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ABSTRACT
By treating users’ interactions as a user-item graph, graph learn-
ing models have been widely deployed in Collaborative Filter-
ing (CF) based recommendation. Recently, researchers have in-
troduced Graph Contrastive Learning (GCL) techniques into CF
to alleviate the sparse supervision issue, which first constructs
contrastive views by data augmentations and then provides self-
supervised signals by maximizing the mutual information between
contrastive views. Despite the effectiveness, we argue that current
GCL-based recommendation models are still limited as current data
augmentation techniques, either structure augmentation or feature
augmentation. First, structure augmentation randomly dropout
nodes or edges, which is easy to destroy the intrinsic nature of the
user-item graph. Second, feature augmentation imposes the same
scale noise augmentation on each node, which neglects the unique
characteristics of nodes on the graph.

To tackle the above limitations, we propose a novel Variational
Graph Generative-Contrastive Learning (VGCL) framework for rec-
ommendation. Specifically, we leverage variational graph recon-
struction to estimate a Gaussian distribution of each node, then
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generate multiple contrastive views through multiple samplings
from the estimated distributions, which builds a bridge between
generative and contrastive learning. The generated contrastive
views can well reconstruct the input graph without information
distortion. Besides, the estimated variances are tailored to each
node, which regulates the scale of contrastive loss for each node on
optimization. Considering the similarity of the estimated distribu-
tions, we propose a cluster-aware twofold contrastive learning, a
node-level to encourage consistency of a node’s contrastive views
and a cluster-level to encourage consistency of nodes in a clus-
ter. Finally, extensive experimental results on three public datasets
clearly demonstrate the effectiveness of the proposed model.
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1 INTRODUCTION
CF-based recommendation relies on the observed user-item interac-
tions to learn user and item embeddings for personalized preference
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prediction, and has been pervasive in real-world applications [30].
Early works leverage the matrix factorization technique to obtain
user and item embeddings, and then compute users’ preferences by
inner product [22, 23] or neural networks [8]. As users’ interactions
can be naturally formulated as a user-item graph, borrowing the
success of Graph Neural Networks (GNNs), graph-based CF models
have been widely studied with superior performances [2, 7, 38].
These models iteratively propagate the neighborhood information
for embedding updates, such that the higher-order collaborative
signals can be incorporated for better user and item embedding
learning.

Despite the effectiveness, graph-based CF models suffer from
the sparse supervision issue for model learning. As an alterna-
tive, self-supervised learning leverages the input data itself as the
supervision signal and has attracted many researchers [14, 42].
Among all self-supervised learning, contrastive learning is a popu-
lar paradigm that constructs data augmentations to teach the model
to compare similar data pairs, and has shown competitive per-
formance in computer vision, natural language processing, graph
mining, and so on [14, 21]. Some recent studies have introduced
contrastive learning in graph-based CF [20, 39, 51]. In addition
to the supervised recommendation task, GCL-based models first
construct multiple contrastive views through data augmentation,
and then maximize the mutual information to encourage the con-
sistency of different views. Existing GCL-based CF methods can
be classified into two categories: structure augmentation and fea-
ture augmentation. Specifically, structure augmentation randomly
dropout graph nodes or edges to obtain subgraph structure, and
then feeds the augmented graphs into an encoder for contrastive
representations [39]. Feature augmentation adds random noises to
node embeddings as contrastive views [51]. These GCL-based CF
models learn self-supervised signals based on data augmentation
and significantly improve recommendation performances.

Although data augmentation is the key to the performance of
GCL-based CF models, we argue that current solutions are still
limited by current data augmentation strategies, either structure
augmentation or feature augmentation. Firstly, structure augmenta-
tion randomly dropout nodes or edges, which is easy to destroy the
intrinsic nature of the input graph. The reason is that all nodes are
connected on the graph and don’t satisfy the IID assumption. Sec-
ondly, feature augmentation adds the same scale noise to each node,
which neglects the unique characteristics of nodes on the graph. In
real-world recommender systems, different users (items) have dif-
ferent characteristics, and the data augmentation techniques should
be tailored to each user. E.g., some users have more item links in
the user-item graph, which contains more supervised signals com-
pared to users with only very few links. How to better exploit the
user-item graph structure to design more sophisticated contrastive
view construction techniques is still open.

In this paper, we exploit the potential of the generative model to
facilitate contrastive view generation without data augmentation.
Specifically, we propose a Variational Graph Generative-Contrastive
Learning (VGCL) framework for recommendation. Instead of data
augmentation, we leverage variational graph inference [17] to esti-
mate a Gaussian distribution of each node, then generate multiple
contrastive views through multiple samplings from the estimated
distributions. As such, we build a bridge between the generative

and contrastive learning models for recommendation. The gener-
ated contrastive views can well reconstruct the input graph without
information distortion. Besides, the estimated variances are tailored
to each node, which can adaptively regulate the scale of contrastive
loss of each node for optimization. We consider that similar nodes
are closer in the representation space, and then propose cluster-
aware contrastive learning with twofold contrastive objectives.
The first one is a node-level contrastive loss that encourages the
consistency of each node’s multiple views. The second one is a
cluster-level contrastive loss that encourages the consistency of
different nodes in a cluster, with the cluster learned from the esti-
mated distributions of nodes. The major contributions of this paper
are summarized as follows:

• We introduce a novel generative-contrastive graph learning
paradigm from the perspective of better contrastive view con-
struction, and propose a novel Variational Graph Generative-
Contrastive Learning (VGCL) framework for recommenda-
tion.

• We leverage variational graph reconstruction to generate
contrastive views, and a design cluster-aware twofold con-
trastive learning module, such that the self-supervised sig-
nals can be better mined at different scales for GCL-based
recommendation.

• Extensive experiments on three public datasets clearly show
the effectiveness of the proposed framework, our VGCL con-
sistently outperforms all baselines.

2 PRELIMINARIES
2.1 Graph based Collaborative Filtering
In fundamental collaborative filtering, there are two kinds of enti-
ties: a userset 𝑈 (|𝑈 | = 𝑀) and an itemset 𝑉 (|𝑉 | = 𝑁 ). Consider-
ing the recommendation scenarios with implicit feedback, we use
matrix R ∈ R𝑀×𝑁 to describe user-item interactions, where each
element r𝑎𝑖 = 1 if user 𝑎 interacted with item 𝑖 , otherwise r𝑎𝑖 = 0.
Graph-based CF methods [2, 7, 38] formulate the available data as
a user-item bipartite graph G = {𝑈 ∪𝑉 ,A}, where 𝑈 ∪𝑉 denotes
the set of nodes, and A is the adjacent matrix defined as follows:

A =

[
0𝑀×𝑀 R
R𝑇 0𝑁 ×𝑁

]
. (1)

Given the initialized node embeddings E0, graph-based CF methods
update node embeddings through multiple graph convolutions:

E𝑙 = D− 1
2 AD− 1

2 E𝑙−1, (2)

where D is the degree matrix of graph G, E𝑙 and E𝑙−1 denote node
embeddings in 𝑙𝑡ℎ and (𝑙 − 1)𝑡ℎ graph convolution layer, respec-
tively. When stacking 𝐿 graph convolution layers, the final node
representations can be obtained with a readout operation:

E = 𝑅𝑒𝑎𝑑𝑜𝑢𝑡 (E0, E1, ..., E𝐿 ) . (3)

The pairwise ranking [23] loss is adopted to optimize model param-
eters:

L𝑟𝑒𝑐 =

𝑀−1∑︁
𝑎=0

∑︁
(𝑖,𝑗 ) ∈𝐷𝑎

−𝑙𝑜𝑔𝜎 (𝑟𝑎𝑖 − 𝑟𝑎𝑗 ) + 𝜆 | |E0 | |2, (4)
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Figure 1: Graph contrastive learning paradigms with structure and
feature data augmentation.

where 𝜎 (·) is the sigmoid activation function, 𝜆 is the regularization
coefficient.𝐷𝑎 = { (𝑖, 𝑗 ) |𝑖 ∈ 𝑅𝑎∧𝑗 ∉ 𝑅𝑎 } denotes the pairwise training
data for user 𝑎. 𝑅𝑎 represents the item set that user 𝑎 has interacted.

2.2 Graph Contrastive Learning for
Recommendation

GCL usually as an auxiliary task to complement recommendation
with self-supervised signals [20, 39, 51], which performs multi-task
learning:

L = L𝑟𝑒𝑐 + 𝛼L𝑐𝑙 , (5)

where 𝛼 is a hyper-parameter that controls the contrastive task
weight, L𝑐𝑙 is the typical InfoNCE loss function [3]:

L𝑐𝑙 =
∑︁
𝑖∈B

−𝑙𝑜𝑔
𝑒𝑥𝑝 (e′

𝑖
𝑇 e′′
𝑖
/𝜏 )∑

𝑗 ∈B
𝑒𝑥𝑝 (e′

𝑖
𝑇 e′′

𝑗
/𝜏 )

, (6)

where B denote a batch users (items), 𝜏 is the contrastive temper-
ature. For node 𝑖 , 𝑒′

𝑖
and 𝑒′′

𝑖
denote the corresponding contrastive

representations with 𝐿2 normalization, the same as node 𝑗 . This
objective encourages consistency of contrastive representations for
each node.

Revisiting GCL-based recommendation models from a data aug-
mentation perspective, there are two popular strategies: structure
augmentation [39] and feature augmentation [51]. As illustrated in
the upper part of Figure1, structure augmentation randomly per-
turb graph structure to obtain two augmented views G′,G′′, then
generate contrastive representations as follows:

E′ = E(G′, E0 ), E′′ = E(G′′, E0 ), (7)

where E(·) denotes graph encoder. Because nodes do not satisfy
the IID assumption on the graph, random structure perturbation
easy to destroys the intrinsic nature of the input graph, then can’t
fully make use of GCL for recommendation. Another is feature
augmentation [51], which is illustrated in the lower part of Figure1.
Feature augmentation adds random noises into node embeddings,
then generate contrastive representations with GNNs:

E′ = E(E0, 𝜖𝛿 ′ ), E′′ = E(E0, 𝜖𝛿 ′′ ), (8)

where 𝛿 ′, 𝛿 ′′ ∼ 𝑈 (0, 1) are uniform noises, 𝜖 is the amplitude that
controls noise scale. Although this noise-based augmentation is
controllable and constrains the deviation, we argue that a fixed and
generic 𝜖 is not generalized for nodes with unique characteristics.

For example, user-item interactions usually perform the long-tail
distribution, the head nodes have more supervision signals than
tails, then a small 𝜖 maybe satisfy the tail nodes while not sufficient
to the head nodes. The above flaws drive us to find a better graph
augmentation that maintains graph information and is adaptive to
each node.

3 METHODOLOGY
In this section, we present our proposedVariational GraphGenerative-
Contrastive Learning (VGCL) framework for recommendation. As
shown in Figure 2, VGCL consists of two modules: a variational
graph reconstruction module and a cluster-aware contrastive learn-
ing module. Specifically, we first use variational graph reconstruc-
tion to estimate the probability distribution of each node, then
design cluster-aware twofold contrastive learning objectives to en-
courage the consistency of contrastive views which are generated
by multiple samplings from the estimated distribution. Next, we
introduce each component in detail.

3.1 Variational Graph Reconstruction
VAE Brief. Given the training data X = {x𝑖 }𝑛𝑖=1, VAE assumes
that each sample x𝑖 is constructed from a generative process: x ∼
𝑝𝜃 (x|z). Thus, it’s natural to maximize the likelihood function:

𝑙𝑜𝑔𝑝 (x) = 𝑙𝑜𝑔
∫
𝑝𝜃 (x |z)𝑝 (z)𝑑z, (9)

where 𝑝 (z) is the prior distribution of latent variable z. However, it’s
intractable to compute Eq.(9) because we don’t know all possible la-
tent variables z. Thus, VAE adopts a variational inference technique
and uses an inference model 𝑞𝜙 (z|x) to approximate the posterior
distribution 𝑝𝜃 (x|z). Then, VAE is optimized by minimizing the
Evidence Lower Bound (ELBO) based objective:

L𝐸𝐿𝐵𝑂 = −Ez∼𝑞𝜙 (z|x) [𝑙𝑜𝑔 (𝑝𝜃 (x |z) ) ] +𝐾𝐿[𝑞𝜙 (z |x) | |𝑝 (z) ], (10)

where 𝑞𝜙 (z|x) and 𝑝𝜃 (x|z) also denote the encoder and decoder
which are parameterized by neural networks. 𝐾𝐿[𝑞𝜙 (z|x) | |𝑝 (z)] is
the Kullback-Leibler divergence between the approximate posterior
𝑞𝜙 (z|x) and prior 𝑝 (z), which is used to constrain 𝑞𝜙 (z|x) closer
to the prior Gaussian distribution.

Graph Inference. Given the observed user-item interaction
graph G = {𝑈 ∪𝑉 ,A}, and initialized node embeddings E0. Graph
inference aims to learn probability distributions Z which can recon-
struct the input graph structure: Â ∼ 𝑝𝜃 (A|Z). Same to VAE, we also
adopt variational inference 𝑞𝜙 (Z|A, E0) =

∏𝑀+𝑁−1
𝑖=0 𝑞𝜙 (z𝑖 |A, E0) to

approximate the posterior 𝑝𝜃 (A|Z). To be specific, we encode each
node 𝑖 into a multi-variate Gaussian distribution 𝑞𝜙 (z𝑖 |A, E0) =

N(z𝑖 |𝜇𝜙 (𝑖), 𝑑𝑖𝑎𝑔(𝜎2𝜙 (𝑖))), where 𝜇𝜙 (𝑖) and 𝜎
2
𝜙
(𝑖) denote the mean

and variance of node 𝑖’s distribution, respectively. To better exploit
high-order user-item graph structure, we adopt GNNs to estimate
the parameters of node distributions:

𝜇 = 𝐺𝑁𝑁 (A, E0, 𝜙𝜇 ), 𝜎 = 𝐺𝑁𝑁 (A, E0, 𝜙𝜎 ), (11)

where 𝜙𝜇 and 𝜙𝜎 denote learnable parameters on graph inference.
Following the previous research on graph-based collaborative fil-
tering, we select LightGCN [7] as the encoder to deploy the above
graph inference process. For each node 𝑖 , the corresponding means
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Figure 2: An Illustration of our proposed Variational Graph Generative-Contrastive Learning (VGCL) framework, which
consists of a variational graph reconstruction module and a cluster-aware contrastive learning module. The variational graph
reconstruction module generates contrastive views by multiple samplings from the estimated distributions. The Cluster-aware
contrastive learning module provides self-supervised signals, which include node-level and cluster-level contrastive objectives.

are updated as follows:

𝜇𝑙𝑖 =
∑︁
𝑗 ∈N𝑖

1√︁
|N𝑖 |

√︁
|N𝑗 |

𝜇𝑙−1𝑖 , (12)

where 𝜇𝑙
𝑖
and 𝜇𝑙−1

𝑖
are corresponding means on 𝑙𝑡ℎ and (𝑙 − 1)𝑡ℎ

graph convolution layer,N𝑖 andN𝑗 denote the connected neighbors
for node 𝑖 and node 𝑗 . We initialize the means 𝜇0 = E0. When stack-
ing 𝐿 graph convolution layers, we have 𝐿+1 outputs [𝜇0, 𝜇1, ..., 𝜇𝐿],
then we fuse all layers’ outputs and compute the means and vari-
ances as follows:

𝜇 =
1
𝐿

𝐿∑︁
𝑙=1

𝜇𝑙 , 𝜎 = 𝑀𝐿𝑃 (𝜇 ), (13)

where the variances are learned from an MLP, which feeds the
means as the input. In practice, we find that one-layer MLP achieves
the best performance, then 𝜎 = 𝑒𝑥𝑝 (𝜇W + b), where W ∈ R𝑑×𝑑
and b ∈ R𝑑 are two learnable parameters. After obtaining the
mean and variance of the approximate posterior, we generate the
latent representation z𝑖 by sampling from N(𝜇𝑖 , 𝜎2𝑖 ). However, it
can not be directed optimized because the sampling process is non-
differentiable. We employ the reparameterization trick instead of
the sampling process [16]:

z𝑖 = 𝜇𝑖 + 𝜎𝑖 · 𝜀, (14)

where 𝜀 ∼ N(0, I) is a normal Gaussian noise.
Graph Generation. After estimating the probability distribu-

tion of the latent variables Z, the objective of graph generation is
to reconstruct the original user-item graph:

𝑝 (A |Z) =
𝑀+𝑁 −1∏
𝑖=0

𝑀+𝑁 −1∏
𝑗=0

𝑝 (A𝑖 𝑗 |z𝑖 , z𝑗 ) . (15)

There are many choices to realize the graph generation process,
such as inner product, factorization machine, and neural networks.
As suggested in [17], we use an inner product to compute the
propensity score that node 𝑖 connected with node 𝑗 :

𝑝 (A𝑖 𝑗 = 1 |z𝑖 , z𝑗 ) = 𝜎 (z𝑇𝑖 z𝑗 ), (16)

where 𝜎 (·) is the sigmoid function.

3.2 Cluster-aware Contrastive Learning
Contrastive View Construction. Given the estimated probabil-
ity distribution of latent representation Z ∼ N(𝜇, 𝜎2), we intro-
duce a novel contrastive learning paradigm based on the estimated
distribution. Different from previous GCL-based recommendation
methods [39, 51], we construct contrastive views through multi-
ple samplings from the estimated distribution instead of data aug-
mentation. Specifically, for each node 𝑖 , we generate contrastive
representations z′ and z′′ as follows:

z′𝑖 = 𝜇𝑖 + 𝜎𝑖 · 𝜀′, (17)

z′′𝑖 = 𝜇𝑖 + 𝜎𝑖 · 𝜀′′, (18)

where 𝜀′, 𝜀′′ ∼ N(0, I) are two random normal noise. Compared
to structure or feature augmentations, our method is more effi-
cient and effective for contrastive view construction. Firstly, all
contrastive representations are sampled from the estimated distri-
butions, which can well reconstruct the input graph without any
information distortion. Secondly, the estimated variances are tai-
lored to each node, which can be adaptive to regulate the scale of
contrastive loss.

Node-level Contrastive Loss. After constructing contrastive
views of each node, we maximize the mutual information to provide
self-supervised signals to improve recommendation performance.
Considering that similar nodes are closer in the representation, we
propose cluster-aware twofold contrastive objectives for optimiza-
tion: a node-level contrastive loss and a cluster-level contrastive loss.
Among them, node-level contrastive loss encourages consistency of
contrastive views for each node, and cluster-level contrastive loss
encourages consistency of contrastive views of nodes in a cluster.
The objective of node-level contrastive learning is L𝑁 = L𝑈

𝑁
+L𝑉

𝑁
,

where L𝑈
𝑁

and L𝑉
𝑁

denote user side and item side losses:

L𝑈𝑁 =
∑︁
𝑎∈B𝑢

−𝑙𝑜𝑔 𝑒𝑥𝑝 (z′𝑎𝑇 z′′𝑎 /𝜏1 )∑
𝑏∈B𝑢

𝑒𝑥𝑝 (z′𝑎𝑇 z′′𝑏 /𝜏1 )
, (19)

L𝐼𝑁 =
∑︁
𝑖∈B𝑖

−𝑙𝑜𝑔
𝑒𝑥𝑝 (z′

𝑖
𝑇 z′′
𝑖
/𝜏1 )∑

𝑗 ∈B𝑖
𝑒𝑥𝑝 (z′

𝑖
𝑇 z′′

𝑗
/𝜏1 )

, (20)
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where 𝜏1 is the contrastive temperature, B𝑢 and B𝑖 denote users
and items in a batch training data.

Cluster-level Contrastive Loss. Considering the similarity of
the estimated distributions of nodes, we design cluster-level con-
trastive loss to further distinguish the positive and negative con-
trastive pairs in batch training data. Overall, our aim is to maximize
the consistency of node pairs with the same cluster and minimize
the consistency of node pairs with different clusters. Suppose there
are 𝐾𝑢 user prototypes C𝑢 ∈ R𝑑×𝐾𝑢 and 𝐾𝑖 item cluster prototypes
C𝑖 ∈ R𝑑×𝐾𝑖 , we use 𝑝 (𝑐𝑢

𝑘
|𝑧𝑎) to denote the conditional probability

that user 𝑎 belongs to 𝑘𝑡ℎ user cluster, and 𝑝 (𝑐𝑖
ℎ
|𝑧𝑖 ) denote the con-

ditional probability that item 𝑖 belongs to ℎ𝑡ℎ item cluster. Given
the estimated distributions as input, we implement the clustering
process by the K-Means algorithm [6]. Then, we compute the prob-
ability that two users (items) are assigned to the same prototype:

𝑝 (𝑎,𝑏 ) =
𝐾𝑢−1∑︁
𝑘=0

𝑝 (c𝑢
𝑘
|z𝑎 )𝑝 (c𝑢𝑘 |z𝑏 ), (21)

𝑝 (𝑖, 𝑗 ) =
𝐾𝑖−1∑︁
ℎ=0

𝑝 (c𝑖
ℎ
|z𝑖 )𝑝 (c𝑖ℎ |z𝑗 ), (22)

where 𝑝 (𝑎, 𝑏) denote the probability that user 𝑎 and user 𝑏 belong
to the same cluster, and 𝑝 (𝑖, 𝑗) denote the probability that item 𝑖 and
item 𝑗 belong to the same cluster. Next, we present the cluster-level
contrastive loss L𝐶 = L𝑈

𝐶
+ L𝐼

𝐶
, where L𝑈

𝐶
and L𝐼

𝐶
denote user

side and item side losses:

L𝑈𝐶 =
∑︁
𝑎∈B𝑢

−1
𝑆𝑃 (𝑎) 𝑙𝑜𝑔 (

∑
𝑏∈B𝑢 ,𝑏!=𝑎

𝑝 (𝑎,𝑏 )𝑒𝑥𝑝 (z′𝑇𝑎 z′′𝑏/𝜏2 )∑
𝑏∈B𝑢 ,𝑏!=𝑎

𝑒𝑥𝑝 (z′𝑇𝑎 z′′𝑏/𝜏2 )
), (23)

L𝐼𝐶 =
∑︁
𝑖∈B𝑖

−1
𝑆𝑃 (𝑖 ) 𝑙𝑜𝑔 (

∑
𝑗 ∈B𝑖 , 𝑗 !=𝑖

𝑝 (𝑖, 𝑗 )𝑒𝑥𝑝 (z′𝑇𝑖 z′′ 𝑗 /𝜏2 )∑
𝑗 ∈B𝑖 , 𝑗 !=𝑖

𝑒𝑥𝑝 (z′𝑇
𝑖
z′′ 𝑗 /𝜏2 )

), (24)

where 𝑆𝑃 (𝑎) = ∑
𝑏∈B𝑢 ,𝑏!=𝑎

𝑝 (𝑎, 𝑏) and 𝑆𝑃 (𝑖) = ∑
𝑗∈B𝑖 , 𝑗 !=𝑖

𝑝 (𝑖, 𝑗), 𝜏2 is

the temperature to control the mining scale of hard negatives. The
final contrastive loss is the weighted sum of the node-level loss and
the cluster-level contrastive loss:

L𝑐𝑙 = L𝑁 + 𝛾L𝐶 , (25)

where 𝛾 is the coefficient to balance two level contrastive losses.

3.3 Model Optimization.
For the variational graph reconstruction part, we optimize the
parameters of graph inference and graph generation with ELBO:
L𝐸𝐿𝐵𝑂 = −EZ∼𝑞𝜙 (Z|A,E0 ) [𝑙𝑜𝑔 (𝑝𝜃 (A |Z) ) ] +𝐾𝐿[𝑞𝜙 (Z |A, E0 ) | |𝑝 (Z) ] .

(26)

Among them, the first term is the reconstruction error between
the original graph and the generated graph. We employ a pairwise
learning strategy to minimize the reconstruction error:

EZ∼𝑞𝜙 (Z|A,E0 ) [𝑙𝑜𝑔 (𝑝𝜃 (A |Z) ) ] =
𝑀−1∑︁
𝑎=0

∑︁
(𝑖,𝑗 ) ∈𝐷𝑎

−𝑙𝑜𝑔𝜎 (𝑟𝑎𝑖 − 𝑟𝑎𝑗 ) ), (27)

𝐷𝑎 = { (𝑖, 𝑗 ) |𝑖 ∈ 𝑅𝑎 ∧ 𝑗 ∉ 𝑅𝑎 } denotes the pairwise training data
for user 𝑎. 𝑅𝑎 represents the item set that user 𝑎 has interacted.
Overall, we optimize the proposed VGCL with a multi-task learning
framework:

𝑚𝑖𝑛L = L𝐸𝐿𝐵𝑂 + 𝛼L𝑐𝑙 + 𝜆 | |E0 | |2, (28)

Algorithm 1: The Algorithm of VGCL

Input: user-item bipartite graph G;
Output: Parameters Θ𝐺𝑁𝑁 = E0 and Θ𝑀𝐿𝑃 = [W, b];
1: Randomly initialize parameters Θ𝐺𝑁𝑁 and Θ𝑀𝐿𝑃 ;
2: while not converged do
3: Sample a batch of training data;
4: Calculate graph inference parameters 𝜇 and 𝜎 (Eq.(12) to

Eq.(13));
5: Estimate node distribution Z by parameterization (Eq.(14));
6: Generate contrastive instances Z′ and Z′′ by multiple

samplings (Eq.(17), Eq.(18));
7: Compute prototypes C𝑢 and C𝑣 based on K-Means

clustering algorithm;
8: Compute node-level contrastive loss L𝑁 (Eq.(19));
9: Compute cluster-level contrastive loss L𝐶 (Eq.(23), Eq.(24));
10: Compute variational graph reconstruction loss

L𝐸𝐿𝐵𝑂 (Eq.(26));
11: Update all parameters according to (Eq.(28));
12: end while
13: Return Θ𝐺𝑁𝑁 = E0 and Θ𝑀𝐿𝑃 = [W, b].

where 𝛼 is the balance parameter of contrastive loss, and 𝜆 is the
regularization coefficient. After the model training process, we use
Eq.(16) to predict the unknown preferences for the recommenda-
tion.

3.4 Model Analysis
Space Complexity. As shown in Algorithm 1, the model param-
eters are composed of two parts: node embeddings E0 and MLP
parameters W, b. Compared to traditional embedding-based collab-
orative filtering, the additional parameters only haveW, b which
are shared among all nodes. So the additional storage space is very
small and can be neglected.
Time Complexity.We compare the time complexity of VGCLwith
other GCL-based recommendation methods based on data aug-
mentation. Let |𝐸 | denote the edge number of the graph, 𝑑 be the
embedding size, and 𝑆 denote the average neighbor number. For
the graph convolution part, VGCL costs O(2|𝐸 |𝑑𝑆), where 2|𝐸 | de-
notes the number of non-zero elements on the adjacent matrix.
However, SGL and SimGCL need to repeat graph convolution three
times, which generates main embeddings for recommendation and
two auxiliary embeddings for contrastive learning. Therefore, SGL
and SimGCL all cost O(6|𝐸 |𝑑𝑆) while VGCL only need O(2|𝐸 |𝑑𝑆).
For the contrastive learning part, VGCL additionally has a clus-
tering process, we implement the K-means clustering algorithm
with Faiss-GPU 1, and the time cost can be neglected compared to
model learning in practice. Therefore, VGCL is more time-efficient
than current GCL-based recommendation methods based on data
augmentation.

1https://faiss.ai/
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Table 1: The statistics of three datasets.

Datasets Users Items Interactions Density
Douban-Book 13,024 22,347 792,062 0.272%
Dianping 59,426 10,224 934,334 0.154%

Movielens-25M 92,901 8,826 2,605,952 0.318%

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. To compare the recommendation performance of
our VGCLwith other state-of-the-art models, we select three bench-
marks to conduct the empirical analysis: Douban-Book [51], Dian-
ping [41] and Movielens-25M [5]. For Movielens-25M, we convert
ratings equal to 5 as positive feedback, and other ratings as nega-
tive feedback. We filter users with less than 10 interactions for all
datasets, and randomly sample 80% interactions as training data,
and the remaining 20% as test data. The statistics of three datasets
are summarized in Table 1.

4.1.2 Baselines and Evaluation Metrics. We compare our model
with the following baselines, including matrix factorization based
method: BPR-MF [23], graph based method: LightGCN [7], VAE
based methods: Multi-VAE [19], CVGA [52], and graph contrastive
learning based methods: SGL [39], NCL [20], SimGCL [51].

We employ two widely used metrics: Recall@N and NDCG@N
to evaluate all recommendation models. Specifically, Recall@Nmea-
sures the percentage of recalled items on the Top-N ranking list,
while NDCG@N further assigns higher scores to the top-ranked
items. To avoid selection bias in the test stage, we use the full-
ranking strategy [53] that views all non-interacted items as candi-
dates. All metrics are reported with average values with 5 times
repeated experiments.

4.1.3 Parameter Settings. We implement our VGCL model and all
baselines with Tensorflow2. We initialize all models parameter with
a Gaussian distribution with a mean value of 0 and a standard vari-
ance of 0.01, embedding size is fixed to 64. We use Adam as the
optimizer for model optimization, and the learning rate is 0.001.
The batch size is 2048 for the Douban-Book and Dianping datasets
and 4096 for the Movielens-25M dataset. For our VGCL model, we
turn the contrastive temperature 𝜏 in [0.10, 0.25], contrastive regu-
larization coefficient 𝜆 in [0.01, 0.05, 0.1, 0.2, 0.5, 1.0], and clustering
number 𝑘1, 𝑘2 in [100, 1000]. Besides, we carefully search the best
parameter of 𝛾 , and find VGCL achieves the best performance when
𝛾 = 0.4 on Douban-Book, 𝛾 = 0.5 on Dianping dataset, and 𝛾 = 1.0
on Movielens-25M dataset. As we employ the pairwise learning
strategy for graph reconstruction, we randomly select one unob-
served item as a candidate negative sample to compose triple data
for model training. For all baselines, we search the parameters care-
fully for fair comparisons. We repeat all experiments 5 times and
report the average results.

4.2 Overall Performance Comparisons
As shown in Table 2, we compare our model with other baselines
on three datasets. We have the following observations:
2https://www.tensorflow.org

• Our proposed VGCL consistently outperforms all baselines
under different settings. Specifically, VGCL improves Light-
GCN𝑤.𝑟 .𝑡 NDCG@20 by 28.17%, 14.70% and 8.61% onDouban-
Book, Dianping and Movielens-25M dataset, respectively.
Compared to the strongest baseline (SimGCL), VGCL also
achieves better performance, e.g., about 6.36% performance
improvement of NDCG@20 on the Douban-Book dataset.
Besides, we find that VGCL achieves higher improvements
on the small-length ranking task, which is more suitable
for real-world recommendation scenarios. Extensive empiri-
cal studies verify the effectiveness of the proposed VGCL ,
which benefits from combining the strength of generative
and contrastive graph learning for recommendation.

• Graph-based methods achieve better performance than their
counterparts, which shows the superiority that capturing
users’ preferences by modeling high-order user-item graph
structure. To be specific, LightGCN always outperforms
BPR and CVGA consistently outperforms Multi-VAE, which
proves that graph learning can effectively capture the high-
order user-item interaction signals to improve recommen-
dation performance, whether in embedding-based or VAE-
based recommendation methods.

• All GCL-based methods (SGL, NCL, SimGCL) significantly
improve LightGCN on three datasets. It verifies the effective-
ness of incorporating self-supervised learning into collabora-
tive filtering. SimGCL achieves the best performance among
these baselines, demonstrating that feature augmentation is
more suitable for collaborative filtering than structure aug-
mentation, which can maintain sufficient invariants of the
original graph. It’s worth noting that, our method also can
be regarded as feature augmentation, but we rely on multiple
samplings from the estimated distribution and the scales of
augmentations are adaptive to different nodes. Therefore,
VGCL achieves better performance compared to SimGCL.

4.3 Ablation Study
To exploit the effectiveness of each component of the proposed
VGCL , we conduct the ablation study on three datasets. As shown
in Table 3, we compare VGCL and corresponding variants on Top-20
recommendation performances. VGCL-w/o C denotes that remove
the cluster-level contrastive loss of VGCL , we only use the gen-
eral node-level contrastive loss. VGCL-w/o V denotes that remove
the variational graph reconstruction part of VGCL , then we use
feature augmentation the same as SimGCL to generate contrastive
views. FromTable 3, we observe that VGCL-C consistently improves
SimGCL on three datasets, which verifies that the proposed varia-
tional graph reconstruction module can provide better contrastive
views for contrastive learning. Besides, VGCL-V also shows better
performances than SimGCL, it demonstrates the effectiveness of
cluster-aware contrastive pair sampling on contrastive learning. Fi-
nally, VGCL consistently outperforms two variants, demonstrating
the effectiveness of combining the variational graph reconstruction
and cluster-aware sampling strategy. Based on the above analysis,
we can draw the conclusion that variational graph reconstruction
can provide better contrastive views than simple data augmenta-
tion and cluster-aware sampling is better than random sampling
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Table 2: Recommendation performances on three datasets. The best-performing model on each dataset and metrics are
highlighted in bold, and the second-best model is underlined.

Douban-Book Dianping Movielens-25MModels R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20
BPR-MF 0.0869 0.0949 0.1296 0.1045 0.0572 0.0443 0.0934 0.0557 0.2152 0.2011 0.3163 0.2343
LightGCN 0.1042 0.1195 0.1516 0.1278 0.0679 0.0536 0.1076 0.0660 0.2258 0.2192 0.3263 0.2509
Multi-VAE 0.0941 0.1073 0.1376 0.1155 0.0645 0.0508 0.1046 0.0632 0.2188 0.2101 0.3185 0.2418
CVGA 0.1058 0.1305 0.1492 0.1359 0.0719 0.0562 0.1128 0.0690 0.2390 0.2306 0.3454 0.2641
SGL-ED 0.1103 0.1357 0.1551 0.1419 0.0719 0.0560 0.1111 0.0686 0.2298 0.2239 0.3274 0.2541
NCL 0.1121 0.1377 0.1576 0.1439 0.0727 0.0571 0.1124 0.0701 0.2281 0.2222 0.3274 0.2531
SimGCL 0.1218 0.1470 0.1731 0.1540 0.0768 0.0606 0.1208 0.0743 0.2428 0.2356 0.3491 0.2690
VGCL 0.1283 0.1564 0.1829 0.1638 0.0778 0.0616 0.1234 0.0757 0.2463 0.2400 0.3507 0.2725

Table 3: Ablation study of VGCL, VGCL-w/o C denotes without cluster-level contrastive loss and VGCL-w/o V denotes without
the variational graph reconstruction part.

Models Douban-Book Dianping Movielens-25M
R@20 N@20 R@20 N@20 R@20 N@20

LightGCN 0.1512(-) 0.1271(-) 0.1076(-) 0.0660(-) 0.3263(-) 0.2509(-)
SimGCL 0.1731(14.48%) 0.1540(+21.16%) 0.1208(+12.27%) 0.0743(+12.58%) 0.3491(+6.99%) 0.2690(+7.21%)

VGCL-w/o C 0.1776(+17.46%) 0.1575(+23.92%) 0.1222(+13.57%) 0.0750(+13.64%) 0.3477(+6.56%) 0.2705(+7.81%)
VGCL-w/o V 0.1722(+13.89%) 0.1547(+21.72%) 0.1218(+13.20%) 0.0746(+13.03%) 0.3493(+7.05%) 0.2702(+7.69%)

VGCL 0.1829(+20.97%) 0.1638(+28.87%) 0.1233(+14.59%) 0.0756(+14.55%) 0.3507(+7.48%) 0.2725(+8.61%)
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Figure 3: Performance comparisons under different user groups.

for contrastive learning. All of the proposed modules are beneficial
to GCL-based recommendations.

4.4 Investigation of the Estimated Distribution
As we introduced in methodology, our proposed VGCL can adap-
tively learn variances for various nodes. To investigate the effect of
personalized variances, we conduct comparisons of different user
groups. Specifically, we first split all users into 4 groups according
to their interactions, then analyze recommendation performances
under different user groups. Figure3 illustrates NDCG@20 values
of various groups on Douban-Book and Dianping datasets. We
observe that all models show better performances in the denser

user group, which conforms to the intuition of CF. Besides, our
proposed VGCL achieves better performances on all user groups,
demonstrating that VGCL is general to users with different interac-
tions. Further, we plot the relative improvements that VGCL over
SimGCL on Figure3. We find that VGCL achieves a more significant
improvement in the denser groups, e.g., 8.4% improvement in U4
while 4.2% improvement in U1 on the Douban-Book dataset. To
exploit this phenomenon, we compared the standard variances of
the estimated distribution of different users. From the right part
of Figure3, we can observe that the inferred standard variances
vary from each group, and increase by group ID. Compared with
SimGCL which set fixed eps (noise scale) for all users, our method
can learn personalized contrastive scales for different users. What’s
more, VGCL can adaptively learn larger variances to those users
with amounts of interactions, it’s important to provide sufficient
self-supervised signals to improve recommendation performance.
Experimental results effectively demonstrate the effectiveness of
our proposed adaptive contrastive objectives.

4.5 Hyper-Parameter Sensitivities
In this part, we analyze the impact of hyper-parameters in VGCL .
We first exploit the effect of temperature 𝜏 , which plays an impor-
tant role in contrastive learning. Next, we investigate the influence
of graph inference layer 𝐿. Finally, we study the impact of clustering
prototype numbers 𝐾𝑢 , 𝐾𝑣 and contrastive loss weights 𝛼 and 𝛾 .

Effect of Graph Inference Layer 𝐿. To exploit the effect of
different graph inference layers, we search the parameter 𝐿 in the
range of {1, 2, 3, 4}. As shown in Table 4, we compare experimental
results of different graph inference layers on Douban-Book and
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Figure 4: Performance comparisons w.r.t different temperature 𝜏 , prototype number 𝐾𝑢 and 𝐾𝑖 .

Table 4: Performance on different graph inference layer 𝐿.

Layers Douban-Book Dianping
Recall@20 NDCG@20 Recall@20 NDCG@20

L=1 0.1750 0.1555 0.1197 0.0733
L=2 0.1829 0.1638 0.1229 0.0751
L=3 0.1808 0.1618 0.1234 0.0757
L=4 0.1793 0.1605 0.1233 0.0752

Dianping datasets. From Table 4, we observe that recommendation
performances increase first and then perform slightly drop when
the graph inference layer increases. Specifically, VGCL achieves the
best performance with 𝐿 = 2 on the Douban-Book dataset and 𝐿 = 3
on the Dianping dataset, respectively. This suggests that shallow
graph inference layers can’t well capture graph structure for node
distribution estimation, but too deep graph inference layers also
decrease the estimation quality due to the over-smoothing issue.

Effect of Temperature 𝜏 . As introduced in the previous works,
temperature 𝜏 controls the mining scale of hard negatives [15].
Specifically, a low temperature will highlight the gradient contribu-
tions of hard negatives that are similar to positive nodes. In VGCL ,
there are two temperatures 𝜏1 and 𝜏2 in node-level and cluster-level
contrastive losses, respectively. As suggested in the previous work,
we fix the temperature 𝜏1 = 0.2 on node-level contrastive loss, then
analyze the impact of 𝜏 = 𝜏2 of the cluster-level contrastive loss.
From Figure 4(a) and Figure 4(b), we have the following observa-
tions. First, too high or low temperature will decrease recommen-
dation performance on all methods. A too-high temperature drops
the ability to mine hard negative samples, while a too-low temper-
ature will over-highlight hard negatives which are usually false
negatives. Second, SGL and SimGCL achieve the best performances
when temperature 𝜏 = 0.2 as suggested in the original paper, while
VGCL achieves better performance on a smaller temperature, e.g.,
𝜏 = 0.13 on Douban-Book and 𝜏 = 0.15 on Dianping dataset. The
reason is that our proposed cluster-aware contrastive learning fur-
ther encourages the consistency of nodes in a cluster, then a lower
temperature will help the model better mine hard negatives.

Effect of Prototype Number 𝐾𝑢 and 𝐾𝑖 . To investigate the ef-
fect of prototype numbers, we set the prototype numbers from zero
to hundreds. We illustrate the experimental results in Figure4(c)
and Figure4(d). Please note that when 𝐾𝑢 = 𝐾𝑖 = 0, VGCL degen-
erates to VGCL-w/o C without the cluster-level objective. From
this Figure, we find that VGCL consistently outperforms VGCL-C,
which demonstrates that our proposed cluster-aware twofold con-
trastive learning strategy effectively improves the recommendation
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Figure 5: Performance comparisons under different contrastie loss
weights 𝛼 and 𝛾 .

performance. For the Douban-Book dataset, VGCL reaches the best
performances when 𝐾𝑢 = 900 and 𝐾𝑖 = 300. For the Dianping
dataset, VGCL reaches the best performance when 𝐾𝑢 = 500 and
𝐾𝑖 = 100. It shows that precise clustering can provide pseudo-labels
to distinguish contrastive samples.

Effect of Contrastive Loss Weights 𝛼 and 𝛾 . As illustrated in
Figure5, we carefully tune the contrastive loss weights 𝛼 and 𝛾 on
the Douban-Book dataset. We observe that VGCL achieves the best
performance when 𝛼 = 0.2 and𝛾 = 0.4 on the Douban-Book dataset.
As the space limit, we don’t present analysis on the other two
datasets, the best parameters are 𝛼 = 0.05, 𝛾 = 0.5 and 𝛼 = 0.1, 𝛾 =

1.0 on Dianping and Movielens-25M datasets, respectively. Besides,
the performance increases first and then drops quickly while 𝛼
and 𝛾 increase. It indicates that proper contrastive loss weights
could effectively improve the sparse supervision issue, however,
a too-strong self-supervised loss will lead to model optimization
neglecting the recommendation task.

5 RELATEDWORK
5.1 Graph based Collaborative Filtering
Collaborative filtering is a popular technique widely used in rec-
ommender systems. The key is to learn user and item embeddings
relying on historical interactions [11, 26, 40]. Early works lever-
age the matrix factorization technique to project users’ and items’
IDs into latent embeddings, and compute preferences with the in-
ner product or neural networks [8, 22, 23]. Recently, borrowing
the success of Graph Neural Networks (GNNs) [4, 18, 34], a series
of graph-based models have been widely studied on various rec-
ommendation scenarios [10, 33, 38, 43, 44, 48]. As users’ behavior
can be naturally formulated as a user-item graph, graph-based CF
methods formulate the high-order user-item graph structure on
representation learning and achieve great performance improve-
ments [2, 7, 36–38]. NGCF is the first attempt that introduces GNNs
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to collaborative filtering, which injects high-order collaborative sig-
nals for embedding learning [38]. LR-GCCF proposes linear residual
networks for user-item graph learning, which can effectively alle-
viate the over-smoothing issue in deep graph neural networks [2].
LightGCN is a representative work and proposes a simplified graph
convolution layer for CF which only has neighbor aggregation [7].
Despite effectiveness, graph-based CF methods also suffer from
sparse supervision. In this work, we investigate collaborative filter-
ing with self-supervised learning to tackle the above issues.

5.2 Contrastive Learning based
Recommendation

As one of the popular self-supervised learning paradigms, con-
trastive learning aims to learn the representational invariants by
data augmentation [14, 21]. In general, contrastive learning first gen-
erates contrastive views from data augmentation, then maximize
the mutual information to encourage the consistency of different
contrastive views. Recently, some research successfully apply the
CL technique to graph representation learning, either local-global
scale contrast [28, 31, 35] or global-global scale contrast [49, 50]. For
instance, DGI learns node representations by maximizing the mu-
tual information between the local and global representations [35].
GraphCL proposes four random graph augmentation strategies to
multiple subgraphs for contrastive learning [50], AutoGCL further
proposes an automated GCL method with learnable contrastive
views [47]. Inspired by these works, some GCL-based CF methods
have been proposed [1, 20, 39, 46, 51]. BiGI maximizes the local-
global mutual information on user-item bipartite graph [1]. EGLN
proposes to learn the enhanced graph structure and maximize the
mutual information maximization with a local-global objective [46].
Besides, data augmentation based CL techniques are usually applied
to CF, aiming to deal with sparse supervision and noise interaction
problems [20, 39, 51]. SGL designs three structure graph augmenta-
tions to generate contrastive views and improve recommendation
accuracy and robustness by maximizing the consistency of different
views [39]. NCL proposes neighborhood-enriched contrastive learn-
ing to improve performance, it uses the correlated structure neigh-
bors and semantic neighbors as contrastive objects [20]. SimGCL
revisits structure augmentation methods and proposes a simple fea-
ture augmentation to enhance GCL-based recommendations [51].

Despite the effectiveness, we argue that current GCL-based rec-
ommendation methods are still limited by data augmentation strate-
gies whatever structure or feature augmentation. First, structure
augmentation randomly deletes nodes or edges of the input graph
to generate subgraphs for contrastive learning. However, random
structure augmentation is easy to destroy the intrinsic nature of the
original user-item graph. Besides, feature augmentation adds the
same scale noise to all nodes, ignoring the unique characteristics of
nodes (such as degree on the graph), thus can’t satisfy all nodes. In
this work, we propose a novel contrastive paradigm without data
augmentation and implement adaptive contrastive loss learning for
different nodes.

5.3 VAE and Applications on Recommendation
Variational Auto-Encoder (VAE) is a generative method widely used
in machine learning [16, 24]. It assumes that the input data can

be generated from variables with some probability distribution.
Following, some extensions of VAE are proposed to improve perfor-
mance from different perspectives [9, 12, 13, 29]. CVAE considers
complex condition distribution on inference and generation pro-
cess [29], 𝛽-VAE proposes to learn the disentangled representations
by adding the loss of KL-term [9], and DVAE reconstructs the input
data from its corrupted version to enhance the robustness [12]. The
basic idea of applying VAEs to the recommendation is to reconstruct
the input users’ interactions. Mult-VAE proposes that multinomial
distribution is suitable for modeling user-item interactions, and pa-
rameterizes users by neural networks to enhance the representation
ability [19]. RecVAE further improves Mult-VAE by introducing a
novel composite prior distribution for the latent encoder [27]. Bi-
VAE proposes bilateral inference models to estimate the user-item
distribution and item-user distribution [32]. CVGA combines GNNs
and VAE and proposes a novel collaborative graph auto-encoder
recommendation method, which reconstructs user-item bipartite
graph using variance inference [52]. Besides, some works attempt
to leverage VAEs for sequential recommendation [45] and cross-
domain recommendation [25]. Different from the above VAE-based
recommendation models, our VGCL introduces the variational in-
ference technique to generate multiple contrastive views for GCL-
based recommendation, which build a bridge between generative
and contrastive learning models for recommendation.

6 CONCLUSION
In this work, we investigate GCL-based recommendation from the
perspective of better contrastive view construction, and propose a
novelVariational GraphGenerative-Contrastive Learning (VGCL) frame-
work. Instead of data augmentation, we leverage the variational
graph reconstruction technique to generate contrastive views to
serve contrastive learning. Specifically, we first estimate each node’s
probability distribution by graph variational inference, then gener-
ate contrastive views with multiple samplings from the estimated
distribution. As such, we build a bridge between the generative and
contrastive learning models for recommendation. The advantages
have twofold. First, the generated contrastive representations can
well reconstruct the original graph without information distortion.
Second, the estimated variances vary from different nodes, which
can adaptively regulate the scale of contrastive loss for each node.
Furthermore, considering the similarity of the estimated distribu-
tions of nodes, we propose a cluster-aware twofold contrastive
learning, a node-level to encourage consistency of a node’s con-
trastive views and a cluster-level to encourage consistency of nodes
in a cluster. Empirical studies on three public datasets clearly show
the effectiveness of the proposed framework.
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