the afore-
mentioned two challenges, one possible solution is to integrate the
established data-driven approach into the reinforcement learning
framework and avoid the design of reward function.

Recently, data-driven methods, such as transformers [29], have
attracted significant attention. Transformers are renowned for their
ability to handle large datasets, and the success of BERT4Rec [27]
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demonstrated the effectiveness of transformers in recommenda-
tion systems. Further research [4, 35] has shown that transformers
can effectively handle sparse and high-dimensional data. There-
fore, in this work, we investigate the use of transformers in RLRS
to enhance their capacity for processing large datasets. Decision
Transformer [3] and Trajectory Transformer [15] are two typi-
cal offline reinforcement learning methods that leverage trans-
formers. Both approaches view offline RL as a sequence modeling
problem and train transformer models on collected data. Decision
Transformer shows that by training an autoregressive model on se-
quences of states, actions, and returns, agents can learn to generate
optimal behavior with limited experience [3]. On the other hand,
the Trajectory Transformer demonstrates that sequence modeling
in reinforcement learning is a more reliable method for predict-
ing long-term outcomes in environments that satisfy the Markov
property [15].

However, both Decision Transformer and Trajectory Transformer
were designed primarily for robot learning. They may not be suit-
able for addressing the unique challenges faced by RLRS (i.e., un-
derstanding user behavior and learning users’ dynamic interests).
Addressing these challenges requires understanding the causal logic
behind their observed behaviors. Hence, we develop a causal mecha-
nism in the transformer to estimate the causal relationship between
action, state, and reward to predict users’ potential feedback on the
actions taken by the system. In this way, we can avoid designing a
reward function and instead estimate the reward by relying on the
causality in the user’s recent behavior.

The contributions of this work are as follows:

e To avoid the reward function design, we design a causal
mechanism to estimate the reward based on the user’s recent
behavior.

e We propose a method named causal decision transformer
(CDT4Rec), which adopts transformer and offline reinforce-
ment learning as the main framework to empower the pro-
posed method to use existing real-world datasets.

o To the best of our knowledge, this is the first work that
uses offline reinforcement learning and transformer in a
recommender system.

o Extensive experiments on six public datasets and one online
environment demonstrate the superiority of the proposed
method.

2 PROBLEM FORMULATION

Let U = {uo, u1, ..., un } denote a set of users and 7 = {ig, i1, ..., im }
denote a set of items. The datasets in a recommendation problem
consist of the information and historical interaction trajectories of
users spanning time steps t =1, ..., T.

A standard recommendation problem can be described as an
agent aiming to achieve a specific goal, which learns from inter-
actions with users, such as recommending items and receiving
feedback. This process can be formulated as a RL problem, where
an agent is trained to interact with an environment. Normally, RL
is described as a Markov Decision Process (MDP) [28]. Specifically,
the agent interacts with the environment continually, choosing
actions based on the current state of the environment and the envi-
ronment responding to those actions and providing a new state to
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the agent. Formally, components mentioned above in the MDP can
be represented as a tuple (S, A, P, R, y), in which:

e State S: state space. s; € S is the state in time step t, and
st is the terminal state, where T is the final time step of an
episode.

e Action A: action space. A(s;) is set of actions possible in
state s.

e Transition Probability #: denoted as p(s¢+1lss, ar) € P, is
the probability of transitioning to state sy41, from s; with a;.

e Reward R: & X A — R is the reward distribution, where
R(s, a) is the reward that an agent receives for taking action
a when observing the state s.

e Discount-rate Parameter y: y € [0, 1] is the discount factor
for future rewards.

Given (S, A, P, R,y), an RL agent behaves following its policy =,
which is a mapping from states to actions to be taken when in those
states. The RL objective, J (), can then be written as an expectation
under the trajectory distribution (so, ao, ..., s, ar):

J(m) =Erep, (o) [Z yer(se, at)] (1
k=0

Offline reinforcement learning is defined as the data-driven for-
mulation of RL problems that improve with more data training. In
an offline RL problem, the goal is still to train the agent to maximize
the total reward it receives over time, as expressed in Equation (1).
The fundamental difference between offline RL and RL is that offline
RL just uses offline data and does not require any further online
interaction [20]. Thus, a static dataset of transitions, such as data
collected previously or human demonstrations, is presented to the
offline RL learning system. As a result, the agent in offline RL is
deprived of the ability to explore and interact with the environment
to collect more transitions. Formally, we consider the transition
dataset D to be the training dataset for the policy, from which
the offline RL algorithms try to gain adequate insight into the dy-
namical systems underlying the MDP. We denote the distribution
over states and actions in D as 7. The states in state-action pairs
(s,a) € D are sampled following s ~ d”#(s), and the actions are
sampled following a ~ 7g(als).

As aresult, a dataset for an offline RL-based recommender system
can be described formally as D = {(s}‘, a;‘, s’t“‘H, r;‘)}, following the
MDP (S, A, P,R,y). For each user u at the time step t, we have
the following elements: a current state s;' € S, items recommended
by the agent (or recommender system) via taking action a;, and the
user’s feedback r.

3 METHODOLOGY
3.1 Model Architecture

Here, we introduce a new Casual Decision Transformer for RL-
based Recommender System (CDT4Rec), which formulates the
problem of offline reinforcement learning as a sequence modeling
problem. Our framework is built upon Decision Transformer [3]. As
illustrated in Figure 1, CDT4Rec consists of L stacked multi-input
transformer blocks. CDT4Rec receives a trajectory representation
as the input to the first transformer block. The output sequence from
the L-th transformer block is utilized to construct two distinct final
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Figure 1: An overview of our CDT4Rec architecture. RTGs, states, and actions are fed into linear embeddings, to which an
absolute positional embedding is added. The tokens are then passed through L stacked multi-input blocks, which use both
self-attention and cross-attention mechanisms with causal masks. This results in the generation of two balanced representations
at the output of the L-th block. These representations are then fed into two additional prediction layers. On top of that are two
networks N, and Ny, which are used to estimate the reward and generate the predicted action, respectively.

representations: one for action prediction and the other for state
prediction. Additionally, two separate prediction layers are used
above the final representations to make predictions for actions and
states, respectively. After that, we train two networks to estimate
the reward and generate the action.

For training, we have access to observational data O and define
a trajectory representation as a sequence of three tokens: returns-
to-go (RTG), states, and actions. For simplicity, we omit the user
index u unless necessary. Formally, the trajectory representation
for autoregressive learning and generation is as follows:

7 = (G, s1, a1, Gy, S, az, ..., GT, ST, AT ), (2)

where the RTG G; is defined as the sum of the discounted rewards
that the agent receives over the future:

Gr=rr+yre1+ ...+ yT_trT = Z yk_trk 3)

The reason for choosing the expected discounted return is that
we anticipate the proposed framework to generate future actions
during test time that would yield the desired returns. The generated
actions should be compatible with the selection of the agent, which
aims to maximize the expected discounted return.

Let K > 1 denote the context length, representing the latest K
time steps fed into the RL causal transformer. Accordingly, s;—g41:¢
represents the sequence of the last K states at time ¢, and Gy_g1.¢
represents the expected discounted return for the last K time steps.
Further, let B > 1 denote the prediction range of the B-step pre-
diction, and a;.;+g—1 denote the associated length-B actions gener-
ated by the transformer. Specifically, the generated action at time
t is based on s;_g41.; and Gy_g+1.¢, which can be formulated as
ar = (St—K+1:6- Gr-K+1:)-
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In a recommender system, the user’s actions are usually repre-
sented as binary, either a click or no click. However, this represen-
tation of the action is not informative enough to understand the
user’s interests. Learning to generate actions based on this type of
dataset is also inadequate for explaining the user’s click behavior.
In RL, on the other hand, the reward function is frequently seen
as the most succinct description of a task. The expected reward
is used to construct the learning objective for the reinforcement
learning algorithm. As a result, the reward function describes the
agent’s goals and directs policy optimization. The reward function
is critical everywhere, and this is also the case when using RL for
RS. In RLRS, the reward function explains a user’s behavior and
reflects their interests. In the context of RS, the reward function is
designed to partially reflect the logic behind user actions, similar
to the concept of causality, which is used to identify the impact of
different variables on a model’s performance and to understand
the reasons behind certain decisions or actions. In this work, we
formulate the reward function as a problem of estimating the causal
effects of the action on the reward by giving user history trajecto-
ries: E(r(ay, s¢)|7).

In the following sections, the major components of CDT4Rec
are introduced bottom-up: embedding layer, transformer layer, and
causal layer.

3.2 Embedding Layer

We learn a linear layer to obtain token embeddings for RTGs, states,
and actions, respectively, which is followed by layer normalization
as in [3]. In addition, to determine the exact positions of these
tokens within a trajectory, we apply position encoding to the input
embeddings at the bottoms of the transformer layer stacks. This is
essential for capturing the causality behind the users’ behavior as
one user’s behavior is causally determined by the previous one and
the recommendation made by the system. And the order of users’
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behaviors can reflect their actual interests. For example, some users
begin their search with higher-priced items but end up purchasing
more cost-effective items, while others begin their search with
lower-priced items but purchase items from well-known companies.
The time step information in the trajectories may reflect different
user preferences and habits.

Because the RTG sequence for the recommender system lacks
time step information, we must learn an embedding for each time
step in order to stitch the sub-trajectories together. To help deter-
mine the exact positions of tokens inside a trajectory, we use an
absolute positional embedding that uses a linear layer to obtain the
embedding for each time step in a trajectory.

Specifically, a one-time-step embedding is appended to three
tokens: RTG, state, and reward. And the input representation for
each token is constructed by summing its embedding and positional
embedding:

G? = Linearg(G;) + pr
4)

s? = Linears(s;) + pr a(t) = Linear,(az) + pr,
where p; € P is the d-dimensional absolute positional embedding
for time step ¢.

In addition to the absolute positional embedding we used, there
is another form of positional embedding called relative positional
embedding [10]. Relative positional embedding is defined as encod-
ing the position of a unit relative to other units by considering the
distance between two tokens. Huang et al. [14] analyzed the storage
complexity of absolute and relative position embedding methods.
Consider the following transformer model: b layers, h attention
heads per layer, and a maximum sequence length of m. The abso-
lute and relative position embedding parameter sizes are md and
bh(2m — 1)d, respectively. And the runtime storage complexity is
O(md) for the absolute method and O(bhm?d) for the majority of
the relative methods. Earlier research suggests that relative position
embeddings outperform absolute position embedding in some situa-
tions [14, 22]. However, given the nature of reinforcement learning
and the intricacy of the recommendation problem, adding too much
complexity via positional embedding may make RL training harder
to converge. Moreover, the m we used in this paper is related to
the length of users’ history and may easily reach very large values,
which may easily result in a too-large space complexity for practical
problems. As a result, we employ absolute positional embedding in
our method.

3.3 Transformer Layer

As demonstrated by Figure 1, our transformer layer contains L
identical blocks. Let [ = 1, ..., L be the index of the transformer
blocks from bottom to top. For time step ¢, we iteratively compute
hidden representations simultaneously at each layer [ for each
RTG, state, and action, denoted by Gl, si and aé, respectively. The
input for each transformer block is three parallel sequences of
hidden representations. Let dj, be the size of the hidden states and
H! = (H., H%)T € RT%4 be the hidden representations of any
one of the G, s! and a! for each layer I at each time step t. The

first block, in particular, is fed with the sequence of Equation (4)
as input. The input for all blocks with [ > 2 is the output of the

Wang, et al.

previous (I — 1) block:
hi = transformerfblock(hi_l), forl > 2 (5)

Following the transformer layer from [3, 9], each transformer block
begins with a Masked Multi-Head Self-Attention sub-layer over the
input tokens followed by a Masked Multi-Head Cross-Attention
sub-layer and a Position-wise Feed-Forward layer.

Masked Multi-Head Self-Attention. Rather than performing
a single attention function, we use multi-head self-attention, which
is scaled dot-product attention that adapts numerous concurrent at-
tention heads. Benefitting from the multi-head attention, the model
can pay attention to inputs from many representation subspaces
simultaneously at distinct positions. The attention head takes as
input a matrix of queries Q, a matrix of keys K, and a matrix of
values V, where Q,K,V € RTx(dn/nn) and ny, is the number of
heads. The query, key, and value embeddings are projected from
the input tokens with different projection matrices. Then the atten-
tion function is computed on a collection of queries at the same
time. The output matrix is as follows:

QW KWT

Attention/) (Q(j),K(j), V(j)) = softmax vy (6)

it

The output representation produced by each head is:
head) = attention(Q(j)W]Q,K(j)M/]K, V(j)WjV), 7)

where the projections for each head WJQ WJQ WJQ € R (dn/nn)
are the learnable parameter matrices.

Multi-head attention, in particular, applies the h attention func-
tions in parallel to build output representations and then outputs
the projected concatenation of the different heads:

MultiHead(Q, K, V) = Concat(head’, ..., headh)WO (8)

We adopt a variant of multi-head attention where certain input
positions are masked with a causal mask [3]. This is used to ensure
that the attention mechanism does not attend to future tokens when
generating a predicted action sequence, such that autoregressive
models can be applied without violating the assumption that future
tokens are not available at the time of creation.

Masked Multi-Head Cross-Attention. In contrast to the self-
attention layer, which only takes into account the information
within a single transformer subnetwork, the cross-attention layer
is capable of exchanging information between parallel transformer
subnetworks globally. Specifically, self-attention computes all of
the keys, queries, and values using hidden states from a single
transformer subnetwork for the attention calculation. On the other
hand, cross-attention infers the queries based on the hidden states
within the transformer subnetwork and uses the output from the
self-attention layers in two other transformer subnetworks as keys
and values. This allows the cross-attention layer to exchange in-
formation between all three transformer subnetworks. To prevent
queries from attending to future keys and values, a causal mask is
introduced to the cross-attention as well.

Position-wise Feed-Forward Network. To transform the out-
put of the cross-attention layer into a new representation that is
more suitable for the task, we employ a Position-wise Feed-Forward

2023-08-29 01:02. Page 4 of 1-10.
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Network (FFN) in each block. The position-wise FFN consists of two
fully connected layers with an activation function applied between
them. We use a Gaussian Error Linear Unit (GELU) activation [13]
instead of the standard ReLu activation, following the transformer
in [24]:

GELU(x) = x®(x), where ®(x)=P(X <x),X ~N(0,1) (9)

The output of the FFN is a sequence of hidden states of the same
length as the input:

FNN(h) = GELU(KL W) 4+ bWy () 4 p(2) (10)

In addition, the element in the input sequence is transformed inde-
pendently at each position, without considering the other elements
in the sequence.

3.4 Causal Layer

The ultimate output, represented as H{‘ = (Gf_ K410 sf_ K410 a]t“_ K41
s G[L, s{“, af), is the final representation of the input trajectory
after hierarchically processing it through all L transformer blocks.
We segment the output into three sets: a set of RTGs, a set of states

and a set of actions, which can be represented as:

Hy = (Gy_K41: St—K+1:t> @ —K+1:1) (11)
These sets are further used to build two separate final represen-
tations for the action and state prediction. As the action selection is
based on the equation a; = 7(s;—g+1:t» Gt~k +1:), We use the hid-
den states Gy_g1.+ and s;—g+1.¢ to build the final representations
for the action prediction. The final representation is constructed
by taking an element-wise summation of these two hidden states.
A fully-connected linear layer and GELU activation are applied to
obtain this representation:

pa
¥y = Grok+1:t ® St—-K+1:¢

- (12)
¥4 = GELU(¥AW™ +b')

Similarly, the final representations for the state prediction are
constructed by using s;_g+1.+ and a;—g+1.¢, because the transition
of the state is based on its previous state and action:

S
Wy = sp-k+1:t D Ar-K+1:t

- (13)
¥§ = GELU(YEW'2 + b"2)

Dropout [26] is also applied to the output of the fully-connected lin-
ear layer to help prevent overfitting. Two fully-connected networks
are put on top of the action prediction and state prediction for the
final prediction task: predict the potential reward r; and generate
action a;. The action prediction and state prediction are passed
through the fully-connected networks, called reward estimation
network N, to make the final predictions of potential reward r;.
And the potential reward r; and action prediction are received by
the action generation network Ny to generate action a;.

3.5 Training Procedure

To train the model, we use a dataset of recommendation trajectories.
We first use Deep Deterministic Policy Gradient (DDPG) [21] to
train an expert RL agent, and then we use this expert in the envi-
ronment to collect a series of expert trajectories to be the dataset.
We sample mini-batches of sequences with context length K from
2023-08-29 01:02. Page 5 of 1-10.
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the dataset and reformulate the trajectories as the inputs of the
transformer. We summarize the training procedures for CDT4Rec in
Algorithm 1. Let 0, and 6, denote the trainable parameters for the
reward estimation network N, and action generation network Ny,
respectively. Further, let 65 and 0, denote all trainable parameters
for predicting the state and action. We fit the reward estimation
network Ng, state prediction, and action prediction by minimizing
the factual loss of the reward:
-LNE (983 Os, ea)

2
1 K1 K1
:E(G,s,a)~r EZIk(zl(rk_Ne(s]; K+1'k(93)’a§ K+1'k(6a);98))

(14)
For the action generation network Ny, we fit the Ny to generate the
final action by minimizing the cross entropy loss:

LN, (8. 6. 6a)

1 e . _ .
=EE<G,M>~T[ — 2K log Ny (FF K+ (0,), af ~K+1% () eg)}

The overall training objective for CDT4Rec is:

arg min L, (0e, s, 6a) + arg min L, (g, Oc, 6a) 16
00.05,04 000000 (16)

Algorithm 1: CDT4Rec Training
input:Offline data D, context length K, batch size B,
number of iterations n;;, model parameters 0e, 0y,
Ha: 95;
Compute the trajectory sampling probability
p(0) =t/ Zrep I7l;
fori=1,..,n;do
Sample B trajectories out of D;

for each sampled trajectory T do
Compute the RTG sequence according

to Equation (3);
Sample a sub-trajectory 7x of length K from ;
end
a_pred = Transformerge)gg,g‘Z (tx);
r_esti = Transformerg, g_g, (7x);
Oc, 04, 04, 05 «— one gradient update using the sampled
K.

end

4 EXPERIMENTS

In this section, we report the outcomes of experiments that focus
on the following three main research questions:

e RQ1: How does CDT4Rec compare with other traditional
deep RL algorithms in online recommendation environments
and offline dataset environments?

e RQ2: How does the number of trajectories affect the perfor-
mance of CDT4Rec compared to other offline reinforcement
learning approaches?

e RQ3: How do the hyper-parameters affect the performance
in the online simulation environment?
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We concentrate our hyper-parameters study on online simulation
settings since they are more closely suited to real-world environ-
ments, whereas offline datasets are fixed and do not reflect users’
dynamic interests.

4.1 Datasets and Environments

In this section, we compare our proposed algorithm, CDT4Rec, with
other state-of-the-art algorithms on real-world datasets and within
an online simulation environment. We implement our model in
PyTorch and conduct all our experiments on a server with two Intel
Xeon CPU E5-2697 v2 CPUs with 6 NVIDIA TITAN X Pascal GPUs,
2 NVIDIA TITAN RTX, and 768 GB memory.

Firstly, we introduce six public real-world representative datasets
from different recommendation domains for offline experiments
which vary significantly in sparsity. Table 1 contains the overall
statistics of the datasets.

e Amazon CD!: This is a collection of product review datasets
crawled from Amazon.com by [23]. They separated the data
into various datasets based on Amazon’s top-level product
categories. We use the “CD” category in this work.

e LibraryThing: LibraryThing? is an online service to help
people catalog their books easily. It includes social relation-
ships between users and is frequently used to study social
recommendation algorithms.

e MovieLens: This is a popular benchmark dataset for recom-
mender systems. In this work, we will use two different scales
of the MovieLens datasets, MovieLens-1M? and MovieLens-
20M*.

e GoodReads: It is a dataset from the book review website
GoodReads® by [30]. It contains information on users’ mul-
tiple interactions regarding items, including rating, review
text, etc.

o Netflix: This is a well-known benchmark dataset from the
Netflix Prize Challenge®. It only contains rating information.

e Book-Crossing’: This is another book related dataset pro-
posed by [36]. This dataset is similar to MovieLens which
only contains rating information.

Table 1: Statistics of the datasets used in our offline experi-
ments.

Dataset # of Users | # of Items | # of Ratings | Density
Amazon CD 75,258 64,443 3,749,004 0.08%

LibraryThing 73,882 337,561 979,053 0.004%
MovieLens-1M 6040 3900 1,000,209 4.24 %
GoodReads 808,749 1,561,465 | 225,394,930 0.02%
MovieLens-20M 138,493 27,278 20,000,263 0.53%

Netflix 480,189 17,770 100,498,277 1.18%

!https://nijianmo.github.io/amazon/index.html
Zhttps://www.librarything.com/
3https://grouplens.org/datasets/movielens/1m/
“https://grouplens.org/datasets/movielens/20m/
Shttps://www.goodreads.com/
Shttps://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
"http://www2.informatik.uni-freiburg.de/ cziegler/BX/
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In order to evaluate the performance of the proposed method, we
need to transfer those offline datasets into simulation environments
so that the reinforcement learning agent can interact. We convert
those recorded data into an interactive environment, following the
existing works [5]. Specifically, we adopt LSTM as the state encoder
for temporal information to ensure the temporal relation can be
captured. We convert the feedback data into a binary format by
categorizing ratings above 75% of the maximum rating as positive
feedback, which will provide a positive incentive signal for the
agent. Ratings lower than 75% are classified as negative feedback.
The evaluation process is the same as described in [34].

In addition, we also conduct an experiment on a real online
simulation platform to validate the proposed method. We use Vir-
tualTB [25] as the major online platform in this work. VirtualTB
mimics a real-world online retail environment for recommender
systems. It is trained using hundreds of millions of genuine Taobao
data points, one of China’s largest online retail sites. The VirtualTB
simulator creates a “live” environment by generating customers and
interactions, allowing the agent to be tested with virtual customers
and the recommendation system. It uses the GAN-for-Simulating
Distribution (GAN-SD) technique with an extra distribution con-
straint to produce varied clients with static and dynamic features.
The dynamic attributes represent changing interests throughout
an interactive process. It also employs the Multi-agent Adversar-
ial Imitation Learning (MAIL) technique to concurrently learn the
customers’ policies and the platform policy to provide the most
realistic interactions possible.

In terms of evaluation metrics, we use the click-through rate
(CTR) for the online simulation platform as the CTR is one of the
built-in evaluation metrics of the VirtualTB simulation environ-
ment. For offline dataset evaluation, we employ a variety of evalua-
tion metrics, including recall, precision, and normalized discounted
cumulative gain (nDCG).

4.2 Baselines

Most of the existing works are evaluating their methods on offline
datasets, and very few works provide a public online simulator
evaluation. As there are two types of experiments, we provide
two sets of baselines to be used for different experimental settings.
Firstly, we will introduce the baselines for the online simulator,
which are probably the most popular benchmarks in reinforcement
learning:

e Deep Deterministic Policy Gradient (DDPG) [21] is an
off-policy method for environments with continuous action
spaces. DDPG employs a target policy network to compute
an action that approximates maximization to deal with con-
tinuous action spaces.

o Soft Actor Critic (SAC) [12] is an off-policy maximum en-
tropy Deep Reinforcement Learning approach that optimizes
a stochastic policy. It employs the clipped double-Q method
and entropy regularisation that trains the policy to maximize
a trade-off between expected return and entropy.

¢ Twin Delayed DDPG (TD3) [11] is an algorithm that im-
proves baseline DDPG performance by incorporating three
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key tricks: learning two Q-functions instead of one, updat-
ing the policy less frequently, and adding noise to the target

action.

e Decision Transformer (DT) [3] is an offline reinforcement
learning algorithm that incorporates the transformer as the
major network component to infer actions.

Moreover, the following recommendation algorithms are used for of-

fline evaluations which come from two different categories: transformer-

based methods and reinforcement learning-based methods.

o SASRec [16] is a well-known baseline that uses the self-
attention mechanism to make sequential recommendations.

e BERT4Rec [27] is a recent transformer based method for
recommendation. It adopts BERT to build a recommender
system.

e S3Rec [35] is BERT4Rec follow-up work that uses trans-
former architecture and self-supervised learning to maxi-
mize mutual information.

e KGRL [5] is a reinforcement learning-based method that uti-
lizes the capability of Graph Convolutional Network (GCN)
to process the knowledge graph information.

e TPGR [2] is a model that uses reinforcement learning and
binary tree for large-scale interactive recommendations.

e PGPR [32] is a knowledge-aware model that employs rein-
forcement learning for explainable recommendations.

We note that SASRec, BERT4Rec, and S3Rec are not suitable for the
reinforcement learning evaluation procedure. In order to evaluate
the performance of those models, we feed the trajectory represen-
tation 7 as an embedding into those models for training purposes

and use the remaining trajectories for testing purposes .

4.3 Online Simulator Experiments (RQ1)

Firstly, we will outline the procedures for conducting an online sim-
ulator experiment using offline reinforcement learning-based meth-
ods. Unlike traditional reinforcement learning algorithms (DDPG,
SAC, etc.), we begin by training an expert agent using DDPG. We
then employ this expert in the environment to collect a set of expert
trajectories. It is important to note that the expert can only access a
portion of the environment since we are collecting a fixed number
of random trajectories as recorded data. These expert trajectories
are treated as background knowledge and used to pre-train the
offline reinforcement learning-based methods. Subsequently, the
offline reinforcement learning method will conduct fine-tuning
during the interaction with the simulation environment.

In our online simulator experiments, we compared CDT4Rec
with the aforementioned related reinforcement learning algorithms.
The results of this comparison can be found in Figure 2. We can
clearly find that the proposed CDT4Rec method and DT lead to a
significant improvement at the very start of the episode. One main
reason is that DT and CDT4Rec can access more recorded offline
trajectories from the simulation environments due to the offline RL
configuration.

DT performs worse than CDT4Rec. One main reason is that
CDT4Rec introduces an extra causal layer to estimate the potential

8https://drive.google.com/file/d/1ZFCWn_QPpqRGG1mxGt_YVYUcQmZn_3qE/
view?usp=sharing
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causal effect on the users’ decision process. Moreover, the intro-
duction of cross-attention has apparently helped to generate better
embeddings.
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Figure 2: Overall comparison result with variance between
the baselines and CDT4Rec in the VirtualTaobao simulation

environment.

4.4 Offline Dataset Experiments (RQ1)

The overall results of the offline dataset experiments can be found
in Table 2. We can find that CDT4Rec outperforms all baselines,
including transformer-based methods and reinforcement learning-
based methods. We can see that on some datasets, transformer-
based methods are better than reinforcement learning-based meth-
ods, but not to a significant extent.

4.5 Number of Trajectories Study (RQ2)

In order to answer this question (i.e., RQ2), we have conducted an
experiment on different numbers of trajectories. We use DT as the
major baseline, and the results are shown in Figure 3. We can find
that CDT4Rec outperforms DT over a range of trajectory lengths.
Moreover, when the number of trajectories is larger than 20k, the
trend of CDT4Rec does not change significantly. We can conclude
that CDT4Rec reaches its best performance with 20k trajectories.
Furthermore, we can see that the number of trajectories has no
significant effect on CDT4Rec, as CDT4Rec performs well in all
three numbers of trajectories, indicating that CDT4Rec can learn
effectively even with a smaller dataset. While DT still has room for
improvement, the performance of DT varies strongly, and the trend
becomes more stable when the number of trajectories comes to 30k.

4.6 Hyper-parameters Study (RQ3)

In this section, we will investigate the impact of hyper-parameters.
Here, we consider two different hyper-parameters: context length
and the number of trajectories used for training. The context length
determines the number of steps on which the agent’s present ac-
tion depends, and the number of trajectories means the number
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Table 2: The overall results of our model comparison with several state-of-the-art models on different datasets. The highest
results are in bold and the second highest are marked by *

Dataset Amazon CD Librarything
Measure (%) Recall | Precision nDCG Recall Precision | nDCG
SASRec 5.210 + 0.202 2.352 £ 0.124 4.601 + 0.282 8.312 + 0.201 6.526 + 0.129 7.391 + 0.201
BERT4Rec 9.123 = 0.200 6.182 = 0.211 7.123 + 0.198 11.982 + 0.123 9.928 + 0.201 10.021 + 0.210
S3Rec 10.212 £ 0.192*  7.928 £ 0.222" 8.028 £ 0.129* | 13.425 + 0.182 11.725 £ 0.182 11.237 £ 0.127
KGRL 8.208 + 0.241 4.782 + 0.341 6.876 + 0.511 12.128 + 0.241 12.451 + 0.242*  13.925 + 0.252*
TPGR 7.294 + 0.312 2.872 + 0.531 6.128 + 0.541 | 14.713 £ 0.644*  12.410 + 0.612 13.225 + 0.722
PGPR 6.619 £ 0.123 1.892 + 0.143 5.970 + 0.131 11.531 + 0.241 10.333 + 0.341 12.641 + 0.442
CDT4Rec 10.424 + 0.122 8.212 + 0.201 8.111 + 0.182 | 15.229 + 0.128 14.020 + 0.201 14.768 = 0.176
Dataset Book-Crossing GoodReads
Measure (%) Recall | Precision | nDCG Recall | Precision | nDCG
SASRec 5.831 £ 0.272 3.184 + 0.149 4.129 £+ 0.390 6.921 +£ 0.312 5.242 £ 0.211 6.124 £ 0.210
BERT4Rec 8.222 £ 0.192 4.218 + 0.129 5.218 £ 0.129 8.483 + 0.234 7.817 £ 0.281 8.012 £ 0.199
S3Rec 8.992 + 0.265* 5.128 +£0.239*  6.012 + 0.200 10.263 £ 0.212 9.726 £ 0.188 10.002 + 0.210*
KGRL 8.004 £ 0.223 3.521 £0.332  7.641 + 0.446" 7.459 £ 0.401 6.444 + 0.321 7.331 £ 0.301
TPGR 7.246 £ 0.321 4.523 + 0.442 6.870 £ 0.412 11.219 £ 0.323  10.322 + 0.442* 9.825 £ 0.642
PGPR 6.998 + 0.112 3.932 £ 0.121 6.333 £0.133 | 11.421 +0.223"  10.042 + 0.212 9.234 £ 0.242
CDT4Rec 9.234 + 0.123 7.226 + 0.289 8.276 + 0.279 | 13.274 + 0.287 11.276 + 0.175 10.768 + 0.372
Dataset MovieLens-20M Netflix
Measure (%) Recall | Precision nDCG Recall | Precision | nDCG
SASRec 14.512 £ 0.510 12.412 £ 0.333 12.401 £ 0.422 11.321 £ 0.231 10.322 £ 0.294 14.225 £ 0.421
BERT4Rec 17.212 £ 0.233 14.234 £ 0.192 13.292 £ 0.212 13.847 £ 0.128 12.098 + 0.256  13.274 + 0.210%
S3Rec 17.423 £ 0.128*  15.002 + 0.221*  13.429 + 0.520 | 14.090 + 0.227" 12.349 + 0.256"  13.002 + 0.281
KGRL 16.021 + 0.498 14.989 + 0.432 13.007 + 0.543 13.909 + 0.343 11.874 + 0.232 13.082 + 0.348
TPGR 16.431 + 0.369 13.421 + 0.257  13.512 + 0.484* | 12.512 + 0.556 11.512 £ 0.595 10.425 £ 0.602
PGPR 14.234 + 0.207 9.531 + 0.219 11.561 + 0.228 10.982 + 0.181 10.123 £ 0.227 10.104 + 0.243
CDT4Rec 19.273 £ 0.212 17.371+ 0.276 17.311 + 0.216 | 15.271 + 0.127 13.274 + 0.168 12.479 + 0.198
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Figure 3: Performance Comparison Between CDT4Rec and DT for Different Numbers of Trajectories

of trajectories included in the dataset. The results can be found
in Figure 4. In our experiments, we find that when the context
length is 2, CDT4Rec leads to the best performance. One plausible
reason may be that user’s behavior is highly determined by the

most recent behavior (i.e., the previous one).

Based on the results regarding the number of trajectories in the
dataset, we observed that the performance did not vary considerably.
This could be attributed to the fact that CDT4Rec is capable of
learning effectively and performing well even with a smaller dataset.
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Figure 4: Hyper-parameters Study for CDT4Rec

5 RELATED WORK

RL-based Recommender Systems. Reinforcement learning-based
recommendation methods view the interactive process of making
recommendations as a Markov Decision Process (MDP) [6]. This
approach can be divided into two categories: model-based and
model-free methods. Bai et al. [1] proposed a model-based method
that uses a generative adversarial training approach to jointly learn
the user behavior model and update the policy for the recommen-
dation. Recently, there has been a trend in the literature toward
using model-free techniques for RL-based recommendations. Zhao
et al. [33] proposed a page-wise recommendation framework based
on deep RL to optimize the selection of items on a page by taking
into account real-time feedback from users. Chen et al. [5] intro-
duced knowledge graphs into the RL framework to improve the
efficiency of the decision-making process. Chen et al. [7] designed a
generative inverse reinforcement learning approach for online rec-
ommendation that automatically extracts a reward function from
user behavior. However, these are all online RL-based frameworks
while we are interested in offline RL-based recommendations.

Offline RL. Recent studies have begun to investigate the possi-
bility of integrating data-driven learning into the reinforcement
learning framework. Kumar et al. [19] proposed conservative Q-
learning for offline RL aiming to learn a lower bound of the value
function. MOReL [17] is an algorithmic framework for model-based
offline RL, which uses an offline dataset to learn a near-optimal
policy by training on a Pessimistic MDP. Chen et al. [3] presented
an approach in which the offline RL problem is modeled as a con-
ditional sequence modeling problem. They trained a transformer
on collected offline data, utilizing a sequence modeling objective,
with the goal of generating optimal actions. Janner et al. [15] also
adopted a transformer architecture and treat the offline RL as a
sequence modeling problem. Kostrikov et al. [18] introduced Fisher-
BRC for offline RL that employs a simple critic representation and
regularization technique to ensure that the learned policy remains
consistent with the collected data. However, these works are not
applied for recommendation tasks and we are interested in the
feasibility of employing offline RL for recommender systems.

2023-08-29 01:02. Page 9 of 1-10.

Transformer in Recommender Systems. Recent developments
in the field of sequential recommendations have seen a growing in-
terest in incorporating transformer architectures. Sun et al. [27] pro-
posed the model BERT4Rec that uses the bidirectional self-attention
network to model user behavior sequences in sequential recommen-
dation tasks. Wu et al. [31] designed a personalized transformer
architecture that effectively incorporates personalization in self-
attentive neural network architectures, by incorporating SSE reg-
ularization. Chen et al. [4] introduced a method in which they
incorporated the sequential signals of users’ behavior sequences
into a recommendation system on a real-world e-commerce plat-
form. The method applied a self-attention mechanism to learn a
better representation of each item in a user’s behavior sequence by
taking into account the sequential information.

6 CONCLUSION

In this work, we design a causal decision transformer for recom-
mender systems (CDT4Rec) to address two major challenges: i) The
difficulty of manually designing a reward function; ii) How to incor-
porate an offline dataset to reduce the amount of required expensive
online interaction but maintain the performance. Our experimental
results reveal that our proposed CDT4Rec model outperforms both
existing RL algorithms and the state-of-the-art transformer-based
recommendation algorithms.

In the future, we plan to investigate further how to better es-
timate the causal effect of users’ decisions so that we can better
estimate the reward function via the collected trajectory. More-
over, we will work on further improving the offline reinforcement
learning algorithm as we can find that there is still room for im-
provement.
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