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ABSTRACT
Linear autoencoder models learn an item-to-item weight matrix

via convex optimization with L2 regularization and zero-diagonal
constraints. Despite their simplicity, they have shown remarkable

performance compared to sophisticated non-linear models. This

paper aims to theoretically understand the properties of two terms

in linear autoencoders. Through the lens of singular value decompo-

sition (SVD) and principal component analysis (PCA), it is revealed

that L2 regularization enhances the impact of high-ranked PCs.

Meanwhile, zero-diagonal constraints reduce the impact of low-

ranked PCs, leading to performance degradation for unpopular

items. Inspired by this analysis, we propose simple-yet-effective

linear autoencoder models using diagonal inequality constraints,

called Relaxed Linear AutoEncoder (RLAE) and Relaxed Denoising
Linear AutoEncoder (RDLAE). We prove that they generalize lin-

ear autoencoders by adjusting the degree of diagonal constraints.

Experimental results demonstrate that our models are comparable

or superior to state-of-the-art linear and non-linear models on six

benchmark datasets; they significantly improve the accuracy of

long-tail items. These results also support our theoretical insights

on regularization and diagonal constraints in linear autoencoders.
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tive filtering.
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1 INTRODUCTION
Over the last three decades, the field of recommender systems [15]

has been dedicated to helping users overcome information overload

in various applications, e.g., Amazon, Netflix, and Bing News. Col-
laborative filtering (CF) [7, 11] is a prevalent solution for building

recommender systems due to its ability to uncover hidden collabo-

rative signals from user-item interactions. Existing CF models can

be broadly categorized into linear and non-linear approaches based
on how they capture correlations among users/items. Linear models

represent the user/item relationships through a linear combination.

With the advent of deep learning, non-linear CF models utilize

various neural networks, i.e., autoencoders [23, 24, 33, 42] (AE),
recurrent neural networks (RNN) [12, 22], transformers [18, 38],

and graph neural networks [1, 3, 9, 19, 32, 41] (GNN). They claim

that non-linear models surpass linear models in capturing intricate

and scarce collaborative signals, leading to better performance in

various recommendation scenarios.

However, there are exciting research debates on evaluating lin-

ear and non-linear models. Recent studies [5, 6, 30, 39] claim that

the hyperparameters of baselines need to be tuned carefully, or the

choice of evaluation metrics heavily affects a fair comparison. Sur-

prisingly, well-tuned linear models, such as neighborhood-based

models [11, 31], simple graph-based models [4, 27], and linear ma-

trix factorization models [20, 45] have achieved competitive or

significant gains over non-linear models. Recent linear models us-

ing item neighborhoods, e.g., EASE𝑅 [34] and EDLAE [35], have

shown state-of-the-art performance results on large-scale datasets,

e.g., ML-20M, Netflix, and MSD. In this paper, we thus delve deeper

into the linear models using item neighborhoods, also known as

linear autoencoders [16, 25, 34–37, 40].
Given a user-item interaction matrix X ∈ {0, 1}𝑚×𝑛

, linear au-

toencoders (LAE) learn an item-to-item weight matrix B ∈ R𝑛×𝑛 so

that the matrix product X ·B reconstructs the original matrix X. It

takesX as input and output, and B represents a single hidden layer

to serve both an encoder and a decoder. Existing studies [16, 25, 34–

37, 40] formulate a convex optimization problem with two key

terms: regularization and zero-diagonal constraints. (i) Regulariza-
tion is widely used to prevent the models from overfitting, i.e.,
B̂ = I. While SLIM [25] utilizes both L1 and L2 regularization,

EASE
𝑅
[34] employs only L2 regularization to derive a closed-form

solution and shows better performance. However, [36] utilizes the

alternating directions method of multipliers (ADMM) to optimize

the objective function of SLIM, showing that L1 regularization

only affects the sparsity of the solution and has little impact on

recommendation results. Moreover, EDLAE [35] proposes linear

autoencoder models with advanced regularization derived from ran-

dom dropout. (ii) The zero-diagonal constraints in B are designed
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to identify precisely the correlation between items by preventing

self-correlation [25, 35]. Since it seems natural that the diagonal

entries in B are unnecessary weights, existing studies [16, 25, 34–

37, 40] employ the zero-diagonal constraints to eliminate them.

However, how the regularization and the zero-diagonal constraints

affect recommendation is unexplored.

In this paper, we ask two underlying questions about linear au-

toencoder models: (i) How does each term in linear autoencoders,
i.e., regularization and zero-diagonal constraints, affect item popular-
ity? (ii) Do the zero-diagonal constraints always help improve model
performance? To answer these questions, we conduct a theoretical

analysis of various linear autoencoder models. We rigorously de-

rive the relationship among four linear autoencoder models, i.e.,
LAE [13], EASE

𝑅
[34], DLAE [35], and EDLAE [35]. It is revealed

that the solutions of EASE
𝑅
and EDLAE include those of LAE and

DLAE, respectively. Besides, their solutions are decomposed into

two terms for regularization and zero-diagonal constraints. We

represent each term as an eigenvalue decomposition form through

the lens of singular value decomposition (SVD). Interestingly, they

share the same eigenvectors derived from the gram matrix X⊤X
but show different tendencies in the eigenvalues: while regulariza-

tion heavily affects high-ranked PCs, the diagonal constraints have

more impact on low-ranked PCs, penalizing weak collaborative

signals.

To analyze how each term is related to item popularity, we fur-

ther observe the eigenvectors of X⊤X using principal component

analysis (PCA). Since X⊤X is approximately proportional to the

covariance matrix, high-ranked PCs represent strong collaborative

signals, and low-ranked PCs are related to weak collaborative sig-

nals. It indicates that the high-ranked PCs are highly co-related

to popular items, and the low-ranked PCs are associated with less

popular items. Based on this observation, we can respond to the

questions; (i) as the regularization term increases, it is biased to-

ward strong collaborative signals and tends to recommend popular

items. (ii) Meanwhile, because the zero-diagonal constraints mostly

penalize the impact of the low-ranked PCs, it weakens the collabo-

rative signals for less popular items. As a result, we conclude that

relaxing the diagonal constraints helps mitigate popularity bias and

recommend less popular items.

To this end, we propose novel linear autoencoder models called

Relaxed Linear AutoEncoder (RLAE) and Relaxed Denoising Linear
AutoEncoder (RDLAE). First, we formulate a new convex optimiza-

tion problem using the diagonal inequality constraints. Surprisingly,

it is derived that the solution form of RLAE is similar to that of

EASE
𝑅
[34], and it is possible to control the degree of the diagonal

constraints. Inspired by DLAE [35], we extend RLAE to RDLAE by

employing dropout regularization and obtain a solution similar to

EDLAE [35]. We then prove that our models generalize existing

linear autoencoder models by controlling the hyperparameter for

inequality constraints. Extensive experimental results demonstrate

that our models are comparable to or even better than existing lin-

ear and non-linear models on six benchmark datasets with various

evaluation protocols; they significantly improve the accuracy of

long-tail items. These results also support our theoretical insights

on regularization and diagonal constraints in linear autoencoders.

We summarize the main contributions of this work as follows.

• (Section 3) We analyze the solutions of existing linear autoen-

coder models, decomposed into two terms for regularization

and zero-diagonal constraints. We conduct theoretical analyses

through the lens of singular value decomposition (SVD) and

principal component analysis (PCA) and then understand the

effect of each term and the relationship for item popularity. In

brief, the diagonal constraints can suppress the collaborative

signals of unpopular items.

• (Section 4) We propose novel linear autoencoder models called

Realxed Linear AutoEncoder (RLAE) and Relaxed Denoising Lin-
ear AutoEncoder (RDLAE). They introduce diagonal inequality

constraints to mitigate the adverse effects of zero-diagonal con-

straints. We also prove that our models generalize existing

linear autoencoder models.

• (Section 6) Experimental results extensively demonstrate that

our models perform competitively or better than state-of-the-

art linear and non-linear models on six benchmark datasets.

These results support our theoretical insights on regularization

and diagonal constraints. Notably, our models achieve signifi-

cant performance gains in long-tail items.

2 BACKGROUND
Notations. Let a training dataset consist of𝑚 users and 𝑛 items.

In this paper, we assume implicit user feedback because it is more

commonly used in various Web applications than explicit user

feedback. Under this assumption, the user-item interaction matrix

X is represented by a binary matrix, i.e., X ∈ {0, 1}𝑚×𝑛
. If user

𝑢 has interacted with item 𝑖 , then 𝑥𝑢𝑖 = 1. 𝑥𝑢𝑖 = 0 indicates no

observed interaction between user 𝑢 and item 𝑖 .

The goal of top-𝑁 recommender models is to retrieve the top-𝑁

items that the user is most likely to prefer. Existing linear models

can be categorized into two directions: (1) the regression-based ap-

proach [16, 25, 34, 35, 37, 40], also known as the linear autoencoder

approach, and (2) the matrix factorization approach [14, 20, 26, 45].

Inspired by item-based neighborhood models, the linear autoen-

coder learns an item-to-item similaritymatrix using the relationship

between item neighborhoods. In contrast, the matrix factorization

approach learns low-rank user and item matrices by factorizing the

user-item matrix.

In this paper, we focus on addressing linear autoencoder models.

They deal with the same matrix for input and output and learn

the item-to-item weight matrix B ∈ R𝑛×𝑛 . For inference, the linear
autoencoder models then calculate the prediction score 𝑠𝑢𝑖 using

the inner product of two vectors.

𝑠𝑢𝑖 = X𝑢∗ · B∗𝑖 , (1)

where X𝑢∗ and B∗𝑖 refer to the row vector for user 𝑢 in X and the

column vector for item 𝑖 in B, respectively. Although it is possi-

ble to factorize the item-to-item weight matrix into two low-rank

matrices [35, 40], we mainly consider the full-rank matrix for B.

Linear autoencoder (LAE). As the simplest model, the objective

function of LAE is formulated with L2 regularization, equal to ridge

regression [13].

min
B

∥X −XB∥2𝐹 + 𝜆∥B∥2𝐹 , (2)
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For LAE, we can easily derive the closed-form solution.

B̂𝐿𝐴𝐸 =
(
X⊤X + 𝜆I

)−1 (
X⊤X

)
=

(
X⊤X + 𝜆I

)−1 (
X⊤X + 𝜆I − 𝜆I

)
= I −

(
X⊤X + 𝜆I

)−1
𝜆I

(3)

Here, X⊤X ∈ R𝑛×𝑛 represents a gram matrix approximately

proportional to the covariance matrix, and I is an identity matrix.

When 𝜆 = 0, it comes to a trivial solution, i.e., B̂𝐿𝐴𝐸 = I. Therefore,
it is natural to choose a positive value of 𝜆. Although the L2 regu-

larization prevents a trivial solution, it does not perfectly decouple

the self-correlation in B.

EASE𝑅 [34]. It introduces diagonal constraints onB, allowing us to
avoid a trivial solution regardless of the L2 regularization. The con-

vex optimization problem of EASE
𝑅
employs two components: (1)

an objective function with L2 regularization and (2) zero-diagonal

constraints.

min
B

∥X −XB∥2𝐹 + 𝜆∥B∥2𝐹 𝑠 .𝑡 . diag(B) = 0 (4)

where diag(B) is the vector of diagonal entries for the matrix B. If
the zero-diagonal constraints do not exist, it is equal to Eq. (3).

The optimization problem is transformed by forming Lagrangian

multipliers to account for the zero-diagonal constraints.

min
B

∥X −XB∥2𝐹 + 𝜆∥B∥2𝐹 + 𝝁⊤ · diag(B) (5)

where 𝝁 = (𝜇1, . . . , 𝜇𝑛)⊤ denotes the vector of Lagrangian multi-

pliers. Although it requires additional parameters, it is possible to

derive the closed-form solution by minimizing Eq. (5).

B̂𝐸𝐴𝑆𝐸𝑅 =
(
X⊤X + 𝜆I

)−1 (
X⊤X − diagMat (𝝁)

)
= I − P · diagMat (1 ⊘ diag(P))

(6)

where P = (X⊤X + 𝜆I)−1, 1 and ⊘ are a vector of ones and the

element-wise division operator, respectively. Here, the Lagrangian

multipliers are determined by satisfying the equality constraints,

i.e., diag(B) = 0.
The solution of EASE

𝑅
can be divided into two terms: regular-

ization and diagonal constraints. The former is equivalent to the

solution of LAE, and the latter represents zero-diagonal constraints.

B̂𝐸𝐴𝑆𝐸𝑅 = P ·
(
X⊤X

)
− P · diagMat (𝝁) (7)

We observe that the zero-diagonal constraints are the product

of two matrices −P and diagMat (𝝁). In Section 3, we will further

analyze the impact of diagonal constraints.

DLAE and EDLAE [35]. A recent study [35] points out that the

LAE tends to overfit the identity matrix because it is trained with

the same features for input and output. To address this problem,

[35] utilizes random dropout denoising as an effective regularizer.

It helps models predict one feature from the other in the input. As

the number of training epochs with random dropout is close to

infinite, the stochastic dropout has converged. Interestingly, it is

asymptotically equivalent to L2 regularization. Given a dropout

probability 𝑝 , we formulate the objective function of the denoising

linear autoencoder (DLAE).

min
B

∥X −XB∥2𝐹 + ∥𝚲1/2 · B∥2𝐹 (8)

where Λ =
𝑝

1−𝑝 · diagMat

(
diag

(
X⊤X

) )
+ 𝜆. The solution form of

DLAE is equal to LAE except for regularization.

B̂𝐷𝐿𝐴𝐸 =
(
X⊤X + 𝚲

)−1 (
X⊤X

)
= I −

(
X⊤X + 𝚲

)−1
𝚲 (9)

Although DLAE utilizes dropout-based regularization, it does

not entirely prevent a weight matrix from overfitting toward the

identitymatrix. To alleviate this problem, DLAE is extended to incor-

porate zero-diagonal constraints, called the emphasized denoising

linear autoencoder (EDLAE). The convex optimization problem and

the solution of EDLAE are as follows.

min
B

∥X −XB∥2𝐹 + ∥𝚲1/2 · B∥2𝐹 𝑠 .𝑡 . diag(B) = 0 (10)

B̂𝐸𝐷𝐿𝐴𝐸 =
(
X⊤X + 𝚲

)−1 (
X⊤X − diagMat (𝝁)

)
(11)

DLAE and EDLAE [35] improve LAE and EASE
𝑅
[34] by tuning

for L2 regularization with random dropout. Notably, EASE
𝑅
and

EDLAE also further consider the diagonal constraints more effec-

tively. However, it remains unanswered: How do L2 regularization

and zero-diagonal constraints affect recommendation?

3 THEORETICAL ANALYSIS
In this section, we investigate the effects of L2 regularization and

diagonal constraints. Through singular value decomposition (SVD),

the matrix 𝑋 is decomposed into three matrices.

X = U𝚺V⊤
(12)

where U and V are unitary matrices, i.e., U⊤ = U−1
, V⊤ = V−1

.

Also, 𝚺 is the diagonal matrix for singular values. Assuming𝑚 > 𝑛,

let diag(𝚺) denote the vector (𝜎1, . . . , 𝜎𝑛). The gram matrix X⊤X
can be rewritten as an eigenvalue decomposition form by replacing

X with Eq. (12):

X⊤X =
(
U𝚺V⊤)⊤ (

U𝚺V⊤)
= V

(
𝚺
⊤
𝚺

)
V⊤

(13)

We then analyze the closed-form solution of EASE
𝑅
. We decou-

ple the L2 regularized objective and the zero-diagonal constraints

in B as in Eq. (7). Note that the solution of EDLAE can also be

decomposed into two terms, i.e., the solution of DLAE and the

zero-diagonal constraints by replacing 𝜆I with 𝚲.

The closed-form solution of LAE in Eq. (3), i.e., the L2 regularized
objective, can be rewritten as follows. Here, we utilize a trick using

VV⊤ = I.

B̂𝐿𝐴𝐸 =
(
X⊤X + 𝜆I

)−1 (
X⊤X

)
=

(
V

(
𝚺
⊤
𝚺

)
V⊤ + 𝜆I

)−1 (
V

(
𝚺
⊤
𝚺

)
V⊤)

=
(
V

(
𝚺
⊤
𝚺

)
V⊤ +VV⊤𝜆IVV⊤)−1 (

V
(
𝚺
⊤
𝚺

)
V⊤)

=
(
V

( (
𝚺
⊤
𝚺

)
+V⊤𝜆IV

)
V⊤)−1 (

V
(
𝚺
⊤
𝚺

)
V⊤)

= V
( (
𝚺
⊤
𝚺

)
+V⊤𝜆IV

)−1
V⊤ (

V
(
𝚺
⊤
𝚺

)
V⊤)

= V
( (
𝚺
⊤
𝚺

)
+ 𝜆I

)−1 (
𝚺
⊤
𝚺

)
V⊤

(14)

The eigenvalue decomposition of B̂𝐿𝐴𝐸 is as follows. The di-

agonal matrix (𝚺⊤𝚺 + 𝜆I)−1 (𝚺⊤𝚺) represents the eigenvalues of
B̂𝐿𝐴𝐸 .

B̂𝐿𝐴𝐸 = Vdiag

(
𝜎21

𝜎21 + 𝜆
, . . . ,

𝜎2𝑛

𝜎2𝑛 + 𝜆

)
V⊤

(15)
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(a) L2 regularization (b) Diagonal constraints

Figure 1: Distribution of eigenvalues scaled by (a) the L2 reg-
ularization

(
𝚺
⊤
𝚺 + 𝜆I

)−1 (
𝚺
⊤
𝚺

)
and (b) the zero-diagonal con-

straints
(
𝚺
⊤
𝚺 + 𝜆I

)−1 on the ML-20M dataset with various 𝜆.

Similarly, we derive the alternative form for the zero-diagonal

constraints in EASE
𝑅
.

B̂𝐸𝐴𝑆𝐸𝑅 − B̂𝐿𝐴𝐸 = −
(
X⊤X + 𝜆I

)−1
diagMat (𝝁)

= −V
( (
𝚺
⊤
𝚺

)
+ 𝜆I

)−1
V⊤

diagMat (𝝁)
(16)

We also represent the eigenvalue decomposition for B̂𝐸𝐴𝑆𝐸𝑅 −
B̂𝐿𝐴𝐸 , i.e., the zero-diagonal constraints.

B̂𝐸𝐴𝑆𝐸𝑅 − B̂𝐿𝐴𝐸 = −Vdiag

(
1

𝜎21 + 𝜆
, . . . ,

1

𝜎2𝑛 + 𝜆

)
V⊤

diagMat(𝝁)

(17)

Note that the product of an arbitrary matrixA and a diagonal ma-

trix D can be calculated by column-wise scaling effect on A for the

corresponding diagonal entry of D, i.e., (A ·D) 𝑗 𝑗 = A∗𝑗D𝑗 𝑗 . Thus,

we focus on analyzing −V
( (
𝚺
⊤
𝚺

)
+ 𝜆I

)−1
V⊤

since the Lagrangian

multipliers 𝝁 only serve to adjust the coefficients.

We then compare the eigenvalues of two terms: the L2 regu-

larization and the zero-diagonal constraints. Figure 1 depicts the

distribution of eigenvalues scaled by each term on the ML-20M

dataset. The former is represented by the function of 𝜎2
𝑖
/(𝜎2

𝑖
+ 𝜆),

and the latter is represented by 1/(𝜎2
𝑖
+ 𝜆) depending on 𝜎2

𝑖
and

𝜆. In Figure 1(a), the eigenvalue of the L2 regularization ranges

from [0, 1]. Assuming that 𝜎21 > · · · > 𝜎2𝑛 , we observe that (i) the
L2 regularization tends to be biased toward high-ranked principal

components (PCs). (ii) As 𝜆 increases, this tendency is strengthened,

implying that high-ranked PCs highly influence B̂𝐿𝐴𝐸 . We also find

interesting observations in Figure 1(b). In contrast to the L2 regu-

larization, the eigenvalue of the diagonal constraints increases as 𝑖

goes high and ranges from [0, 1/𝜆]. This observation shows (i) the

zero-diagonal constraints tend to emphasize low-ranked PCs. Since

it has a negative sign, it penalizes the low-ranked PCs in the solu-

tion. (ii) As 𝜆 increases, this tendency weakens, implying that the

impact of L2 regularization dominates the zero-diagonal constraint.

In other words, the gap between B̂𝐿𝐴𝐸 and B̂𝐸𝐴𝑆𝐸𝑅 diminishes as

𝜆 increases.

Our analyses can be extended to DLAE and EDLAE. The regular-

ization term is replaced by diag(𝚲) = (𝜆1, . . . , 𝜆𝑛), where 𝜆𝑖 ≠ 𝜆 𝑗 .
By following the same procedure as Eqs. (14) and (16), B̂𝐷𝐿𝐴𝐸 and

the zero-diagonal constraints in B̂𝐸𝐷𝐿𝐴𝐸 can also be rewritten as

(a) High-ranked PCs (b) Low-ranked PCs

Figure 2: Visualization of (a) high-ranked PCs and (b) low-
ranked PCs of LAE solution, on two datasets (Top: ML-20M,
Bottom: Yelp2018). Among 100 items, the first 20 items are
popular, and the remaining 80 are unpopular. Items are
sorted by popularity.

follows, respectively.

B̂𝐷𝐿𝐴𝐸 =
(
X⊤X + 𝚲

)−1 (
X⊤X

)
= V

( (
𝚺
⊤
𝚺

)
+V⊤

𝚲V
)−1 (

𝚺
⊤
𝚺

)
V⊤

(18)

B̂𝐸𝐷𝐿𝐴𝐸 − B̂𝐷𝐿𝐴𝐸 = −
(
X⊤X + 𝚲

)−1
diagMat (𝝁)

= −V
( (
𝚺
⊤
𝚺

)
+V⊤

𝚲V
)−1

V⊤
diagMat (𝝁)

(19)

Although the forms are similar to LAE and EASE
𝑅
, we cannot

further simplify V⊤
𝚲V in

( (
𝚺
⊤
𝚺

)
+V⊤

𝚲V
)−1

because the com-

mutative law between 𝚲 and V does not always hold, V⊤
𝚲V ≠ 𝚲.

Thus, it is non-trivial to analyze DLAE and EDLAE with different

regularization values in 𝚲. Note that our analyses differ from those

of the low-rank regression models in [17]. (We claim the formula

expansions in [17] are incorrect.)

We further analyze the effects of L2 regularization and diagonal

constraints on recommendations in terms of item popularity. Since

the gram matrix is represented by an eigenvalue decomposition

form, we utilize principal component analysis (PCA). Assuming that

𝜎21 > · · · > 𝜎2𝑛 , the high-ranked PCs contain strong collaborative

signals. Since popular items have more chances to co-occur, they

are closely related to high-ranked PCs. Meanwhile, low-ranked PCs

capture weak collaborative signals.

We conduct a pilot study to better understand the difference

between two PC groups (high vs. low) by analyzing Eq. (15). Fig-

ure 2(a) and (b) visualize the high-ranked and low-ranked PCs,

respectively, on the ML-20M and Yelp2018 datasets. We choose the

top 20% and bottom 20% of PCs as two groups and then aggregate

them with a weighted sum, using their corresponding eigenvalues

as coefficients. For simplicity, we visualize only 100 items randomly
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drawn from each group, i.e., 20 for popular and 80 for unpopular

groups.

On the ML-20M dataset, high-ranked PCs represent the collabo-

rative signals between popular items, while low-ranked PCs repre-

sent the correlation between unpopular items (top of Figure 2). In

other words, item popularity is highly related to the order of PCs

regardless of the magnitude of eigenvalues. However, the trends

on Yelp2018 are quite different from ML-20M (bottom of Figure 2).

Since the item popularity bias of Yelp2018 is relatively lower than

that of ML-20M, both high- and low-ranked PCs have a spread col-

laborative signal. Therefore, low-ranked PCs are likely to represent

weak yet informative collaborative signals.

Based on this analysis, we discuss the effects of L2 regularization

and zero-diagonal constraints. (i) L2 regularization mainly consid-

ers high-ranked PCs, implying that it removes weak collaborative

signals. As 𝜆 increases, it captures only strong collaborative signals

and tends to recommend popular items. Notably, huge 𝜆 provides

only popularity-based recommendation results when the dataset is

highly skewed to popular items. (ii) The zero-diagonal constraints

mostly penalize low-ranked PCs, eliminating the weak collabo-

rative signals (for the modest 𝜆). When popular items dominate

collaborative signals, using zero-diagonal constraints reduces weak

collaborative signals and interrupts the recommendation of less

popular items. As a result, it hinders the performance of long-tail

recommendations.

4 RELAXING DIAGONAL CONSTRAINTS
In this section, we propose novel linear autoencoder models via

diagonal constraints relaxation, called Relaxed Linear AutoEncoder
(RLAE). First, we formulate the convex optimization problem of

RLAE using diagonal inequality constraints and derive the solution

of RLAE.We then analyze the relationship between RLAE and other

linear autoencoder models, i.e., LAE and EASE
𝑅
. Our mathemat-

ical analysis shows that RLAE is a generalized version of linear

autoencoder models with diagonal constraints.

4.1 Convex Optimization Problem
The convex optimization problem of RLAE is formulated by relaxing

the diagonal constraints in Eq. (4).

min
B

∥X −XB∥2𝐹 + 𝜆∥B∥2𝐹 𝑠 .𝑡 . diag(B) ≤ 𝜉, (20)

where 𝜉 is the hyperparameter for relaxing diagonal constraints.

When 𝜉 = 0, it is equivalent to zero-equality constraints, implying

EASE
𝑅
. If there are no diagonal constraints, i.e., 𝜉 ≥ 1, then RLAE

is induced to LAE. (In Section 4.2, we prove the relation of RLAE to

other linear models by controlling the 𝜉 .)

RLAE still achieves a closed-form solution via Karush–Kuhn–Tucker

(KKT) conditions. Surprisingly, the solution form of RLAE is equiv-

alent to that of EASE
𝑅
.

B̂𝑅𝐿𝐴𝐸 =
(
X⊤X + 𝜆I

)−1 (
X⊤X − diagMat(𝝁)

)
= I − P · diagMat(𝜆 + 𝝁),

(21)

where 𝜇 𝑗 =

{
0 if 1 − P𝑗 𝑗𝜆 ≤ 𝜉,
1−𝜉
P𝑗 𝑗

− 𝜆 otherwise.
(22)

The key difference is that the diagonal vector 𝝁 is determined

by the inequality condition, i.e., 1 − P𝑗 𝑗𝜆 ≤ 𝜉 . If the inequality

condition is satisfied, it becomes 0, i.e., 𝜇 𝑗 = 0. Otherwise, 𝜇 𝑗 is

equal to
1−𝜉
P𝑗 𝑗

− 𝜆, relaxing the equality constraints by 𝜉 . That is, the

diagonal constraints are controlled by 𝜉 .

We can also modify the convex optimization problem of DLAE

by applying the diagonal inequality constraints. We call it Relaxed
Denoising Linear AutoEncoder (RDLAE).

min
B

∥X −XB∥2𝐹 + ∥𝚲1/2 · B∥2𝐹 𝑠 .𝑡 . diag(B) ≤ 𝜉, (23)

where 𝚲 =
𝑝

1−𝑝 · diagMat

(
diag(X⊤X)

)
+ 𝜆I.

Also, the solution of RDLAE can be formulated by the closed-

form equation. Let P′ =
(
X⊤X + 𝚲

)−1
, then the optimization prob-

lem Eq. (23) yields the following solution.

B̂𝑅𝐷𝐿𝐴𝐸 =
(
X⊤X + 𝚲

)−1 (
X⊤X − diagMat(𝝁)

)
= I − P′ · diagMat (diag(Λ) + 𝝁) ,

(24)

where 𝜇 𝑗 =


0 if 1 − P′

𝑗 𝑗
Λ 𝑗 ≤ 𝜉,

1−𝜉
P′

𝑗 𝑗
− Λ 𝑗 otherwise.

(25)

4.2 Upper and Lower Bounds Analysis of 𝜉
In this subsection, we show that RDLAE is a generalized version

of two linear models, DLAE and EDLAE. We prove the upper and

lower bounds of 𝜉 . Note that our proof is also used for RLAE since

it is a special case without using dropout, i.e., 𝑝 = 0.

Theorem 4.1. If 𝜉 ≥ 1, the solution of RDLAE is equivalent to
that of DLAE.

Proof. The condition for 𝜇 𝑗 to be zero is as follows.

1 − P′
𝑗 𝑗𝚲𝑗 𝑗 ≤ 𝜉 ⇔ P′

𝑗 𝑗𝚲𝑗 𝑗 ≥ 1 − 𝜉 (26)

We will show that all diagonal entries of P′
𝚲 must be greater

than or equal to zero. If a real-valued matrix is positive definite, then

all diagonal entries are positive [8]. (X⊤X + 𝚲) is positive definite
because all diagonal entries of 𝚲 are positive [8, 13, 35]. Since the

inverse of the positive definite matrix is a positive definite matrix,

P′ = (X⊤X+𝚲)−1 is also positive definite. Therefore, the diagonal

entries P′
𝑗 𝑗

are greater than zero for all 𝑗 . Accordingly, if 𝜉 ≥ 1,

the condition (26) is satisfied for all 𝑗 , and thus the Lagrangian

multiplier vector 𝝁 becomes a zero vector. As a result, the diagonal

constraints of RDLAE are ignored, indicating the solution of DLAE.

□

Theorem 4.2. If 𝜉 = 0, the solution of RDLAE is equivalent to that
of EDLAE.

Proof. In the solution of RDLAE, the condition for the 𝑗 th diag-

onal entry to be constrained is as follows.

1 − P′
𝑗 𝑗𝚲𝑗 𝑗 ≥ 𝜉 ⇔ P′

𝑗 𝑗𝚲𝑗 𝑗 ≤ 1 − 𝜉 (27)

We will show that all diagonal entries of P′
𝚲 = (X⊤X + 𝚲)−1𝚲

must be less than 1. X⊤X is positive semi-definite, so all diagonal

entries are semi-positive, i.e., greater or equal to zero [8]. From

the proof of Theorem 4.1, P′ = (X⊤X + 𝚲)−1 is positive definite.
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Table 1: Statistics of six benchmark datasets: ML-20M, Net-
flix, MSD, Gowalla, Yelp2018, and Amazon-book.

Dataset #Users #Items #Ratings Density 𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚

ML-20M 136,677 20,108 10.0M 0.36% 0.90

Netflix 463,435 17,769 56.9M 0.69% 0.86

MSD 571,355 41,140 33.6M 0.36% 0.56

Gowalla 29,858 40,981 1,027,370 0.01% 0.44

Yelp2018 31,668 38,048 1,561,406 0.13% 0.51

Amazon-book 52,643 91,599 2,984,108 0.06% 0.46

Since the matrix multiplication between positive and positive semi-

definite matrices yields a positive semi-definite matrix [8], (X⊤X +
𝚲)−1 (X⊤X) = I−(X⊤X+𝚲)−1𝚲 = I−P′

𝚲 is positive semi-definite.

Since the diagonal entries of I − P′
𝚲 are all semi-positive, P′

𝑗 𝑗
𝚲𝑗 𝑗

is less or equal to 1 for all 𝑗 . In other words, the condition (27) is

satisfied for all 𝑗 . As a result, all diagonal entries of RDLAE are

constrained to be zero, indicating the solution of EDLAE. □

5 EXPERIMENTAL SETUP
Datasets. We extensively conduct experiments and analyses on

six benchmark datasets, such as ML-20M, Netflix, MSD, Gowalla,

Yelp2018, and Amazon-book, widely used in existing studies [2,

3, 9, 34, 35, 41]. In [2], they are categorized into different dataset

groups. (i) Gowalla, Yelp2018, and Amazon-book are mainly used

to evaluate matrix factorization models due to the characteristics of

a relatively small number of users and high sparsity. (ii) Meanwhile,

ML-20M, Netflix, andMSD are usually used to evaluate autoencoder

models due to a large number of users. For reproducibility, we follow

the preprocessing used in [41] and [23]. Table 1 summarizes the

statistics of the datasets.

Baseline models. We compare our models with state-of-the-art

linear autoencoders, LAE, EASE
𝑅
[34], DLAE, and EDLAE [35]. We

also evaluate the following state-of-the-art CF models.

• GRMF [28] is the MF model that enhances the smoothness

of embeddings via the graph Laplacian regularizer. Following

[3, 9], we used BPR loss for model training.

• MultVAE [23] is the neural autoencoder model using variational

inference.

• LightGCN [9] is the neural MF model using simplified graph

convolutional networks (GCNs).

• LT-OCF [3] is the neural MF model using learnable-time graph

convolutional networks (GCNs) in which neural ODE (NODE)

is used to find the optimal number of GCN layers.

• GF-CF [32] is the linear autoencoder model that combines nor-

malized singular vectors with linear and ideal low-pass filters.

• HMLET [19] is the neural MF model using linear and non-

linear hybrid graph convolutional networks (GCNs) with gating

modules.

Evaluation protocols andmetrics: For extensive evaluations, we
adopt two evaluation protocols [23, 41]. While existing CF models

merely employ one of the two protocols, we validate the generalized

efficacy of our models on both of them.

• Strong generalization: It randomly holds out a set of 80%

users for the training set. The remaining half and the others are

used for the validation and test set, respectively. We use weak

generalization for the validation and test sets; assuming the user

has 80% own ratings, CFmodels provide top-𝑁 recommendation

lists for 20% unseen ratings. Because it evaluates unseen users

as the test set, it is more applicable to real-world scenarios.

• Weak generalization. According to the conventional proto-

col [3, 9, 41], we randomly split a user-item interaction matrix

into 80% training and 20% test matrices.

We use two evaluation metrics, Recall andNormalized Discounted
Cumulative Gain (NDCG), widely used in the literature [3, 9, 23, 41].

While recall quantifies how many preferred items exist, NDCG

accounts for the position of preferred items in the top-𝑁 recom-

mendation list. To further analyze linear autoencoders, we adopt

Average-Over-All (AOA) and unbiased evaluation [44]. The unbi-

ased evaluation measures true relevance under the missing-not-
at-random (MNAR) assumption, so it helps mitigate the impact

of popularity bias. We use 𝛾 = 2 as the normalization parameter

for unbiased evaluation, which is commonly used in existing stud-

ies [21, 44]. We also report the results of two item groups, i.e., head
and tail items, in terms of AOA evaluation. The head items are the

top 20% most popular, and the tail items are the rest.

Reproducibility. We reproduced the experimental results of non-

linear baselines using the hyperparameter settings provided in the

original papers [3, 9]. We conducted a grid search for linear autoen-

coder models to find optimal hyperparameters. The L2 regulariza-

tion coefficient 𝜆 was searched over [1, 2, . . . , 10, 20]. We searched

both the dropout probability 𝑝 and the inequality threshold 𝜉 in

the range of [0.1, 0.2, . . . , 0.9]. For GF-CF [32], 𝛼 was searched in

the range of [0.0, 0.1, . . . , 1.0]. All the experiments were conducted

on a desktop with 2 NVidia A6000, 512 GB memory, and 2 Intel

Xeon Gold 6226R (2.90 GHz, 22.53M cache). Our implementations

are available at https://github.com/jaewan7599/RDLAE_SIGIR2023.

6 EXPERIMENTAL RESULTS
In this section, we report the experimental results of two evaluation

protocols, i.e., strong and weak generalization, on six benchmark

datasets against theoretical discussions. Specifically, we address the

following research questions:

• (RQ1) Do RLAE and RDLAE effectively provide recommenda-

tions that alleviate item popularity bias?

• (RQ2) How do regularization and diagonal constraints in linear

autoencoders affect recommendations?

• (RQ3) How much do hyperparameters affect the performance

of linear autoencoder models?

6.1 Performance Comparison (RQ1, RQ2)
Strong generalization. We compare seven linear models, includ-

ing GF-CF [32], to evaluate the effectiveness of our models. We also

perform quantitative analyses of how the regularization and the

diagonal constraints affect the performance of linear autoencoder

models. Table 2 shows the performance of top-𝐾 recommendation

on six datasets. Note that we observe similar trends between head

items and AOA metrics in the ML-20M, Netflix, and MSD datasets,

so we do not report the performance for head items in Table 2.

As shown in Table 2, our models, i.e., RLAE and RDLAE, consis-

tently outperform other linear autoencoder models in both AOA

and unbiased evaluation on all six datasets, more significantly in

https://github.com/jaewan7599/RDLAE_SIGIR2023
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Table 2: Performance comparison for the proposed methods and other linear autoencoder models on six datasets with the
strong generalization protocol. The best results are marked in bold.

Dataset Model

AOA Tail Unbiased

ML-20M

R@20 N@20 R@100 N@100 R@20 N@20 R@100 N@100 R@20 N@20 R@100 N@100

GF-CF 0.3250 0.2736 0.5765 0.3570 0.0029 0.0022 0.0111 0.0038 0.2188 0.0371 0.4334 0.0507

LAE 0.3757 0.3228 0.6277 0.4070 0.0005 0.0001 0.0048 0.0011 0.2827 0.0473 0.5016 0.0606

EASE
𝑅

0.3905 0.3390 0.6363 0.4202 0.0052 0.0022 0.0215 0.0056 0.2857 0.0479 0.5113 0.0616

RLAE 0.3913 0.3402 0.6394 0.4224 0.0137 0.0069 0.0579 0.0167 0.2951 0.0487 0.5283 0.0626
DLAE 0.3923 0.3408 0.6449 0.4241 0.0084 0.0047 0.0417 0.0120 0.2898 0.0477 0.5251 0.0620

EDLAE 0.3925 0.3421 0.6410 0.4240 0.0066 0.0035 0.0269 0.0078 0.2859 0.0480 0.5128 0.0619

RDLAE 0.3932 0.3422 0.6452 0.4252 0.0123 0.0062 0.0524 0.0149 0.2987 0.0489 0.5328 0.0630

Netflix

GF-CF 0.2972 0.2724 0.4973 0.3322 0.0185 0.0123 0.0468 0.0202 0.1868 0.0264 0.3563 0.0358

LAE 0.3465 0.3237 0.5410 0.3796 0.0066 0.0036 0.0258 0.0087 0.2357 0.0326 0.4068 0.0411

EASE
𝑅

0.3618 0.3388 0.5535 0.3938 0.0404 0.0222 0.1093 0.0408 0.2554 0.0351 0.4321 0.0435

RLAE 0.3623 0.3392 0.5551 0.3945 0.0585 0.0377 0.1342 0.0574 0.2606 0.0355 0.4362 0.0437
DLAE 0.3621 0.3400 0.5557 0.3950 0.0597 0.0381 0.1320 0.0575 0.2549 0.0355 0.4302 0.0438

EDLAE 0.3659 0.3428 0.5583 0.3978 0.0470 0.0279 0.1141 0.0461 0.2569 0.0358 0.4328 0.0441

RDLAE 0.3661 0.3431 0.5588 0.3982 0.0545 0.0344 0.1228 0.0527 0.2598 0.0360 0.4350 0.0443

MSD

GF-CF 0.2513 0.2457 0.4310 0.3111 0.1727 0.1331 0.2978 0.1695 0.2137 0.0282 0.3658 0.0351

LAE 0.2848 0.2740 0.4778 0.3448 0.1862 0.1234 0.3715 0.1765 0.2568 0.0320 0.4411 0.0401

EASE
𝑅 0.3338 0.3261 0.5074 0.3899 0.2504 0.1758 0.4109 0.2232 0.3019 0.0377 0.4663 0.0448

RLAE 0.3338 0.3261 0.5074 0.3899 0.2507 0.1767 0.4110 0.2240 0.3021 0.0378 0.4664 0.0449
DLAE 0.3288 0.3208 0.5103 0.3873 0.2526 0.1863 0.4107 0.2325 0.2993 0.0378 0.4666 0.0450
EDLAE 0.3336 0.3258 0.5124 0.3913 0.2503 0.1782 0.4105 0.2253 0.3014 0.0378 0.4684 0.0450
RDLAE 0.3341 0.3265 0.5110 0.3914 0.2511 0.1784 0.4109 0.2255 0.3022 0.0379 0.4680 0.0450

Gowalla

GF-CF 0.2252 0.1660 0.4529 0.2318 0.1151 0.0591 0.2962 0.1049 0.1734 0.0343 0.3864 0.0508

LAE 0.2271 0.1706 0.4491 0.2346 0.0799 0.0371 0.2680 0.0836 0.1672 0.0326 0.3763 0.0487

EASE
𝑅

0.2414 0.1831 0.4493 0.2437 0.0941 0.0428 0.2862 0.0909 0.1753 0.0335 0.3802 0.0491

RLAE 0.2448 0.1873 0.4499 0.2468 0.1243 0.0625 0.3177 0.1113 0.1912 0.0370 0.3922 0.0522
DLAE 0.2495 0.1891 0.4615 0.2507 0.1109 0.0532 0.3087 0.1026 0.1881 0.0366 0.3965 0.0524

EDLAE 0.2469 0.1859 0.4619 0.2484 0.0951 0.0432 0.2904 0.0918 0.1790 0.0344 0.3896 0.0504

RDLAE 0.2499 0.1900 0.4594 0.2510 0.1210 0.0587 0.3173 0.1079 0.1923 0.0373 0.3976 0.0528

Yelp2018

GF-CF 0.1134 0.0900 0.2858 0.1487 0.0155 0.0078 0.0793 0.0251 0.0685 0.0081 0.2007 0.0150

LAE 0.1160 0.0954 0.2720 0.1487 0.0086 0.0039 0.0635 0.0187 0.0705 0.0086 0.1914 0.0148

EASE
𝑅

0.1144 0.0933 0.2681 0.1458 0.0091 0.0042 0.0684 0.0201 0.0679 0.0081 0.1883 0.0143

RLAE 0.1173 0.0968 0.2726 0.1499 0.0127 0.0060 0.0784 0.0237 0.0735 0.0089 0.1972 0.0152
DLAE 0.1190 0.0971 0.2784 0.1516 0.0121 0.0057 0.0773 0.0236 0.0724 0.0087 0.1986 0.0152

EDLAE 0.1171 0.0957 0.2757 0.1499 0.0103 0.0049 0.0727 0.0219 0.0698 0.0084 0.1939 0.0147

RDLAE 0.1190 0.0976 0.2773 0.1519 0.0161 0.0077 0.0882 0.0274 0.0741 0.0089 0.2018 0.0154

Amazon-book

GF-CF 0.1668 0.1492 0.3182 0.2009 0.0988 0.0702 0.2051 0.1000 0.1401 0.0195 0.2740 0.0263

LAE 0.1920 0.1749 0.3239 0.2198 0.1012 0.0635 0.2218 0.0980 0.1644 0.0220 0.2896 0.0281

EASE
𝑅

0.1912 0.1734 0.3258 0.2193 0.0761 0.0444 0.1815 0.0746 0.1481 0.0195 0.2725 0.0256

RLAE 0.1968 0.1804 0.3288 0.2255 0.1057 0.0672 0.2260 0.1018 0.1649 0.0221 0.2909 0.0282
DLAE 0.1994 0.1820 0.3374 0.2291 0.0993 0.0631 0.2187 0.0972 0.1637 0.0220 0.2938 0.0283

EDLAE 0.1940 0.1756 0.3349 0.2240 0.0829 0.0512 0.1938 0.0827 0.1523 0.0205 0.2820 0.0268

RDLAE 0.2011 0.1834 0.3354 0.2293 0.1043 0.0670 0.2214 0.1007 0.1663 0.0225 0.2934 0.0286

the latter. RLAE and RDLAE show performance gains in the unbi-

ased evaluation of 1.62% and 1.61% on NDCG@100 for the ML-20M

dataset, respectively, and 2.70% and 1.32% for the Yelp2018 dataset,

respectively. The significant enhancement in tail items drives the

improvement in unbiased evaluation, indicating that they can ade-

quately mitigate the popularity bias. Specifically, RLAE and RDLAE

show performance gains of 198.21% and 24.17% in tail items on

NDCG@100 for the ML-20M dataset, and 17.91% and 16.10% for the

Yelp2018 dataset, respectively.

Our models outperform GF-CF, a state-of-the-art model, in al-

most all metrics. On the three datasets, ML-20M, Netflix, and MSD,

RLAE outperforms GF-CF by an average of 20.80% in AOA eval-

uation, 185.26% in tail items, and 24.49% in unbiased evaluation

on NDCG@100. For the strong generalization datasets, using the

precision matrix rather than the covariance matrix is better [34].

However, the linear filter, one of the main components of GF-CF, is

similar to the concept of a covariance matrix, leading to lower per-

formance of GF-CF. On the rest of the datasets, Gowalla, Yelp2018,

and Amazon-book, RLAE outperforms GF-CF by an average of

6.47% in AOA evaluation, 0.66% in tail items, and 3.77% in unbiased

evaluation on NDCG@100. The ideal low-pass filter, another main

component of GF-CF, emphasizes high-ranked PCs but needs to
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Table 3: Performance comparison for linear autoencoder
models and deep learning baseline models on Gowalla,
Yelp2018, and Amazon-book datasets with the weak gener-
alization protocol. The best results are marked in bold, and
the second best models are underlined.

Dataset Gowalla Yelp2018 Amazon-Book

Method R@20 N@20 R@20 N@20 R@20 N@20

GRMF 0.1477 0.1205 0.0571 0.0462 0.0354 0.0270

GRMF-Norm 0.1557 0.1261 0.0561 0.0454 0.0352 0.0269

Mult-VAE 0.1641 0.1335 0.0584 0.0450 0.0407 0.0315

LightGCN 0.1830 0.1554 0.0649 0.0530 0.0411 0.0315

LT-OCF 0.1875 0.1574 0.0671 0.0549 0.0442 0.0341

HMLET 0.1874 0.1589 0.0675 0.0557 0.0482 0.0371

GF-CF 0.1849 0.1536 0.0697 0.0571 0.0710 0.0584

LAE 0.1630 0.1295 0.0658 0.0555 0.0746 0.0611

EASE
𝑅

0.1765 0.1467 0.0657 0.0552 0.0710 0.0566

DLAE 0.1839 0.1533 0.0678 0.0570 0.0751 0.0610

EDLAE 0.1844 0.1539 0.0673 0.0565 0.0711 0.0566

RLAE 0.1772 0.1467 0.0667 0.0562 0.0754 0.0615
RDLAE 0.1845 0.1539 0.0679 0.0569 0.0754 0.0613

fully account for informative CF signals from low-ranked PCs in

these datasets, causing RLAE to outperform GF-CF.

We observe that the popularity bias of the dataset has a signifi-

cant impact on determining the utility of the diagonal constraint.

On the datasets with large popularity bias, i.e., ML-20M, Netflix,

and MSD datasets, EASE
𝑅
outperforms LAE on all metrics, with an

average performance gain of 268.17% in tail items on NDCG@100.

Here, the diagonal constraints help models focus on high-ranked

PCs, preventing a large increase in L2 regularization. We find that

the optimal 𝜆 for LAE relative to EASE
𝑅
is 12.5, 40, and 40 times

larger for the three datasets, respectively. This makes unpopular

items almost uninformative, resulting in the dramatic performance

drop in tail items of LAE.

On the other hand, on the datasets with relatively low popu-

larity bias, such as Gowalla, Yelp2018, and Amazon-book datasets,

LAE performs slightly worse or even better than EASE
𝑅
. For these

datasets, we observe that the optimal 𝜆 tends to be lower, and the

differences between the optimal 𝜆s of the two models are reduced

to a range of less than a factor of two or less. This low 𝜆 takes

into account the relatively uniform importance of PCs’ rank and

allows the model to make recommendations based on CF signals

from low-ranked PCs as well as high-ranked PCs. In other words,

low-ranked PCs are informative in these datasets, and the diago-

nal constraints that penalize them cause performance degradation.

Specifically, LAE outperforms EASE
𝑅
by 31.37% in tail items on

NDCG@100 for the Amazon-book dataset, even though LAE has a

25% higher 𝜆 than EASE
𝑅
.

We find that dropout leads to an overall performance improve-

ment, with the optimal 𝜆 tending to decrease because dropout

provides additional regularization. The lower 𝜆 strengthens the

model’s concentration on low-ranked PCs, improving performance

on unbiased evaluation and tail items. Specifically, on the ML-20M

dataset, where the 𝜆 of DLAE is reduced by 10 times compared

to LAE’s, DLAE significantly outperforms LAE by 900.91% in tail

items on NDCG@100, while on the Amazon-book dataset, where

the reduction in 𝜆 is relatively small, DLAE performs slightly worse

than LAE with the performance degradation of 0.82%.

Moreover, we observe that the tendency of the diagonal con-

straints is maintained regardless of whether dropout is applied, but

its effectiveness is reduced. For example, on the Netflix and MSD

datasets, EASE
𝑅
outperforms LAE with a dramatic performance

gain, while EDLAE is slightly better than DLAE. Furthermore, ED-

LAE performs slightly worse than DLAE on the ML-20M dataset.

This is because dropout emphasizes high-ranked PCs similarly to

diagonal constraints, and we discuss this in Section 6.2.

Weak generalization. Table 3 reports the results of weak general-

ization by comparing linear autoencoder and neural models. Note

that existing studies rarely evaluate linear autoencoder models in

this setting.

Our models, i.e., RLAE and RDLAE, still show higher or compa-

rable overall performance compared to other linear autoencoder

models in weak generalization. RDLAE is comparable to GF-CF on

Gowalla, worse on Yelp2018, and considerably better on Amazon-

book on Recall@20. Specifically, for the Amazon-book dataset, RD-

LAE outperforms GF-CF by 6.20% and 5.31% on Recall@20 and

NDCG@20, respectively. In addition, reducing the diagonal con-

straints helps improve performance on datasets with a low popular-

ity bias. For the Yelp2018 and the Amazon-book datasets, the models

with zero-diagonal constraints, i.e., EASE𝑅 and EDLAE, show the

worst performance. However, on Gowalla, introducing diagonal

constraints offers better performance. Due to the high sparsity,

low-ranked PCs in Gowalla may contain noisy information.

We highlight the comparison between RDLAE and HMLET [19],

a state-of-the-art GCNmodel. HMLET performs better than RDLAE

on the Gowalla dataset. However, as the dataset grows, the perfor-

mance gain of RDLAE increases. Especially for the Amazon-Book

dataset, the largest of the three datasets, RDLAE significantly out-

performs HMLET with a 56.43% gain on Recall@20. This is because

most neural models are optimized for small datasets rather than

large ones. The high sparsity of the dataset also hinders their perfor-

mance. Meanwhile, linear autoencoders easily capture significant

collaborative signals using the closed-form solution regardless of

data sparsity.

6.2 Hyperparameter Sensitivity Analysis (RQ3)
To analyze the impact of the hyperparameters, we report the results

on the strong generalization protocol for two datasets, ML-20M and

Yelp2018. NDCG@100 is used as the default metric. In Figures 3

and 5, we fix the L2 regularization coefficient 𝜆 to 100. Note that

the same trend is shown in other metrics and 𝜆.

Diagonal constraints. Figure 3 shows the performance of RLAE

over varying 𝜉 . As 𝜉 goes down, the impact of the diagonal con-

straints becomes stronger. In particular, 𝜉 = 0 indicates the zero-

diagonal constraints, meaning that the diagonal constraints are

applied to all items. The best performance is shown at a specific 𝜉

value, higher than when the zero-diagonal constraints are applied

on both datasets. In addition, the performance of the tail items grad-

ually improves as the 𝜉 value increases. This observation implies

that the diagonal constraints suppress the collaborative signals
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(a) ML-20M (b) Yelp2018

Figure 3: NDCG@100 of RLAE over various 𝝃 for diagonal
constraints on two datasets, ML-20M and Yelp2018.

(a) ML-20M (b) Yelp2018

Figure 4: NDCG@100 of LAE over various 𝝀 for L2 regular-
ization on two datasets, ML-20M and Yelp2018.

(a) ML-20M (b) Yelp2018

Figure 5: NDCG@100 of DLAE over various p for dropout
regularization on two datasets, ML-20M and Yelp2018.

of unpopular items. Moreover, we observe that the diagonal con-

straints do not affect most items at the optimal 𝜉 value. Specifically,

RLAE removes 81.31% and 78.76% of the diagonal constraints on

the ML-20M and Yelp2018 datasets, respectively.

L2 regularization. Figure 4 depicts the performance of LAE over

various 𝜆. We use LAE to analyze only the impact of L2 regular-

ization. We highlight the two observations: (1) As 𝜆 increases, the

performance of the head item group tends to increase while the

performance of the tail item group tends to decrease. Therefore,

it is necessary to adjust the modest L2 regularization to consider

the performance balance of both item groups. (2) 𝜆 = 10𝐾 shows

the best performance on the ML-20M dataset, but the best perfor-

mance is shown at 𝜆 = 500 on the Yelp2018 dataset. Due to the

relatively low popularity bias, low-ranked PCs contain more mean-

ingful information on Yelp2018, resulting in the best performance

at relatively low 𝜆. In brief, the optimal value of 𝜆 depends on the

popularity bias.

Dropout regularization. Figure 5 shows the performance of DLAE

over varying dropout ratio 𝑝 . We observe similar trends for dropout

and diagonal constraints. As the 𝑝 increases, the performance of

head items tends to increase while the performance of tail items

consistently decreases for both datasets. Moreover, we observe

a correlation between the popularity bias of the dataset and the

value of optimal 𝑝 . The larger the item popularity bias, the stronger

the impact of dropout regularization. Thus, the variation of per-

formance with 𝑝 on the ML-20M dataset is more sensitive, with

optimal performance occurring at a relatively low 𝑝 compared to

the Yelp2018 dataset.

7 RELATEDWORK
We briefly review existing CF models into two groups: linear and

non-linear. We also discuss theoretical analyses for understanding

linear models.

Linear models. They are categorized into two groups, latent factor
models and neighborhood-based models. Latent factor models [14,

20, 26, 45] factorize an entire matrix into a combination of user

and item vectors. Pioneering by [25], linear autoencoder models

are formulated by the regression model for the item neighborhood-

based approach [31]. Recent studies [16, 34, 36, 37] calculate an item-

item weight matrix via convex optimization with L2 regularization

and zero-diagonal constraints. Furthermore, EDLAE [35] utilizes

advanced regularization derived from random dropout.

Non-linearmodels. With the blossom of deep learning, non-linear

models have been widely used for recommendation. Like linear

models, non-linear models are broadly categorized into latent fac-

tor models and autoencoder models. Non-linear latent factor mod-

els include MF-based neural models [10, 28, 29] and GCN-based

models [1, 3, 9, 32, 41]. In addition, non-linear autoencoder mod-

els [23, 24, 33, 42] utilize a bottleneck architecture consisting of

an encoder and a decoder, where the hidden layer represents a

non-linear activation function.

Theoretical analysis for linear models. Several studies [17, 32,
43] have recently conducted in-depth analyses of linear models.

[43] performed a theoretical analysis on product embedding using

skip-gram negative sampling, and [32] considered graph signal

processing on the GCN-based methodology for the recommenda-

tion. In addition, [17] compares low-rank linear autoencoders with

Tikhonov regularization and a closed-form solution of MF. To the

best of our knowledge, no existing study explores diagonal con-

straints in linear autoencoders.

8 CONCLUSION
This paper provided a theoretical understanding of linear autoen-

coder models. Their solutions can be decomposed into two compo-

nents: an objective function with regularization and zero-diagonal

constraints. To the best of our knowledge, no existing study thor-

oughly investigates the relationship between item popularity and

two components of linear autoencoders. Regularization emphasizes

high-ranked PCs, affecting strong collaborative signals. Meanwhile,

the diagonal constraints weaken the impact of low-ranked PCs.

Because low-ranked PCs are highly related to the collaborative

signals for unpopular items, the zero-diagonal constraints are not

always helpful for enhancing performances, especially for long-tail

items. Motivated by our analyses, we suggested linear autoencoder

models by relaxing diagonal constraints. Experimental results ex-

tensively demonstrated that our models are comparable to or better
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than existing linear autoencoder and non-linear models using two

evaluation protocols on six benchmark datasets.
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