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ABSTRACT
In the field of music information retrieval (MIR), cover song identifi-
cation (CSI) is a challenging task that aims to identify cover versions
of a query song from a massive collection. Existing works still suffer
from high intra-song variances and inter-song correlations, due to
the entangled nature of version-specific and version-invariant fac-
tors in their modeling. In this work, we set the goal of disentangling
version-specific and version-invariant factors, which could make it
easier for the model to learn invariant music representations for
unseen query songs. We analyze the CSI task in a disentanglement
view with the causal graph technique, and identify the intra-version
and inter-version effects biasing the invariant learning. To block
these effects, we propose the disentangled music representation
learning framework (DisCover) for CSI. DisCover consists of two
critical components: (1) Knowledge-guided Disentanglement Mod-
ule (KDM) and (2) Gradient-based Adversarial Disentanglement
Module (GADM), which block intra-version and inter-version bi-
ased effects, respectively. KDM minimizes the mutual information
between the learned representations and version-variant factors
that are identified with prior domain knowledge. GADM identifies
version-variant factors by simulating the representation transitions
between intra-song versions, and exploits adversarial distillation
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for effect blocking. Extensive comparisons with best-performing
methods and in-depth analysis demonstrate the effectiveness of
DisCover and the and necessity of disentanglement for CSI.
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1 INTRODUCTION
Nowadays, online digital music platforms, such as Spotify andApple
Musiccontain a massive number of music tracks for consumption,
intensifying the need of music retrieval techniques for discovering
related songs. One of the key techniques for music discovery is
cover song identification (CSI), which aims to retrieve the cover ver-
sions from a music collection given a query song. Specially, a cover
version/song is an alternative interpretation of the original version
with different musical facets (e.g. timbre, key, tempo, or structure).

†Corresponding Authors.
The source code will be available at https://gitee.com/mindspore/models.
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In real-world scenarios, the music collection can be massive and
rapidly updated, potentially amplifying the intra-song variances (c.f.
Figure 1) and inter-song correlations. These characteristics drive
the CSI problem hard to handle due to the ubiquitous spurious
correlations among songs of different collections. Intuitively, CSI
requires a fine-grained analysis of music facets and semantics such
that the intra-song correlations and inter-song differences can be
adequately distinguished.

（a） （b）

Figure 1: An illustration of the data distribution in CSI task
with the raw waveform (top) and CQT spectrogram (bottom).
(a) and (b) are two different cover version for the same song
"Don’t Let It Bring You Down" in Covers80 dataset.

Recently, with the development of artificial intelligence in other
domains [1, 29, 50–53, 59, 60, 65], deep learning based CSI mod-
els have presented superior performance compared with tradi-
tional sequence matching methods [12, 31, 44, 45]. Most of them
[10, 11, 16, 56, 62, 63] treat CSI as a classification task and utilize
CNN-based architecture for music content understanding. Further-
more, some state-of-the-art works [10, 11, 16] explore metric learn-
ing techniques to narrow the gap between different cover versions
of the same song and simultaneously expand the distance among
the different version groups. Despite the significant advances made
by these methods, we argue that song-specific and song-sharing
musical factors are highly entangled in their modeling, thus being
inadequate to distinguish unseen cover versions and songs. For
example, as shown in Figure 1, the testing cover version (b) of the
query song (a) shows significant differences in pitch/F0 (the orange
curve in the spectrogram), timbre, or rhythm. If the model is unable
to disentangle these factors and identifies them as version-variant,
it might fail to generalize on this testing version and identify it as
negative ones. On the other hand, if the model fails to disentangle
and recognize version-invariant factors, it might falsely correlate
some other songs with the given query based on the high similarity
of version-specific factors. To bridge the gap, we set the goal of
explicitly disentangling version-variant and version-invariant fac-
tors and thus learning invariant musical representations for unseen
cover song identification.

To better understand the underlying mechanism of the disentan-
glement in CSI task, we resort the causal graph technique [34] for
illustration (c.f. Figure 2). The nodes denote cause or effect factors.
An edge 𝐴 → 𝐵 means the 𝐴 can directly affect 𝐵.
• Firstly, we illustrate the causal graph from the model’s perspec-
tive in Figure 2(a): 𝑍𝑖 denotes the set of factors that are specific to
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Figure 2: Causal graph of CSI from different perspectives.

the 𝑖-th cover version and are mostly version-variant. 𝑋𝑖 denotes
the learned musical representation of the 𝑖-th cover version. 𝑍 de-
notes the set of version-invariant factors. 𝑌𝑖 denotes the retrieval
results (e.g. a candidate playlist) given the learned representation
𝑋𝑖 . Intuitively, during the co-training of various cover versions
where different factors are highly entangled, 𝑍1 could have a
direct effect on 𝑋1 and also 𝑋2, which is the musical represen-
tation of the second cover version. Therefore, 𝑌1 and 𝑌2 will
be indirectly affected through causal path 𝑍1 → 𝑋1 → 𝑌1 and
𝑍1 → 𝑋2 → 𝑌2 respectively, which will lead to spurious correla-
tions and mismatching during unseen cover song identification.

• Secondly, as illustrated in Figure 2(b), we further consider the
causal graph from searcher’s perspective. It is a relatively ideal
causal graph that𝑋𝑖 is only affected by 𝑍 . In other words, version
information has no effect on the learned music representation,
such that intra-song versions can be adequately distinguished
from the others.
In this work, we aim to develop a disentanglement framework

that could realize the transition of models’ underlying behavior
from Figure 2(a) to Figure 2(b) for debiased and effective cover song
identification. We identify two critical challenges in achieving dis-
entanglement in CSI: (1) Mitigating the negative effect from cover
information and extracting the commonness for the versions (cutoff
𝑍𝑖 → 𝑋𝑖 → 𝑌𝑖 ), which aims to make the model more focused on the
version-invariant factors 𝑍 and learn invariant representations for
different cover versions. (2) Identifying the differences between ver-
sions and alleviating the negative transfer (cutoff 𝑍𝑖 → 𝑋 𝑗 → 𝑌𝑗 ),
which attempts to bridge the intra-group gap and avoid biased rep-
resentation learning. It is non-trivial to block paths 𝑍𝑖 → 𝑋𝑖 → 𝑌𝑖
and 𝑍 𝑗 → 𝑋𝑖 → 𝑌𝑖 due to the implicit nature of version-specific
factors 𝑍𝑖 , 𝑍 𝑗 and the effects in deep neural networks. In this regard,
we introduce a disentanglement module for identifying version-
specific factors, followed by an effect-blocking module for learning
invariant representations. As for the path 𝑍𝑖 → 𝑋𝑖 → 𝑌𝑖 , disentan-
gling 𝑍𝑖 is challenging without supervision signals since different
factors (e.g. F0 and timbre) in raw music are highly entangled. In
this regard, we introduce prior domain knowledge as guidance for
disentanglement. As for the path 𝑍 𝑗 → 𝑋𝑖 → 𝑌𝑖 , the challenge lies
in how to identify the factors 𝑍 𝑗 in the 𝑗-th sample that could affect
the representation learning of 𝑋𝑖 . Intuitively, we regard the modi-
fied factors during the transition from 𝑋 𝑗 to 𝑋𝑖 as version-variant
factors that are critical to 𝑋𝑖 in the 𝑗-th sample.

Technically, we propose a Disentangled music representation
learning framework for Cover song identification, denoted as Dis-
Cover, which encapsulates two key components: (1) Knowledge-
guided Disentanglement Module (KDM) and (2) Gradient-based
Adversarial Disentanglement Module (GADM) for blocking biased
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effects 𝑍𝑖 → 𝑋𝑖 → 𝑌𝑖 and 𝑍 𝑗 → 𝑋𝑖 → 𝑌𝑖 , respectively. KDM em-
ploys off-the-shelf music feature extractors as the domain knowl-
edge for disentanglement, and minimizes the mutual information
(MI) between the learned representations and version-variant fac-
tors. GADM identifies version-variant factors by simulating the
representation transitions between intra-song versions and adopt-
ing gradient-based adaptive masking. Since the discrete-valued
mask might distort the continuity of representations in the hyper-
sphere, it would be less effective to use MI to measure the effect
𝑍 𝑗 → 𝑋𝑖 → 𝑌𝑖 . Instead, GADM incorporates an adversarial distil-
lation sub-module for distribution-based effect blocking.

The main highlights of this work are summarized as follows:

• We analyze the cover song identification problem in a disentangle-
ment view with causal graph, a powerful tool but is seldom used
in the community. We identify the bad impact of version-variant
factors with two effect paths that needed to be blocked.

• We propose the DisCover framework that disentangles version-
variant factors among intra-song versions and blocks two biased
effect paths via knowledge-guided MI minimization and gradient-
based adversarial distillation.

• We conduct in-depth experimental analyses along on both quan-
titative and qualitative results, which have demonstrated the
effectiveness and necessity of disentanglement for CSI.

2 RELATEDWORK
2.1 Cover Song identification
With the increasing amount of music data on the Internet, cover
song identification (CSI) has long been a popular task in the music
information retrieval community. CSI aims to retrieve the cover ver-
sions of a given song in a dataset, which can also be seen as measur-
ing the similarity between music signals without meta-information
(e.g., title, author, genre). Specifically, meta-information might ease
the problem but also introduce spurious correlations that many
different songs have quite similar or even the same short title.
Moreover, users humming the query songs might not necessarily
know/provide the meta-information. Overall, CSI as a challenging
task has long attracted lots of researchers due to its potential applica-
tions in music representation learning [25, 57], retrieval [32, 46, 61]
and recommendation [14, 35]. However, those cover songs may
differ from the original song in key transposition, speed change,
and structural variations, which challenges identifying the cover
song. To solve these problems, [45] developed music sequences
alignment algorithms for version identification by measuring the
similarity between time series, and [13] generated fixed-length
vectors for cover song identification. In addition, deep learning
approaches are introduced to CSI. For instance, CNNs are utilized
to measure the similarity matrix [2] or learn features [9, 37, 56, 62].
On this basis, TPPNet [62] uses a temporal pyramid pool to extract
information at a different scale. CQTNet [63] proposes a special
CNN architecture to extract musical representations and train the
network through classification strategies. Although these methods
have made significant progress, they ignore the entanglement of
cover song representations and may incorrectly correlate some
other songs with a given query. Thus, we propose a framework that
disentangles version-variant factors among intra-song versions.
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Y1 Y2
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◊

Cover Version 1

Cover Version 2

(b) Cutoff Zi → Xj

Figure 3: Interventions on causal graph of DisCover from the
perspective of modelling.

2.2 Disentangled Representation Learning
Disentangled representation learning (DRL) focuses on encoding
data points into separate independent embedding subspaces, where
different subspaces represent different data attributes. To prevent in-
formation leakage from each other, the correlation between the two
embedding parts is still required to be reduced. Some correlation-
reducing methods mainly focus on Mutual Information (MI) mini-
mization, where MI is a fundamental measure of the dependence
between two random variables. To accurately estimate MI upper
bound, CLUB [5] bridges mutual information estimation with con-
trastive learning. This method has gained a lot of attention and
applications in scenarios such as domain adaption, style transfer,
and causal inference. For instance, IDE-VC [64] and VQMIVC [49]
achieves proper disentanglement of speech representations. MIM-
DRCFR [4] learns disentangled representations for counterfactual
regression. In addition, as analyzed in [3, 42, 66], the gradients of the
final predicted score convey the task-discriminative information,
which correctly identifies the task-relevant features. For instance,
Grad-CAM [42] visualizes the importance of each class by lever-
aging the gradient information. On the basis of this, ToAlign [54]
decomposes a source feature into a task-relevant one and a task-
irrelevant one for performing the classification-oriented alignment.
RSC [24] discards the task-relevant representations associated with
the higher gradients. DropClass [8] uses gradient information to
extract class-specific information from the entangled feature map.
However, most of these works learn to disentangle representations
from a single perspective. This paper blocks two biased effect paths
via knowledge-guided MI minimization and gradient-based adver-
sarial distillation.

2.3 Music Representation Learning
An effectivemusical representation is essential for learning different
music-related tasks, such asmusic classification [7, 27, 36, 48, 55, 56],
cover song identification [56, 58, 62, 63], music generation [17, 18,
28, 40]. Most of them rely on large amounts of labeled datasets
to learn music representations. As the labeled datasets on which
supervised learning methods require extensive manual labeling, it
is often costly and time-consuming, leading to limitations in the
performance of supervised learning methods. For this reason, some
audio researchers have adopted a self-supervised learning approach
to learning musical representations [41, 47, 57, 67]. For example,
MusicBERT [67] models music self-representation with a multi-task
learning framework. PEMR [57] proposes a positive-negative frame
mask for music representation with contrastive learning. Many
approaches to music representation learning focus on key pieces
of music, while CSI focuses more on the whole song.
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3 PROPOSED METHOD
3.1 PRELIMINARIES

ProblemFormulation. Following the common practice inmodern
cover song identification task [56, 62], we formulate cover song
identification as an information retrieval problem and specifically
focus on music representation learning. We use 𝑞 to denote one
query song and S = {𝑠𝑖 }𝑖=1,..., |S | to denote the song collections on
an online music platform.

Given the query 𝑞, cover song identification aims to retrieve the
most similar candidates C = {𝑐𝑖 }𝑖=1,...,𝑘 from the song collections
S in a top-k manner. A deep learning-based CSI model 𝑓 (·) en-
codes the 𝑞 and 𝑠𝑖 into the fixed dimension representation 𝒒 and 𝒔𝑖
separately. Then we use cosine distance to calculate the similarity
for all the pairs 𝑃 = {(𝒒, 𝒔𝑖 )}𝑖=1,..., |𝑆 | . During testing and serving,
top-k candidates C will be ranked by the similarity and displayed
on the music platform in a position consistent with the rank.
Prior Knowledge Selection. There are usually multiple variations
of musical facets for the cover version, such as timbre, key, tempo,
timing, or structure [43]. Hence it meets a problem of how to select
the appropriate musical facets as expert knowledge. Inspired by the
common practice in the disentanglement-based voice conversion
[38, 49] and singing voice synthesis [6] and other speech-related
tasks [19–23], we consider that fundamental frequency (F0) and tim-
bre are relatively more sensitive to cover versions among different
facets since they often change when different artists perform the
same piece of song/music. Therefore, we select the F0 and timbre
as representatives of the prior knowledge in our work. Specifically,
F0 is the musical pitch, representing the high or low notes in the
song/music. Timbre describes the vocal characteristics of the artist
or instrument, which strongly influences how song/music is heard
by trained as well as untrained ears.

3.2 Framework Overview
To block the intra-version and inter-version biased effects for learn-
ing version-invariant representations, we propose DisCover, as
shown in Figure 4. DisCover consists of twomodules: (1) Knowledge-
guided Disentanglement Module (KDM), which mitigates the neg-
ative effect from cover information and extracting the common-
ness for the versions (green area in the upper left of Figure 4).
(2) Gradient-based Adversarial Disentanglement Module (GADM),
which identifies the differences between versions and alleviates the
negative transfer (blue area in the lower right of Figure 4). The two
modules are jointly trained in a parallel manner.

3.3 Knowledge-guided Disentanglement
As shown in Figure 3(a), the Knowledge-guided Disentanglement
module (KDM) aims to block the bias between intra-song versions
(cutoff 𝑍𝑖 → 𝑋𝑖 → 𝑌𝑖 ), which attempts to make the model more
focused on the version-invariant factors𝑍 and learn invariant repre-
sentations for different cover versions. Considering that the model
is hard to identify the version-specific factors entangled in the
representation, as mentioned in Sec 3.1, we introduce the prior
knowledge (e.g. F0 and timbre) to serve as the teacher that provides
version-variant factors 𝑍𝑖 . In contrast to the goal of knowledge
transfer, the model aims to minimize the correlation between the

KDM
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ෝ𝒙
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𝒈𝒙
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Figure 4: Schematic illustration of DisCover framework.
KDM minimizes the MI between the learned representations
and version-variant factors that are identified with prior do-
main knowledge. GADM identifies and decomposes version-
variant factors by simulating the representation transitions
between intra-song versions, and exploits adversarial distil-
lation for effect blocking.

learned representations𝑋𝑖 and the version-variant factors𝑍𝑖 . In this
way, we can explicitly disentangle representation 𝑋𝑖 from version-
variant factors 𝑍𝑖 .

Here, we denote 𝒙 ∈ R𝑑𝑖𝑚 as the learned representations and
𝒛 ∈ {𝒐, 𝒕} as the knowledge bank of version-variant factors, where
𝒐 ∈ R𝑑𝑖𝑚 represents the fundamental frequency (F0) features, 𝒕 ∈
R𝑑𝑖𝑚 represents the timbre representations.

3.3.1 factors-invariant Representation Modeling. To minimize the
correlation between the learned representations 𝑥 and the version-
variant factors 𝑧, we introduce mutual information (MI) to serves
as the measurement, which is defined as the Kullback-Leibler (KL)
divergence between their joint and marginal distributions as:

𝐼 (𝒙 ; 𝒛) = E𝑝 (𝒙,𝒛 ) [log
𝑝 (𝒛 |𝒙)
𝑝 (𝒙) ] (1)

Since the conditional distribution 𝑝 (𝒛 |𝒙) is intractable, we adopt
vCLUB [5] to approximate the upper bound of MI as:

𝐼 (𝑥, 𝑧) = E𝑝 (𝑥,𝑧 ) [log𝑞𝜃𝑥,𝑧 (𝑧 |𝑥)] − E𝑝 (𝑥 )E𝑝 (𝑧 ) [log𝑞𝜃𝑥,𝑧 (𝑧 |𝑥)] (2)

where 𝑞𝜃𝑥,𝑧 (·) represents the variational estimation network be-
tween 𝒙 and 𝒛. Therefore the unbiased estimation for vCLUB be-
tween learned representation and version-variant factors can be
reformulated as:

L𝐼 (𝒙 ;𝒐) =
1
𝑁

𝑁∑︁
𝑖=1

[log(𝑞𝜃𝒙,𝒐 (𝒐𝑖 |𝒙𝑖 )) −
1
𝑁

𝑁∑︁
𝑗=1

log(𝑞𝜃𝒙,𝒐 (𝒐 𝑗 |𝒙𝑖 ))]

(3)

L𝐼 (𝒙 ;𝒕 ) =
1
𝑁

𝑁∑︁
𝑖=1

[log(𝑞𝜃𝒙,𝒕 (𝒕𝑖 |𝒙𝑖 )) −
1
𝑁

𝑁∑︁
𝑗=1

log(𝑞𝜃𝒙,𝒕 (𝒕 𝑗 |𝒙𝑖 ))] (4)

where 𝑁 represents the batch size. By minimizing the Eq. (3) and
(4), we can decrease the correlation between learned representation
and version-variant factors and the total MI loss is:

L𝑀𝐼 = L𝐼 (𝒙 ;𝒐) + L𝐼 (𝒙 ;𝒕 ) (5)



DisCover: Disentangled Music Representation Learning for Cover Song Identification SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

To obtain the reliable upper bound approximation, a robust varia-
tional estimator 𝑞𝜃𝑥,𝑧 (·) is required. We train the variational esti-
mator by minimizing the log-likelihood:

L𝑞𝜃𝒙,𝒛
= − 1

𝑁

𝑁∑︁
𝑖=1

[log(𝑞𝜃𝒙,𝒛 (𝒙 |𝒛))], 𝒛 ∈ {𝒐, 𝒕} (6)

3.3.2 knowledge tradeoff. However, we argue that vCLUB might
be at risk of posterior collapse [15, 30, 39] due to the KL-Vanishinig.
For example, if the weights of the variational estimator become
randomized due to undesirable training, the introduction of prior
knowledge would be meaningless. Therefore, knowledge tradeoff
is the self-supervised way to relieve the posterior collapse and
ensure training stability for variational estimator. Furthermore,
considering knowledge extractors’ ability, little beneficial version-
invariant information might still remain in the 𝒛. To address these
concerns, we provide two alternatively simple methods. Firstly, we
can fuse task-oriented representation 𝒆 as:

𝑎 = 𝜎 (𝑔(𝒆, 𝑞(𝒛))), (7)
𝒆∗ = 𝑎 ∗ 𝒆 + (1 − 𝑎) ∗ 𝑞(𝒛) (8)

where 𝜎 (·) denotes the sigmoid function, 𝑔(·) is the linear trans-
formation, 𝑞(·) is the shared MLP in the variational estimator, and
𝑎 ∈ R serves as the tradeoff between 𝒆 and 𝑞(𝒛). Secondly, we can
use clustering models (e.g. k-means) to annotate the pseudo labels
for 𝒛 to supervise the variational estimator with classification task:

L𝑧𝑐𝑙𝑠 = −
𝑁∑︁
𝑖=1

𝑦𝑧𝑖 𝑙𝑜𝑔(𝑦𝑧𝑖 ) + (1 − 𝑦𝑧𝑖 )𝑙𝑜𝑔(1 − 𝑦𝑧𝑖 ) (9)

where 𝑦𝑧𝑖 is the pseudo label for 𝑧𝑖 , and 𝑦𝑧𝑖 is the output of the
knowledge classifier.

3.4 Gradient-based Adversarial
Disentanglement

As shown in Figure 3(b), the Gradient-based Adversarial Disentan-
glement module (GADM) aims to block the bias between inter-song
versions (cutoff 𝑍 𝑗 → 𝑋𝑖 → 𝑌𝑖 ), which attempts to bridge the
intra-group gap and avoid biased representation learning. As ana-
lyzed in [3, 42, 66], the gradients of the predictive score contain the
discriminative information for the downstream tasks. Analogously,
the gradients of the transition cost between two versions might
convey important information for version-variant factors. For this
purpose, we randomly construct the positive query-target pairs
with different versions and obtain the corresponding representa-
tion pairs (𝒙, 𝒙+) with the same backbone model. GADM has three
main steps: identification, decomposition, and alignment.

3.4.1 Identification. The main idea of identification is to recognize
the version-variant factors that are entangled in the elements of
learned representations. Since the backbone encoder maps the sam-
ples into the hyperspace, positive representation pairs 𝑥 and 𝑥+

can be regarded as two points in the same high dimensional space.
In the ideal case, different versions of the same song should have
similar representations. In other words, these points should cluster
together in the hyperspace. However, the distance between two
points would be enlarged due to the disruption of version-variant

factors that are highly entangled in the representations. Therefore,
we treat the distance between query-target pair 𝑥 and 𝑥+ as the
transition cost caused by entangled version-variant factors. Here,
we can use metric function (e.g. Euclidean, Manhattan, or Cosine)
to serve as the transitions cost C𝑡𝑟𝑎𝑛𝑠 ∈ R+ between the represen-
tations of intra-song versions 𝑥 and 𝑥+ as:

C𝑡𝑟𝑎𝑛𝑠 = ℎ(𝒙, 𝒙+) (10)

whereℎ(·, ·) denotes themetric function.Motivated by theGradCAM-
like methods [3, 42, 66], which utilize the saliency-based class in-
formation from the gradient perspective. We can obtain version-
variant information by calculating the gradients of the transition
cost C𝑡𝑟𝑎𝑛𝑠 w.r.t. the representation 𝒙 as:

𝑔𝒙 =
𝜕 C𝑡𝑟𝑎𝑛𝑠

𝜕 𝒙
(11)

where 𝑔𝒙 ∈ R𝑑𝑖𝑚 denotes the gradient vector of 𝒙 . Since the par-
tial derivative operation for query 𝒙 utilizes the information from
target 𝒙+, gradient vector 𝑔𝒙 probably conveys the element-wise
importance information of representation 𝒙 for measuring the dif-
ference to its target 𝒙+. Specifically, as shown in the bottom right
corner of Figure 4, each element 𝑔𝒙 (𝑖) in 𝑔𝒙 represents the fusion
result between query element 𝒙 (𝑖) and whole target representation
𝒙+. The process allows element 𝑔𝒙 (𝑖) to automatically search for
the elements of the query representation 𝒙 that are relevant to
the transition cost. That’s why 𝑔𝒙 can identify the version-variant
factors hiding in the 𝒙+. Furthermore, the value of 𝑔𝒙 (𝑖) represents
the sensitivity to the changes of transition cost C𝑡𝑟𝑎𝑛𝑠 , where the el-
ement with the higher value is more relevant to the version-variant
factors based on the nature of gradient.

3.4.2 Decomposition. After identifying the version-variant fac-
tors, we attempt to decompose the version-invariant representation
𝒙̂ from 𝒙 . Inspired by ToAlign [54], which decomposes a source
feature into a task-relevant/irrelevant one with a gradient-based
attention weight vector. We further exploit the numeric order in 𝑔𝒙
to ensure that the element with the higher gradient has the lower
attention weight. Specifically, given the gradient vector 𝑔𝒙 , we will
construct the corresponding mask vector and decompose it as:

𝒎𝒙 (𝑖) =


1 − exp (𝑔𝑥 (𝑖))∑

𝑘∈{𝑘 |𝑔𝑥 (𝑘 )≥𝑞𝑝 } exp (𝑔𝑥 (𝑘))
, 𝑖 𝑓 𝑔𝑥 (𝑖) ≥ 𝑞𝑝

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12)

𝒙̂ = 𝒎𝒙 ⊙ 𝒙 (13)
where𝑚𝑥 (𝑖) denotes 𝑖-th element in the mask, 𝑞𝑝 denotes the 𝑝-th
largest percentile in𝑔𝒙 , and ⊙ denotes the hadamard product. More-
over, in view of the self-challengingmethod [24], the decomposition
process adaptively re-weights 𝒙 based on the knowledge from 𝑔𝒙
and forces the backbone to lower the attention on version-specific
elements, so as to obtain the version-invariant representation 𝒙̂ .

3.4.3 Alignment. To alleviate the negative transfer, we adopt the
adversarial distillation sub-module to align entangled representa-
tion 𝒙 to the disentangled one 𝒙̂ . In the beginning, 𝒙 and 𝒙̂ belong
to different hyperspheres, where the 𝒙 is considered as the negative
source and the 𝒙̂ is the positive target. We use them to train the
discriminator 𝐷 to distinguish which hypersphere the representa-
tion belongs to, with the classification loss L𝐷1 . Meanwhile, the
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backbone encoder is trained to fool the discriminator to learn the
version-invariant representation by minimizing task-oriented loss
while maximizing L𝐷2 :

L𝐷1 =
1
𝑁

𝑁∑︁
𝑖=1

[log𝐷 (𝑥𝑖 ) + log (1 − 𝐷 (𝑥𝑖 )] (14)

L𝐷2 =
1
𝑁

𝑁∑︁
𝑖=1

[log (1 − 𝐷 (𝑥𝑖 )] (15)

Furthermore, considering the symmetry of the query-target pair,
we can similarly obtain the version-invariant target representation
𝒙̂+ ∈ R𝑑𝑖𝑚 . To ensure the semantic consistency between query and
target, it is better to minimize transition cost as:

L𝑡𝑟𝑎𝑛𝑠 = ℎ(𝒙̂, 𝒙̂+) (16)

3.5 Training
Given the output of the task-oriented classifier 𝑦𝒙̂ , we treat CSI as
the classification task, where the task-oriented learning objective
can be formulated as follows:

L𝑡𝑎𝑠𝑘 = −
𝑁∑︁
𝑖=1

𝑦𝒙̂𝑙𝑜𝑔(𝑦𝒙̂ ) + (1 − 𝑦𝒙̂ )𝑙𝑜𝑔(1 − 𝑦𝒙̂ ) (17)

where 𝑦𝒙̂ is the groundtruth label. To be clear, the overall opti-
mization objective of our proposed DisCover is summarized as
follows:

L1 = L𝑡𝑎𝑠𝑘 + L𝑡𝑟𝑎𝑛𝑠 + 𝜆1L𝑀𝐼 + L𝑧𝑐𝑙𝑠 − L𝐷2 (18)

L2 = L𝐷1 + 𝜆2L𝑞𝜃𝒙,𝒛 (19)

where L1 and L2 are optimized alternately.

4 EXPERIMENTS
We analyze the DisCover framework and demonstrate its effective-
ness by answering the following research questions:
• RQ1: How does DisCover perform compared with existing best-
performing cover song identification methods in different sce-
narios (e.g., unseen songs/versions) ?

• RQ2: Do knowledge-guided disentanglement and gradient-based
disentanglement all contribute to the effectiveness over various
base models in a model-agnostic manner?

• RQ3: How does different architecture and hyper-parameter set-
tings will affect the performance of DisCover?

• RQ4: Does DisCover disentangle the version-variant factors?

Table 1: Dataset statics

Dataset Songs Recordings Avg. versions Language

SHS100K 10000 104641 10.5 English
Karaoke30K 11500 31629 2.8 Chinese
Covers80 80 160 2.0 English

4.1 Experimental Setting
4.1.1 Dataset. We conduct experiments on two open source datasets
commonly used in cover song identification and one self-collected
real-world dataset. Statistics of these datasets are shown in Table 1.
• Second Hand Songs 100K (SHS100K): We downloaded raw
audios through youtube-dl2 using the URLs provided on GitHub3.
It has 10000 songs with 104641 recordings. Notablely, there are
25% of test songs seen during model training in the setting of
[62]. To further explore the generalization performance, we also
construct another scenario setting where all test songs are unseen
during training. For both scenarios, the ratio among the training
set, validation set, and testing set is 8:1:1.

• Covers804: It has 80 songs with 160 recordings, where each
song has 2 cover versions. Due to the small amount of data, it is
commonly used only for evaluating models.

• Karaoke30K: A real-world Chinese karaoke dataset collected
by ourselves. It has 11500 songs with 31629 recordings, where
each song has 1 to 3 cover versions. Following the SHS100K, we
also construct the two scenarios with the same setting.

4.1.2 Evaluation Metrics. Following the evaluation protocol of the
Mirex Audio Cover Song Identification Contest5, we employ three
widely used metrics for evaluation, i.e., MAP (mean average pre-
cision), P@10 (precision at 10), and MR1 (mean rank of the first
correctly identified cover).

4.1.3 Comparison Baselines.

• 2DFM [13]: 2DFM transforms a beat-synchronous chromamatrix
with a 2D Fourier transformer and poses the search for cover
songs as estimating the Euclidean distance.

• ki-CNN [56]: ki-CNN uses a key-invariant convolutional neural
network robust against key transposition for classification.

• TPPNet [62]: TPPNet combines CNN architecture with temporal
pyramid pooling to extract information on different scales and
transform songs with different lengths into fixed-dimensional
representations.

• CQTNet [63]: CQTNet uses carefully designed kernels and di-
lated convolutions to extend the receptive field, which can im-
prove the model’s representation learning capacity.

• PICKiNet [33]: PICKiNet devises pitch class blocks to obtain the
key-invariant musical features.

4.1.4 Implementation Details. We train models on the SHS100K
and Karaoke30K and report the evaluation metrics on them with
different scenarios. Covers80 is used to evaluate the models trained
on SHS100K since their languages are the same. We use parsel-
mouth6 and resemblyzer7 to extract F0 and timbre respectively. In
KDM, we apply Eq. (8) to F0 feature and Eq. (9) to timbre repre-
sentation, where the number of the clusters for generating pseudo
label 𝑁 = 100. Following the default MI-related setting in [49], we
set hyper-parameters 𝜆1 = 0.05, 𝜆2 = 1. In GADM, we select Eu-
clidean distance as the metric function, and the mask ratio is set

2https://github.com/ytdl-org/youtube-dl
3https://github.com/NovaFrost/SHS100K2
4https://labrosa.ee.columbia.edu/projects/coversongs/covers80/
5https://www.music-ir.org/mirex/wiki/2020:Audio_Cover_Song_Identification
6https://github.com/YannickJadoul/Parselmouth
7https://github.com/resemble-ai/Resemblyzer

https://github.com/ytdl-org/youtube-dl
https://github.com/NovaFrost/SHS100K2
https://labrosa.ee.columbia.edu/projects/coversongs/covers80/
https://www.music-ir.org/mirex/wiki/2020:Audio_Cover_Song_Identification
https://github.com/YannickJadoul/Parselmouth
https://github.com/resemble-ai/Resemblyzer
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Table 2: Improvement over the best-performing baselines across different scenarios.

Model
SHS100K Covers80

Scenario 1 : Scenario 2 : Scenario 1 : Scenario 2 :

MAP↑ P@10↑ MR1↓ MAP↑ P@10↑ MR1↓ MAP↑ P@10↑ MR1↓ MAP↑ P@10↑ MR1↓

2DFM - - - 0.104 0.113 415 - - - 0.381 0.053 33.60
Ki-CNN 0.176 0.224 105.79 0.215 0.183 147.3 0.485 0.069 16.18 0.509 0.071 15.45
TPPNet 0.419 0.455 45.85 0.471 0.338 74.38 0.757 0.084 5.81 0.786 0.087 8.39
CQTNet 0.571 0.573 31.69 0.624 0.340 61.31 0.805 0.087 6.58 0.846 0.089 5.13
PICKiNet 0.617 0.602 38.66 0.626 0.408 84.12 0.818 0.085 7.11 0.858 0.091 4.27

TPPNet-Dis 0.565 0.567 41.60 0.561 0.384 74.26 0.814 0.091 7.81 0.849 0.091 4.74
CQTNet-Dis 0.658 0.627 37.98 0.640 0.417 76.41 0.856 0.091 5.11 0.912 0.095 2.43
PICKiNet-Dis 0.657 0.627 46.80 0.653 0.421 72.30 0.830 0.087 5.88 0.882 0.093 3.26

Table 3: Comparing different methods on Karaoke30K with
different scenarios.

Model Scenario 1 : Scenario 2 :

MAP↑ P@10↑ MR1↓ MAP↑ P@10↑ MR1↓

Ki-CNN 0.483 0.119 52.53 0.524 0.116 52.01
TPPNet 0.760 0.165 17.65 0.777 0.154 13.86
CQTNet 0.863 0.182 7.84 0.831 0.161 11.93
PICKiNet 0.944 0.194 4.41 0.959 0.178 4.12

TPPNet-Dis 0.935 0.192 5.23 0.957 0.177 3.24
CQTNet-Dis 0.976 0.198 2.66 0.983 0.180 3.20
PICKiNet-Dis 0.974 0.198 2.61 0.973 0.179 3.52

to 1. Following the setting of [62], we also apply a multi-length
training strategy. Adam [26] is used as the optimizer for backbone,
discriminator, and variational estimator. The training batch size 𝑁
is 32, initial learning rate is 4e-4, weight decay is 1e-5. Notably, Lay-
erNorm is applied in DisCover to obtain normalized representation
to ensure numerical stability in similarity-based retrieval.

4.2 Overall Results (RQ1)
We instantiate the proposed DisCover framework on three best-
performing CSI methods, i.e., TPPNet, CQTNet,and PICKiNet, and
obtain TPPNet-Dis, CQTNet-Dis and PICKiNet-Dis. Table 2 and 3
list the comparison results of the best-performing models and those
enhanced by DisCover on the SHS100K, Karaoke30K and Covers80
datasets under two different scenarios. Specifically, in Scenario
#1, all test songs are unseen during training, while in Scenario #2,
models have seen 25% class of test songs during training. According
to the results, we have the following observations:
• Overall, the results across multiple evaluation metrics consis-
tently indicate that TPPNet-Dis, CQTNet-Dis, and PICKiNet-Dis
achieve better results than their base models among different
datasets and scenarios. Especially, CQTNet-Dis and PICKiNet-
Dis show comparable performance and outperform other best-
performing methods. We attribute the improvements to the fact
that baselines succeed in learning the version-invariant repre-
sentations by disentangling version-specific musical factors.

• DisCover can boost the performance of models in different sce-
narios, especially in scenario #1, where all test songs are unseen.
It suggests that the version-variant factors have been highly dis-
entangled. In addition, in Karaoke30k where the cover versions
of a particular song are fewer, DisCover could still significantly
improve the baselines. These results demonstrate the practical
merits of DisCover, i.e., identifying version-variant factors with
limited number of annotated versions. Note that in real-world
scenarios, less popular songs constitute the majority of the music
collections and have fewer cover versions. In summary, these
results demonstrate the strengths of DisCover in generalization
and few-shot learning, which is critical for industrial scenarios
wheremusic collections could be rapidly updated and toomassive
to sample the full cover versions for training.

• Surprisingly, MR1 scores in scenario #1 are mostly worse than
those in scenario #2 for all models, especially in SHS100K. These
results might suggest that entangled training leads to spurious
correlations among songs, including those testing songs seen
during training. We also observe that on the SHS100K dataset,
the proposed method could not beat some baselines w.r.t.MR1.
SHS100K are known to have unusual audio manifestations in
recordings and vocal concert songs (with strong background
noises e.g. claps, shouts, or whistles), where MR1 scores are
sensitive to these noises and exhibit high variances. On the
Karaoke30K dataset where the manifestations in recordings are
closer to real-world search scenarios, we observe consistent per-
formance improvement brought by DisCover across all metrics.

4.3 Model Analysis (RQ2, RQ3)
4.3.1 Analysis of key building modules. knowledge-guided disen-
tanglement and gradient-based adversarial disentanglement are
two key components of DisCover framework. We conduct the abla-
tion study on them to reveal the efficacy of the architectures and
the benefits of disentangling version-variant factors. Specifically,
we selectively discard the KDM and GADM from CQTNet-Dis and
TPPNet-Dis to obtain ablation architectures, i.e., w/o. KDM, and
w/o. GADM, respectively to show the model-agnostic capability
of these two modules. The results are shown in Table 4. We can
observe that:
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Table 4: Ablation studies by selectively discarding the
knowledge-guided disentanglement module (w/o. KDM) and
gradient-based adversarial disentanglement module (w/o.
GADM). We study both TPPNet-Dis and CQTNet-Dis on dif-
ferent datasets to reveal the model-agnostic capability of the
proposed modules.

Scenario 1 : SHS100K Covers80 Karaoke30K

Model MAP↑P@10↑MR1↓MAP↑P@10↑MR1↓MAP↑P@10↑MR1↓

TPPNet-Dis 0.565 0.567 41.60 0.814 0.091 7.81 0.935 0.192 5.23
w/o. KDM 0.542 0.551 39.98 0.805 0.085 7.06 0.921 0.190 3.79
w/o. GADM 0.497 0.522 48.55 0.790 0.087 8.34 0.845 0.180 8.52
TPPNet 0.419 0.455 45.85 0.757 0.084 5.81 0.760 0.165 17.65

CQTNet-Dis 0.658 0.627 37.98 0.856 0.091 5.11 0.976 0.198 2.66
w/o. KDM 0.649 0.622 32.34 0.843 0.093 4.45 0.961 0.196 3.73
w/o. GADM 0.619 0.607 36.66 0.833 0.088 7.17 0.887 0.186 7.88
CQTNet 0.571 0.573 31.69 0.805 0.087 6.58 0.863 0.182 7.84

Table 5: Study of different prior knowledge. The disentangle-
ment of both F0 and timbre can be beneficial.

Scenario 1: SHS100K Covers80

Factors MAP↑ P@10↑ MR1↓ MAP↑ P@10↑ MR1↓

TPPNet 0.420 0.454 44.33 0.757 0.084 5.81

F0 0.457 0.485 48.20 0.764 0.086 7.54
w/. tradeoff 0.463 0.490 43.65 0.778 0.086 8.31

Timbre 0.443 0.475 55.75 0.772 0.086 8.38
w/. tradeoff 0.466 0.495 52.69 0.784 0.088 7.14

Timbre & F0 0.469 0.496 43.96 0.782 0.086 8.73
w/. tradeoff 0.497 0.522 48.55 0.790 0.087 8.34

CQTNet 0.569 0.572 31.90 0.805 0.087 6.58

F0 0.585 0.580 34.52 0.814 0.093 4.00
w/. tradeoff 0.603 0.597 34.46 0.821 0.091 3.97

Timbre 0.586 0.585 38.17 0.816 0.093 4.59
w/. tradeoff 0.606 0.599 37.17 0.829 0.094 4.53

Timbre & F0 0.590 0.586 37.83 0.824 0.089 5.51
w/. tradeoff 0.619 0.607 36.66 0.833 0.088 7.17

• Removing either KDM or GADM leads to performance degrada-
tion, while removing both modules (i.e., the base model) leads
to the worst performance. These results demonstrate the effec-
tiveness of the proposed two modules as well as the benefits of
disentanglement for CSI. We attribute this superiority to the fact
that the models would absorb less spurious correlations among
songs and versions by learning version-invariant representations
and blocking intra/inter-version biased effects.

• Removing GADM leads to more performance drops than remov-
ing KDM, which indicates that introduced prior knowledge only
contains the part of the version-variant factors. Therefore it is
necessary to identify the remained factors that hide in the rep-
resentation. These results again verify the effectiveness of the
end-to-end disentanglement module GADM.

Table 6: Analysis of the number of clustering centers N for
timbre in knowledge tradeoff on CQTNet and TPPNet under
scenario #1.

Model N SHS100K Covers80
MAP↑ P@10↑ MR1↓ MAP↑ P@10↑ MR1↓

TPPNet

100 0.466 0.495 52.69 0.784 0.088 7.14
1K 0.463 0.492 43.06 0.785 0.088 9.83
5K 0.462 0.492 44.06 0.792 0.084 8.68
10K 0.467 0.496 44.46 0.777 0.086 8.14

CQTNet

100 0.606 0.599 37.17 0.829 0.094 4.53
1K 0.601 0.594 32.39 0.827 0.092 2.95
5K 0.593 0.590 38.47 0.832 0.096 3.32
10K 0.609 0.602 34.34 0.833 0.092 4.18

• The results are consistent across different baselines, which indi-
cates that the proposed two modules can easily boost the best-
performing CSI baselines in a plug-and-play and model-agnostic
manner.

4.3.2 Study of different prior knowledge introduced in KDM. F0
and timbre are two commonly used features in singing voice con-
version/synthesis tasks, which can reflect music pitch and voice
characteristics, respectively. To further study the impact of different
prior knowledge, we selectively use F0 and timbre to serve as the
version-variant factors. We conduct experiments on CQTNet and
TPPNet with SHS100K dataset. The results are shown in table 5
where we can find that:
• Introducing either F0 or timbre can improve the baseline perfor-
mance and introducing both of them will achieve better results.
These results further demonstrate the effectiveness of minimiz-
ing the correlation between the learned representations and the
version-variant factors.

• Different verison-variant factors play different roles in exerting a
bad impact on model learning. Compared with F0, disentangling
timbre appears to be more beneficial to the baseline models. The
reason might be that voice characteristic vary from person to
person, which leads to high intra-song variances among versions
that are performed by different people.

• Learning with knowledge tradeoff leads to better performance
with different baselines and datasets, which suggests that this
technique can further exploit the useful information hiding in
prior knowledge and is helpful in relieving the posterior collapse
of variational estimator [15, 30, 39].

4.3.3 Analysis of the number of clustering centers for timbre in
knowledge tradeoff. In this experiment, we analyze the impact of the
number (N) of clusters used to generate pseudo-labels on the model
performance, which uncovers the hyper-parameter sensitivity. As
shown in Table 6, the model performance is overall insensitive
to the number of clusters. In other words, the model can achieve
comparable performance with relatively few pseudo-labels (e.g.
N = 100) and lower complexity, which is suitable for real-world
scenarios to reduce resource consumption.

4.3.4 Analysis of transition simulation in GADM. As analyzed in
Sec. 3.4.1, we use metric function to serve as the transition cost
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Table 7: Analysis of transition simulation in GADM on CQT-
Net and TPPNet under scenario #1.

Model Method SHS100K Covers80
MAP↑ P@10↑ MR1↓ MAP↑ P@10↑ MR1↓

TPPNet
Manhattan 0.344 0.389 79.87 0.724 0.082 8.58
Euclidean 0.542 0.551 39.98 0.805 0.085 7.06
Cosine 0.473 0.495 44.08 0.730 0.084 10.35

CQTNet
Manhattan 0.620 0.603 34.01 0.814 0.089 4.41
Euclidean 0.649 0.622 32.34 0.843 0.093 4.45
Cosine 0.525 0.538 48.75 0.784 0.091 5.15

between two versions of a song. Therefore a reliable metric function
is vital for identifying the version-variant factors between differ-
ent versions. In this experiment, we select three commonly used
distances (e.g. Euclidean, Manhattan, and Cosine) to serve as the
transition cost. Surprisingly, as shown in Table 7, the Euclidean
distance, which is less explored in the CSI literature, shows a clear
advantage over other widely used metric functions. This is an in-
teresting finding that might be potentially inspirational. We plan
to further uncover the underlying mechanisms in the future.

4.4 Qualitative Analysis (RQ4)
The above analysis quantitatively shows the effectiveness of dis-
entanglement in cover song identification. To evaluate whether
the model can learn the version-invariant and unbiased representa-
tions via disentangled learning, we visualize the t-SNE transformed
embeddings. We adopt CQTNet, TPPNet and PICKiNet as baseline
and equip them with DisCover framework and plot the twenty
randomly sampled songs and each song has three versions with the
representations encoded by the corresponding model. As shown in
Figure 5, we can observe that:
• Overall, different versions of a song exhibit more noticeable clus-
ters with the help of DisCover. The base model is more likely to
falsely correlate songs based on the similarity of version-variant
factors. For example, the versions of song #12 in Figure 5(a) are
closer to the other songs, which suggests that CQTNet fail to
learn the discriminative representation for them. However, in
Figure 5(b), different versions of song #12 are more compact,
which demonstrates the capability of disentanglement.

• Moreover, equipped with DisCover, all of CQTNet, TPPNet and
PICKiNet show better performance in learning more discrimi-
native representations compared to the baselines, which further
reveals the model-agnostic capability of DisCover.

• Furthermore, although the training samples for each song are
limited (2 to 3 cover versions for a song), DisCover can still
learn the discriminative representations for unseen songs. These
results again verify the strengths of DisCover in generalization
and few-shot learning.

5 CONCLUSION
In this paper, we first analyze the cover song identification problem
in a disentanglement view with causal graph. We identify the bad
impact of version-variant factors with two effect paths that need to
be blocked. Then, we propose the disentangled music representa-
tion learning framework DisCover to block these effects. DisCover
consists of two modules: (1) Knowledge-guided Disentanglement

(a) CQTNet Baseline (b) CQTNet with DisCover

(c) TPPNet Baseline (d) TPPNet with DisCover

(e) PICKiNet Baseline (f) PICKiNet with DisCover

Figure 5: Case study with t-SNE transformed embeddings de-
rived from different baselines with our DisCover framework,
where colored nodes represent the different songs.
module, it mitigates the negative effect of cover information and
extracts the commonness for the versions, which makes the model
more focused on the version-invariant factors and learning invari-
ant representations for different cover versions. (2) Gradient-based
Adversarial Disentanglement module, it identifies the differences
between versions and alleviates the negative transfer, which bridges
the intra-group gap and avoids biased representation learning. Ex-
tensive comparisons with best-performing methods and in-depth
analysis demonstrate the effectiveness of DisCover and the neces-
sity of disentanglement for CSI.
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