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ABSTRACT

Sequential recommendation aims to capture users’ dynamic interest
and predicts the next item of users’ preference. Most sequential
recommendation methods use a deep neural network as sequence
encoder to generate user and item representations. Existing works
mainly center upon designing a stronger sequence encoder. How-
ever, few attempts have been made with training an ensemble of
networks as sequence encoders, which is more powerful than a
single network because an ensemble of parallel networks can yield
diverse prediction results and hence better accuracy. In this pa-
per, we present Ensemble Modeling with contrastive Knowledge
Distillation for sequential recommendation (EMKD). Our frame-
work adopts multiple parallel networks as an ensemble of sequence
encoders and recommends items based on the output distributions
of all these networks. To facilitate knowledge transfer between
parallel networks, we propose a novel contrastive knowledge dis-
tillation approach, which performs knowledge transfer from the
representation level via Intra-network Contrastive Learning (ICL)
and Cross-network Contrastive Learning (CCL), as well as Knowl-
edge Distillation (KD) from the logits level via minimizing the
Kullback-Leibler divergence between the output distributions of
the teacher network and the student network. To leverage con-
textual information, we train the primary masked item prediction
task alongside the auxiliary attribute prediction task as a multi-
task learning scheme. Extensive experiments on public benchmark
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datasets show that EMKD achieves a significant improvement com-
pared with the state-of-the-art methods. Besides, we demonstrate
that our ensemble method is a generalized approach that can also
improve the performance of other sequential recommenders. Our
code is available at this link: https://github.com/hw-du/EMKD.
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1 INTRODUCTION

Recommender systems predict users’ interest based on historical
interactions. Due to the evolving nature of a user’s interest, the
task of sequential recommendation views historical interactions
as a sequence and aims to model the users’ dynamic interest. A
typical sequential recommendation model captures such dynamic
interest via a sequence encoder, which is a deep neural network
that generates the hidden representations of users and items. Rec-
ommendations are made based on the information encoded in the
hidden representations. Various types of deep neural networks
have been shown as effective sequence encoders in capturing the
users’ dynamic interest, such as Recurrent Neural Network (RNN)
[15], Convolutional Neural Network (CNN) [32], unidirectional
Transformer [18], and bidirectional Transformer [31].

To accurately capture the users’ dynamic interest, most exist-
ing works try to improve the architecture of a single sequence
encoder in the hope that a diversity of behavioral patterns, such
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Figure 1: An illustration of ensemble modeling for sequen-
tial recommendation. Three parallel networks make differ-
ent predictions based on users’ historical interactions. Al-
though each individual network is unable to make an ac-
curate prediction, combining the predictions of these net-
works together will get the correct result.

Table 1: Performance comparison (NDCG@ 10) between the
original model and the ensemble models. We independently
train two parallel networks initialized with different ran-
dom seeds and compare the performance with the original
model.

GRU4Rec Caser SASRec
Model
Original Ensemble(2X) Original Ensemble(2X) Original Ensemble(2X)
Beauty 0.0175 0.0199 0.0212 0.0247 0.0284 0.0365
Toys 0.0097 0.0102 0.0168 0.0193 0.0320 0.0378

ML-1IM  0.0649 0.0720 0.0734 0.0786 0.0918 0.1032

as skip behavior [32] and disordered sequence [31], can be success-
fully detected by the sequence encoder. However, an alternative
approach—training multiple networks as an ensemble of encoders—
is less explored in sequential recommendation. A single deep neural
network can only converge to a local minimum, and the number
of possible local minima grows exponentially with the number of
parameters [19]. Therefore, it is hardly possible that two networks
with different initializations will converge to the same local mini-
mum even if they share the same architecture [17]. Such a property
can bring benefits, because networks converging to different local
minima will make different predictions. Although each prediction
can only achieve a certain level of accuracy rate, a diversity of pre-
dictions combined together can significantly improve the overall
accuracy rate. For example, in Figure 1, parallel networks with dif-
ferent initializations will generate a different list of candidate items
as the prediction results. It might be hard to get the correct result if
we only consider the prediction from one single network. But if we
consider predictions from all these networks and choose the most
popular item, it will be much easier to get the correct result.

A simple method for ensemble modeling is to train multiple paral-
lel networks independently and average their logits as the final out-
put. We demonstrate its result in Table 1. As we can see, the simple
ensemble method indeed improves performance. But due to the ab-
sence of knowledge transfer between parallel networks, sometimes
its performance margin can be trivial. Some works [22, 29, 44] have
shown that an ensemble of networks can benefit from collaborative
knowledge distillation, where each individual network acquires
supplementary information from peer networks while sharing its

own knowledge with others. Compared with independent training,
such a collaborative paradigm can improve the performance of
each individual network, where knowledge is effectively shared
and transferred rather than learned alone. Therefore, it is necessary
to design proper techniques for ensemble modeling methods that
facilitate knowledge transfer between parallel networks.

Based on the above observations, we present Ensemble Modeling
with contrastive Knowledge Distillation for sequential recommen-
dation (EMKD). Our framework adopts multiple parallel networks
as an ensemble of sequence encoders, and each parallel network is
a bidirectional Transformer sequence encoder. To facilitate knowl-
edge transfer between parallel networks, we propose a novel con-
trastive knowledge distillation approach, which distills knowledge
from both the representation level and the logits level. At the rep-
resentation level, two contrastive learning objectives are designed
from both the intra-network perspective and cross-network per-
spective to distill representational knowledge. At the logits level, a
collaborative knowledge distillation approach, which treats each
parallel network as both the teacher and the student network, is
designed to distill logits-level knowledge. For recommendation
training, we introduce masked item prediction as the main task.
Since attribute information incorporates rich contextual data that
are useful for sequential recommendation [43, 45], we design at-
tribute prediction as an auxiliary task to fuse attribute information.

To verify the effectiveness of our framework, we conduct exten-
sive experiments on public benchmark datasets and show that our
framework achieves significant performance improvement com-
pared with the state-of-the-art methods. Furthermore, we show that
our method for ensemble modeling is a generalized approach that
can be adapted to other types of sequence encoders, such as RNN,
CNN, and Transformer, to improve their performances. Since train-
ing efficiency can be a major concern for ensemble methods, we
compare the training speed and convergence speed of our frame-
work with other state-of-the-art methods and find out that our
framework only shows a minor reduction in training efficiency. For
these reasons, we think that it is worthwhile to adopt ensemble
modeling methods in sequential recommendation. Our contribu-
tions can be summarized as follows:

e We propose a novel framework called Ensemble Modeling with
Contrastive Knowledge Distillation for sequential recommenda-
tion (EMKD). To the best of our knowledge, this is the first work
to apply the ensemble modeling to sequential recommendation.

e We propose a novel contrastive knowledge distillation approach
that facilitates knowledge transfer and distills knowledge from
both the representation level and the logits level.

e We conduct extensive experiments on public benchmark datasets
and show that our framework can significantly outperform the
state-of-the-art methods. Our framework can also be adapted to
other sequential recommenders to improve their performances.

2 RELATED WORK

2.1 Sequential Recommendation

Traditional methods for sequential recommendation adopt the
Markov Chains (MCs) to model item transitions, such as MDP [28],
FPMC [27] and Fossil [14]. With the advancements in deep learning,
RNN-based model [15] and CNN-based model [32] have all been



shown as effective sequence encoders. The recent success of Trans-
former [36] also motivates the designing of Transformer-based
sequence encoders. For example, SASRec [18] adopts unidirectional
Transformer to automatically assign attention weights to different
items, BERT4Rec [31] adopts bidirectional Transformer with the
cloze task [6] to adapt for interactions that do not follow a rigid
sequential order. Some works also leverage the attribute informa-
tion about items in order to provide contextual data for sequential
recommendation. For example, FDSA [43] adopts feature-level self-
attention blocks to fuse attribute data into sequences, S3-Rec [45]
proposes self-supervised objectives to model the correlations be-
tween items, sequences and attributes, MMInfoRec [25] combines
the attribute encoder with a memory module and a sampling strat-
egy to capture long-term preferences. Different from these works
that only focus on a single encoder, our framework trains an en-
semble of networks with contrastive knowledge distillation.

2.2 Ensemble Modeling and Knowledge
Distillation

Ensemble modeling [10, 17, 22, 29, 30, 34, 44] has long been estab-
lished as an effective approach for improving the accuracy and
robustness of neural networks. One commonly adopted technique
is Dropout [30], which creates a self-ensemble of networks by ran-
domly dropping neurons at the training stage. As for the ensemble
of multiple parallel networks, some works have recognized the
necessity of facilitating knowledge when training multiple parallel
networks, which is often implemented via knowledge distillation
[16]. For example, DML [44] proposes a collaborative learning strat-
egy by distilling knowledge between parallel networks, ONE [22]
proposes an on-the-fly native ensemble method for one-stage online
distillation. However, these methods are all proposed for the com-
pression of large-scale models on computer vision tasks, and how
to design efficient and effective methods to facilitate knowledge
transfer for ensemble sequential models remains to be explored.

2.3 Contrastive Learning

Contrastive learning has achieved great success in computer vision
[1-5, 8, 13, 33, 35], natural language processing [9, 41], and rec-
ommender systems [26, 39, 40, 42]. In sequential recommendation,
contrastive learning has also been shown as an effective approach
for alleviating data sparsity and learning better representations. For
example, CL4SRec [40] first introduces contrastive learning into
sequential recommendation by proposing three data augmentation
operators, DuoRec [26] performs contrastive learning from the
model level to mitigate the representation degeneration problem,
CML [39] combines contrastive learning with meta learning for
personalized multi-behavior recommendation. Different from these
works, our framework formulates contrastive learning as a way of
contrastive representation distillation [33] to facilitate knowledge
transfer between the ensemble networks.

3 PROPOSED FRAMEWORK

In this section, we introduce the architecture of our proposed frame-
work, Ensemble Modeling with contrastive Knowledge Distillation
(EMKD). The architecture of EMKD is illustrated in Figure 2. Our
framework trains an ensemble of sequence encoders and averages

the logits of these sequence encoders for inference. We design
masked item prediction as the primary task for recommendation
training and attribute prediction as the auxiliary task for attribute
information fusion. To facilitate knowledge transfer between these
parallel networks, we propose a novel approach for contrastive
knowledge distillation, which performs contrastive representation
distillation from the representation level and knowledge distillation
from the logits level.

3.1 Problem Statement

In sequential recommendation, we denote U as a set of users, V as
a set of items, and A as a set of attributes. Each user u € U is as-
sociated with an interaction sequence s, = [v1,02, - , 0z, -+ ,UT]
sorted in the chronological order, where v; € V denotes the item
that user u has interacted with at the ¢-th timestamp and T indi-
cates the sequence length. Each item v; has its own attribute set
ar = {a1,az,+ ,a|q,|} C A as a subset of all the attributes. The
task of sequential recommendation is to predict the next item that
user u will probably interact with, and it can be formulated as gen-
erating the probability distribution over all candidate items for user
u at the time step T + 1:

Pp(or41 = vlsy)

3.2 Ensemble Sequence Encoder

A sequential recommendation model encodes essential sequence
information via a sequence encoder, which takes user sequences
as input and outputs hidden representations of sequences. In our
framework, we adopt bidirectional Transformer as the base se-
quence encoder, which is able to model item correlations from both
directions. The architecture of bidirectional Transformer consists
of an embedding layer and a bidirectional Transformer module. For
the input sequence s, = [v1,v2, - - - ,vT], an item embedding matrix
V € RIVIXd and a positional embedding matrix P € RT*¢ and are
combined together to represent items in the hidden space, where
T denotes the maximum sequence length of our model, d is the
hidden dimensionality. The computation of the embedding layer is
formulated as follows:

E(sy) = [o1+ p,v2 + py.- -, 0T + pr] o))

We then feed E(sy,) into the bidirectional Transformer module Trm
and fetch the output H € R7*? as the hidden representations
of the sequence. In general, we denote a sequence encoder f(-)
that takes user sequence s, as the input and outputs the hidden
representations H(s;) of this sequence:

H(sy) = [h1,h2, - hr] = f(su) = Trm(E(sy)) @)

As we have mentioned above, an ensemble of parallel networks can
generate different predictions, which will be helpful for improving
the overall accuracy rate. We adopt N parallel networks as an
ensemble of sequence encoders. Each parallel network f™(-) is a
bidirectional Transformer sequence encoder, where 1<n<N. We
initialize these parallel networks with different random seeds so
that they will generate different prediction results.
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Figure 2: An overview of EMKD with N parallel networks f'(-),---, fN(-). For each original sequence s,, we generate M dif-
ferent masked sequences. The hidden representations of the original sequence H'(s,),---,HN (s,) serve as the anchor for
contrastive representation distillation and are used for the attribute prediction task, while the hidden representations of the
masked sequences H!(s™),--- , HN (s") serve as positive samples for contrastive representation distillation and are used for
the masked item prediction task. Negative samples H"(s;)(1<n<N) for contrastive representation distillation are collected
from the same batch. We compute the Kullback-Leibler divergence on the logits of the masked item prediction task between

different networks for knowledge distillation.

3.3 Multi-Task Learning

We adopt a multi-task learning scheme to enhance sequential rec-
ommendation with contextual information. Specifically, we adopt
masked item prediction as the main task for recommendation train-
ing. An attribute prediction task is also introduced as the auxiliary
task to fuse attribute information.

3.3.1 Masked Item Prediction. Since bidirectional Transformers are
typically trained with the masked item prediction task, we follow
BERT4Rec [31] and adopt masked item prediction as the main
task, which requires the model to reconstruct the masked items.
Specifically, for each user sequence s;, we use different random
seeds to generate M different masked sequences. In each masked
sequence s, a proportion p of items I,]* = (¢, tzm, e ,ti") are
randomly replaced with the mask token [mask]. Here L = [p * T
and 7] denotes the indices of the masked items. The process of
random item masking is defined as follows:

s;n = [51,52, cee ,ET], 1<m<M
5 _ Ut, t ¢ ]um (3)
7\ [mask], te nr

Each masked sequence s];* is then fed into the ensemble networks
to generate the corresponding hidden representations:

H"(s;") = [R]™ hy™, - h7™] = f(s"), 1<n<N, 1<m<M
©
A linear layer is adopted as the item classifier to convert the hidden
representations into probability distribution over candidate items.
Given the output of hidden representation k"™ at position ¢, the

computation is formulated as follows:
"™(v) = hP™W + b, 1<t<T 5)

where W € RV is the weight matrix and b € RIVIis the
bias term. Finally, we calculate the cross-entropy loss for the m-th

masked sequence from the n-th network:

m(U_) _ eXp(p?’m(zji))
= exp(p (0)))
V| (6)
MIP Z Z yilog qt ™ (0:)
tel" i=

where y; = 1if v; = v; (the predicted item v; is the ground-truth
item v;) else 0. Note that only the masked items within the sequence
are considered when calculating the loss function for the masked
item prediction task. Since we have N parallel networks where each
network is fed with M different masked sequences, we sum up each

Len aip @s the total loss function of the masked item prediction task:
N M
Lmip = Z Z Lyp 7)
n=1m=1

3.3.2 Attribute Prediction. Attribute provides fine-grained features
of items, which is a readily-available source of auxiliary informa-
tion for sequential recommendation. Some works [25, 43, 45] have
shown that incorporating attribute information benefits the main
task of sequential recommendation. Therefore, we propose an aux-
iliary attribute prediction task to incorporate attribute information.
Different from previous works, we do not construct an explicit at-
tribute embedding to model item-attribute correlations. Instead, we
treat attribute prediction as a multi-label classification task that re-
quires to the model to classify an item under the correct attribute(s).
Specifically, we feed the original sequence s, into parallel networks
to generate the hidden representations:

H'(sy) = (W0, RS, B2] = f"(su),1snsN (9)



We then adopt another linear layer with the sigmoid activation
function as the attribute classifier to convert the hidden representa-
tion h} at position t into probability distribution over the attributes:

pl(a) = o(R}W +b),1<t<T )

where W € RIA js the weight matrix, b e R is the bias
term, and o is the sigmoid function. Given that an item may be
associated with multiple attributes, we compute the binary cross-
entropy loss function for the attribute prediction task from the n-th
network:

T
Lip=-),

t=1 i=1

Kl
[yi log pf’ (i) + (1 = yn)log(1 ~ p}'(a1))]  (10)

where y; = 11if a; € a; (the predicted attribute a; is a correct
attribute in the associated attribute set a; of item v;) else 0. Each
L is then summed up as the total loss function of the attribute
prediction task:

N
Lap= ) Lhp (11)

n=1

3.4 Contrastive Knowledge Distillation

To transfer knowledge between parallel networks, we design a
contrastive knowledge distillation approach that transfers both the
representational knowledge and the logits-level knowledge.

3.4.1 Contrastive Representation Distillation. Contrastive learning
aims to align the positive sample (i.e., a data-augmented sequence)
with its anchor (i.e., an original sequence) and push negative sam-
ples apart from the anchor. In our framework, the hidden repre-
sentation H"(sy,) from the attribute prediction task can be viewed
as an anchor representation because it is obtained from the orig-
inal user sequence s;. Besides, the other hidden representations
H"(s]') obtained from the masked item prediction task can be
viewed as positive samples, because they are obtained from masked
user sequences s,,', which is a form of data augmentation. Similar
to the in-batch negative sampling strategy in [2, 26, 40], the other
user sequences {sk}f=1 ku from the same batch can be viewed as
negative samples, where B denotes the batch size.

Our method for contrastive representation distillation contains
two objectives. First, an Intra-network Contrastive Learning (ICL)
objective is designed to contrast the hidden representations of
different masked sequences outputted by the same network. The
loss function of ICL for the n-th network is formulated as follows:

M n n(.m
Zlog exp(g(H" (sy), H"(s]")) /1) (12)

A i e SXP(9(H (su), H (51))/7)

where g(-) is the cosine similarity function, 7 is a temperature
hyper-parameter, M is the number of the masked sequences. Each

noo_
‘£ICL__

L] is then summed up as the total loss function for ICL:
N
Licr=) Ly, (13)
n=1

ICL alone cannot effectively transfer knowledge between the
parallel networks, because the representations from different net-
works are not contrasted against each other. To transfer representa-
tional knowledge between the parallel networks, a Cross-network

Contrastive Learning (CCL) objective is introduced to contrast the
hidden representations of different masked sequences outputted
by different networks. Similar to Eq. 12, the loss function of CCL
between the x-th network and the y-th network is formulated as
follows:

Z log PG (s0) HY (7)) /7)
= z,il,k#, exp(g(H* (su), HY(s¢))/7)

where x,y € [1, N] are the indices of the networks. Since we have
N parallel networks, permutations of £7 are summed up as the
total loss function for CCL:

LCCL = Z Z 'LCCL (15)

x=1 y=1,y#x

CCL

CCL

3.4.2 Logits-Level Knowledge Distillation. The task of sequential
recommendation takes the logits p;"™ (v) as the final prediction
result. Although representational knowledge is distilled through
contrastive learning, we still need Knowledge Distillation (KD)
from the logits level so as to transfer knowledge more related with
the sequential recommendation task. Following [16, 22] for knowl-
edge distillation, we minimize the Kullback-Leibler divergence be-
tween the teacher logits p}"™ (v) and the student logits pty’m(v).
Specifically, we first compute the softmax probability distribution
at temperature 7:

ey o _CRETODID g e @)/
' SV exp(pr™ (0)) /) SV exp(pf™ (07)/7)
(16)

The computation of the Kullback-Leibler divergence between the x-
th network and the y-th network can then be formulated as follows:

X, - I(VI ( l)
L= Z (vl)log o a7
m=1tel" i=

where the probability distributions of the M masked sequences are
all considered for knowledge distillation. Note that when z,"™ (v;)
is treated as the teacher logits, we cut off its gradient for stability.

The logits-level knowledge is distilled in a collaborative style,
where each network can simultaneously be the student who ac-
quires knowledge from other peer networks and the teacher who
provides knowledge for other peer networks. In this way, the dis-
tilled knowledge can be effectively shared and transferred between
all parallel networks. Therefore, we sum up the permutations of
.E;’g for all the N parallel networks to perform a collaborative
paradigm of knowledge distillation:

N N
Lxp = Z Z L;’g (18)
x=1y=1,y#x
3.5 Training and Inference

3.5.1 Overall Training Objective. We sum up the loss function for
the masked item prediction task, the attribute prediction task, the
ICL objective, the CCL objective, and the KD objective as the total
loss function to jointly optimize our framework:

Lemkp = Lmip + Lap + M LicL + Lecr) +pLkp  (19)

where A, 1 are weight hyper-parameters.



3.5.2 Inference. To infer the next item for user u, we append
the mask token to the end of the sequence s, to obtain s,/ =
[v2,03 - - - , 0T, [mask]]!. The hidden representations correspond-
ing to the mask token are converted into probability distributions
by the item classifier defined in Equation 5. Predictions from all the
parallel networks are averaged as the final prediction result:

HP ) = R R ] = 7G5,

N 20
p(v) = % S W +b) 20)
n=1

3.6 Discussion

One possible reason why ensemble methods are superior for se-
quential recommendation is that it can handle behavior uncertainty.
Users’ sequential behaviors are uncertain rather than deterministic,
and users’ preferences may shift under different circumstances [7].
For example, a user favours movies with Action and Comedy genres.
However, there are many candidate movies that fall under these
genres, and the user may choose different movies under different
situations. In such cases, the diversity of prediction results brought
by ensemble methods can consider all these situations and generate
a more accurate recommendation result.

Another possible reason is that ensemble methods can miti-
gate the adverse effects of noisy data. The datasets for sequential
recommendation are usually sparse and noisy. In such cases, the
knowledge transfer mechanisms between the ensemble networks
can filter out the incorrect predictions introduced by noisy labels
and transfer the useful knowledge to the whole network [11], thus
improving the overall accuracy rate and model robustness.

4 EXPERIMENT

In this section, we present the details of our experiments and answer

the following research questions (RQs):

e RQ1: How does EMKD perform comparing with other state-of-
the-art methods for sequential recommendation?

o RQ2: What are the influences of different hyper-parameters in
EMKD?

e RQ3: What is the effectiveness of different components in EMKD?

e RQ4: Can we adapt EMKD to other sequential recommenders to
improve their performances?

o RQ5: Compared with other state-of-the-art methods, will ensem-
ble modeling significantly reduce training efficiency?

e RQ6: Does the good performance of EMKD result from the pro-
posed knowledge transfer mechanisms between the ensemble
networks or does it simply come from the increase in the param-
eter size?

4.1 Settings

4.1.1 Dataset. We conduct experiments on three public benchmark
datasets collected from two platforms. The Amazon dataset [23]
contains users’ reviews on varying categories of products. We select
two subcategories, Beauty and Toys, and use the fine-grained
categories and the brands of the products as attributes. Another

1We drop the first item o; due to the restriction of maximum sequence length.

Table 2: Dataset statistics after preprocessing.

Datasets Beauty Toys ML-1M
#users 22,363 19,412 6,040
#items 12,101 11,924 3,953
#actions 198,502 167,597 1,000,209

avg. actions/user 8.9 8.6 163.5
avg. actions/item 16.4 141 253.0

sparsity 99.93% 99.93% 95.81%
#attributes 1,221 1,027 18
avg. attributes/item 5.1 43 1.7

dataset MovieLens-1M (ML-1M) [12] contains users’ ratings on
movies, and we use the genres of the movies as attributes.

Following [18, 26, 31, 40, 45], we treat all interactions as implicit
feedbacks. To construct user sequences, we remove duplicated in-
teractions and sort each user’s interactions by their timestamps.
Users related with less than 5 interactions and items related with
less than 5 users are filtered out from the dataset. The processed
dataset statistics are presented in Table 2.

4.1.2  Metrics. We choose top-K Hit Ratio (HR@K) and Normal-
ized Discounted Cumulative Gain NDCG@K) with K € {5,10}
as metrics to evaluate the performance. The leave-one-out evalu-
ation strategy is adopted, holding out the last item for test, the
second-to-last item for validation, and the rest for training. Since
sampled metrics might lead to unfair comparisons [21], we rank
the prediction results on the whole item set without sampling.

4.1.3 Baselines. We include baseline methods from three groups

for comparison:

e General sequential methods utilize a sequence encoder to gen-
erate the hidden representations of users and items. For example,
GRU4Rec [15] adopts RNN as the sequence encoder, Caser [32]
adopts CNN as the sequence encoder, SASRec [18] adopts unidi-
rectional Transformer as the sequence encoder, BERT4Rec [31]
adopts bidirectional Transformer as the sequence encoder.

o Attribute-aware sequential methods fuse attribute informa-
tion into sequential recommendation. For example, FDSA [43]
applies self-attention blocks to capture transition patterns of
items and attributes, S>-Rec [45] proposes self-supervised objec-
tives to model the correlations between items, sequences and
attributes, MMInfoRec [25] augments the attribute encoder with
a memory module and a multi-instance sampling strategy.

e Contrastive sequential methods design auxiliary objectives
for contrastive learning based on general sequential methods. For
example, CL4SRec [40] proposes data augmentation strategies for
contrastive learning in sequential recommendation, DuoRec [26]
proposes both supervised and unsupervised sampling strategies
for contrastive learning in sequential recommendation.

4.1.4 Implementation. The codes for GRU4Rec, Caser, SASRec,
BERT4Rec, S3-Rec, MMInfoRec, and DuoRec are provided by their
authors. We implement FDSA and CL4SRec in PyTorch [24]. We
follow the instructions from the original papers to set and tune the
hyper-parameters.



We also implement our framework in PyTorch [24]. We set the
number of Transformer blocks and attention heads as 2, batch size
as 256. Following BERT [6] we set the mask proportion p as 0.15.
For other hyper-parameters, we tune A within [0.01, 1], ¢ within
[0.01,1], 7 within [0.1, 10], the number of masked sequences M
within [1, 8]. The default setting for the number of parallel networks
N is 3, and variants are studied in Section 4.4. The default setting
for the hidden dimensionality d is set as 256, and model robustness
w.r.t different hidden dimensionality sizes is studied in Section 4.3.4.
We use an Adam optimizer [20] with an initial learning rate 0.001,
and the learning rate decays exponentially after every 100 epochs.
We train our model for 250 epochs and select the checkpoint with
the best validation result for test.

4.2 Overall Performance Comparison (RQ1)

Table 3 presents the overall performance of EMKD and baseline

methods. Based on the experiment results, we can see:

o EMKD outperforms all baseline methods on both sparse and
dense datasets with the relative performance improvements rang-
ing from 13.05% to 33.48%. We attribute the performance im-
provement to these factors: (1) ensemble modeling uses multiple
parallel networks to yield diverse predictions, and combining a
diversity of prediction results is more accurate than the predic-
tion of a single network; (2) contrastive knowledge distillation
facilitates knowledge transfer between parallel networks, and
each individual network benefits from this collaborative learning
paradigm; (3) the attribute information provides rich contextual
data and can benefit the main task of sequential recommendation.

e Among general sequential methods, Transformer-based sequence
encoders (e.g., SASRec, BERT4Rec) outperform RNN-based (e.g.,
GRU4Rec) or CNN-based (e.g., Caser) sequence encoders. This
suggests that the self-attention mechanism can effectively model
sequential patterns. Moreover, attribute-aware sequential meth-
ods outperform general sequential methods owing to the incor-
poration of attribute information. Besides, contrastive sequential
methods show performance improvements compared with gen-
eral sequential methods. This is probably because contrastive
learning serves as a regularization objective that can alleviate the
data sparsity issue and improve model robustness.

4.3 Hyper-parameter Sensitivity (RQ2)

In this section, we study the influences of important hyper-parameters,
including the number of masked sequences M, temperature 7, weight
hyper-parameters A and g, hidden dimensionality d. To control
variables we only change one hyper-parameter at one time while
keeping the other hyper-parameters optimal.

4.3.1 Number of Masked Sequences. M regulates how many masked
sequences are available for training. From Figure 3a, we can see that
the performance increases as more masked sequences are available.
This is because masking different items in the same sequence brings
various semantic patterns, and reconstructing all these items will
help the model gain more knowledge. However, such performance
gain also shows an upper limit for multiple masked sequences. With
sufficient masked sequences, the performance hardly improves even
if we further increase M.

4.3.2 Temperature. Temperature 7 regulates the hardness of the
probability distributions for contrastive representation distillation
and knowledge distillation. From Figure 3b, we can see that an
appropriate choice of 7 should be neither too large nor too small.
This is because a smaller 7 produces harder probability distributions
that makes the model intolerant to semantically similar samples,
while a larger 7 produces softer probability distributions that makes
the model insensitive to semantic differences [37, 38].

4.3.3 Weight Hyper-parameters. A and u are two weight hyper-
parameters that control the strength of contrastive representation
distillation and knowledge distillation. From Figure 3c and Figure
3d, we can see that a proper choice of weight hyper-parameters
can significantly improve the performance, while selecting weight
hyper-parameters that are either too large or too small will under-
mine the performance.

4.3.4 Hidden Dimensionality d. Figure 3e reports the performances
w.r.t different hidden dimensionality d. We can see that the per-
formance steadily increases as the hidden dimensionality becomes
larger, and the best performance is reached when d = 256 (default
setting). However, the performance slightly drops when d = 512,
which is probably due to overfitting.

4.4 Ablation Study (RQ3)

In this section, we conduct an ablation study to investigate the

effectiveness of the key components in our framework. Table 4

presents the performance of EMKD under the default setting and

its variants. Based on the experiment results, we can see that:

e Ensemble networks outperform a single network. We can
see that (6) shows the worst performance compared with other
ensemble methods. This observation verifies our claim that en-
semble modeling is more powerful than a single network.

e Ensemble networks learn better with effective knowledge
transfer. Our method for contrastive knowledge distillation con-
tains three objectives—ICL, CCL and KD. From (2)-(4) we can see
that each objective plays a crucial role in facilitating knowledge
transfer between parallel networks, and removing any objective
leads to performance decrease. Compared with (5), we can see
that ensemble networks with knowledge transfer methods out-
perform the simple ensemble of independently-trained networks.

e Training EMKD with 3 parallel networks is the optimal
setting. Increasing the number of parallel networks can improve
performance because training more parallel networks can in-
crease the diversity of prediction results. However, we cannot
train an infinite number of parallel networks due to the limitation
of computational cost. From (1)(6)(7)(8) we can see that training
EMKD with 3 parallel networks almost reaches the best perfor-
mance. Although (8) shows a slight improvement compared with
(1), training EMKD with 4 parallel networks is too costly and also
increases the risk of overfitting.

e Sequential recommendation benefits from the auxiliary
attribute information. From (9) we can see that removing the
auxiliary task of attribute prediction will hurt performance. This
observation is also consistent with previous works [25, 43, 45]
that utilizing attribute information can enhance the performance
of sequential recommendation models.



Table 3: Overall performance of different methods for sequential recommendation. The best score and the second-best score
in each row are bolded and underlined, respectively. The last column indicates improvements over the best baseline method.

Dataset | Metric | GRU4Rec Caser SASRec BERT4Rec | FDSA S*-Rec MMInfoRec | CL4SRec DuoRec | EMKD | Improv.
HR@5 0.0206  0.0254 0.0371  0.0364 [0.0317 00382  0.0527 0.0396  0.0559 |0.0702 | 25.58%

Beauty | HIR@10 0.0332  0.0436 0.0592  0.0583 |0.0496 0.0634  0.0739 0.0630  0.0867 | 0.0995 | 14.76%
NDCG@5 | 0.0139 00154 00233 00228 |0.0184 0.0244  0.0378 0.0232  0.0331 |0.0500 | 32.28%
NDCG@10 | 0.0175 ~ 0.0212 0.0284  0.0307 | 0.0268 0.0335  0.0445 0.0307  0.0430 | 0.0594 | 33.48%
HR@5 0.0121  0.0205 0.0429  0.0371 [0.0269 0.0440  0.0579 0.0503  0.0539 |0.0745 | 28.67%

Toys | HR@10 0.0184 00333 00652  0.0524 |0.0483 0.0705  0.0818 0.0736  0.0744 |0.1016 | 24.21%
NDCG@5 | 0.0077 00125 0.0248  0.0259 |0.0227 0.0286  0.0408 0.0264  0.0340 | 0.0534 | 30.88%
NDCG@10 | 0.0097 ~ 0.0168 0.0320  0.0309 |0.0281 0.0369  0.0484 0.0339  0.0406 | 0.0622 | 28.51%
HR@5 0.0806  0.0912 0.1078  0.1308 |0.0953 0.1128  0.1454 01142 0.1930 |0.2315 | 19.95%

ML-1y | HR@10 0.1344  0.1442 01810 02219 |0.1645 01969  0.2248 0.1815  0.2865 | 0.3239 | 13.05%
NDCG@5 | 0.0475 0.0565 0.0681  0.0804 |0.0597 0.0668  0.0856 0.0705  0.1327 |0.1616 | 21.78%
NDCG@10 | 0.0649 ~ 0.0734 0.0918  0.1097 |0.0864 0.0950  0.1203 0.0920  0.1586 | 0.1915 | 20.74%
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Figure 3: Performance (NDCG@ 10) comparison w.r.t different hyper-parameters on three datasets.

Table 4: Ablation study (NDCG@ 10) on three datasets. Bold
score indicates the performance under the default setting. T
indicates the performance better than the default setting,.

Architecture Dataset

Beauty Toys ML-1M
(1) EMKD(x3) 0.0594 0.0622 0.1915
(2) Remove ICL 0.0529 0.0545 0.1679
(3) Remove CCL 0.0552 0.0560 0.1807
(4) Remove KD 0.0537 0.0571 0.1758
(5) Independent Training | 0.0452  0.0484  0.1476
(6) Single Encoder 0.0363  0.0375 0.1183
(7) EMKD(x2) 0.0536  0.0568  0.1792
(8) EMKD(x4) 0.0591  0.0629T 0.19307
(9) Remove AP | 00578  0.0609  0.1831

4.5 Adaptation to Other Models (RQ4)

EMKD trains an ensemble of bidirectional Transformers as sequence
encoders, which can be viewed as an ensemble of BERT4Rec mod-
els. Since ensemble modeling and knowledge transfer is a model-
agnostic approach, it can also be adapted to other sequence en-
coders. In this section, we apply EMKD to the ensemble of vari-
ous base sequence encoders with a slight modification. Different

Table 5: Performance comparison (NDCG@10) of models
with different parameter sizes on three datasets. * indicates
the default setting for each model.

Beauty Toys ML-1M
Architecture Params. NDCG@10 Params. NDCG@10 Params. NDCG@10
SASRec-2 Layers™ 4.69M 0.0284 4.65M 0.0320 2.51IM 0.0918
SASRec-4 Layers 6.27M 0.0301 6.23M 0.0313 4.09M 0.0896
SASRec-6 Layers 7.85M 0.0298 7.80M 0.0332 5.67M 0.0857
SASRec-8 Layers 9.43M 0.0279 9.38M 0.0305 7.24M 0.0932
SASRec-10 Layers 11.01M  0.0282 10.96M 0.0310 8.82M 0.0881
BERT4Rec-2 Layers* 7.80M 0.0307 7.71IM 0.0309 3.53M 0.1097
BERT4Rec-4 Layers  9.38M 0.0328 9.29M 0.0312 5.11M 0.1113
BERT4Rec-6 Layers 10.96M  0.0332 10.87M 0.0306 6.69M 0.1100
BERT4Rec-8 Layers 12.54M  0.0310 12.45M 0.0298 8.27M 0.1093
BERT4Rec-10 Layers 14.12M 0.0319 14.03M 0.0293 9.85M 0.1099
EMKD(%2) 9.36M 0.0536 9.28M 0.0568 5.08M 0.1792
EMKD(x3)* 14.05M  0.0594 13.91M 0.0622 7.62M 0.1915

from the Masked Language Modeling (MLM) style in bidirectional
Transformers, other sequence encoders (e.g., GRU4Rec, Caser and
SASRec) are autoregressive models that predict the next item based
on previous items. Therefore, we need to switch the masked item
prediction task to the next item prediction task. The attribute predic-
tion task is also modified so that the model will predict the associate
attributes at the next position.
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Figure 4: Performance comparison (NDCG@ 10) of different
models enhanced by EMKD on Beauty and ML-1M datasets.
We design three variants for each group of base sequence
encoder with 2,3,4 parallel networks respectively.
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Figure 5: Training efficiency (NDCG@10) on Beauty and
Toys datasets. The training speed of EMKD is slightly lower
than MMInfoRec, while the convergence speed of EMKD is
comparable with DuoRec.

Figure 4 presents the performances of different models enhanced
by EMKD on Beauty and ML-1M datasets. We can see that all the
base sequence encoders enhanced by our approach achieve better
performance. This shows that ensemble modeling with contrastive
knowledge distillation is a generalized approach that can be utilized
to improve the performance of sequential recommenders.

4.6 Training Efficiency (RQ5)

A major concern for ensemble modeling is the training efficiency.
To evaluate the training efficiency of our framework, we compare
EMKD with two best-performed baselines: MMInfoRec and DuoRec.
Training efficiency is evaluated from two aspects: training speed (av-
erage training time required for one epoch), and convergence speed
(time required to achieve satisfactory performance). To visualize
the performance, we save the checkpoint from every epoch and test
them afterwards. All experiments use the default hyper-parameters
and are carried out on a single Tesla V100 GPU.

Figure 5 presents the training efficiency of each model on Beauty
and Toys datasets. We find out that EMKD with 2 parallel networks
shows similar training speed (69.4s/epoch and 62.1s/epoch) with
MMiInfoRec (65.3s/epoch and 60.2s/epoch), while EMKD with 3 par-
allel networks (109.2s/epoch and 98.6s/epoch) is about 30% slower
than MMInfoRec. Besides, DuoRec shows the best training speed
(40.8s/epoch and 37.9s/epoch) on both datasets.

We also find out that EMKD almost converges as fast as DuoRec.
The performance curve of EMKD coincides with the performance

curve of DuoRec around the first 1000 seconds, indicating that
EMKD and DuoRec show similar convergence speed during this
interval. However, the performance of EMKD continues to improve
afterwards, while DuoRec reaches its best performance. By com-
parison, MMInfoRec takes about 4000 seconds to converge to a
satisfactory performance, which is slower than DuoRec and EMKD.
Compared with DuoRec and MMInfoRec, EMKD only brings a
minor reduction in training efficiency. However, the performance
improvement can be very significant compared with training a
single network. Therefore, we think that it is worthwhile to adopt
ensemble modeling methods in sequential recommendation.

4.7 Parameter Scaling (RQ6)

EMKD trains multiple bidirectional Transformer encoders as an en-
semble network, which will increase the total number of parameters.
To determine whether the good performance of EMKD results from
the proposed knowledge transfer mechanisms or simply comes from
the increase in the parameter size, we compare the performance of
EMKD with other Transformer-based sequence encoders (SASRec
and BERT4Rec) of similar parameter sizes. SASRec and BERT4Rec
adopt two layers of Transformer blocks by default, and to scale
the number of parameters, we stack more layers of Transformer
blocks for SASRec and BERT4Rec so that they will have parameter
sizes comparable to EMKD. Note that we count the parameters of
both the embedding table and the sequence encoder(s) for each
model, and we set the hidden dimensionality of each model as 256
for fair comparisons. Table 5 shows the parameter sizes and the
performances of different models on three datasets. We can see that
EMKD with 2 parallel networks has similar parameter size with a
6-layer SASRec or a 4-layer BERT4Rec, while EMKD with 3 parallel
networks has similar parameter size with a 10-layer BERT4Rec.
However, EMKD consistently outperforms SASRec and BERT4Rec
of any parameter sizes, which verifies the effectiveness of the knowl-
edge transfer mechanisms between the ensemble networks. We also
find out that stacking more transformer blocks will not improve
performance or even hurt performance in some cases, indicating
that simply increasing the parameter size will not necessarily result
in better performance for sequential recommendation.

5 CONCLUSION

In this paper, we present a novel framework called Ensemble Mod-
eling with contrastive Knowledge Distillation for sequential recom-
mendation (EMKD). Our framework adopts an ensemble of parallel
networks to improve the overall prediction accuracy. To facilitate
knowledge transfer between parallel networks, we propose a novel
contrastive knowledge distillation approach that transfers knowl-
edge from both the representation level and the logits level. We also
design masked item prediction as the main task and attribute predic-
tion as the auxiliary task for multi-task learning. Experiment results
on three public benchmark datasets show that EMKD significantly
outperforms baseline methods.
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