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ABSTRACT
Recent years have witnessed the rapid development of online micro-
video platforms, in which the recommender system plays an essen-
tial role in overcoming the information overloading problem and
providing personalized content for users. Although some progress
has been achieved in the micro-video recommendation, there are
still some limitations in learning the representations of user inter-
ests and video features. Specifically, the user modeling in existing
works is performed at a coarse-grained level, i.e., video level. How-
ever, in micro-video recommendation, the user feedback is at a
continuous form—users can skip over a video at each frame—which
reveals fine-grained user preferences. In this work, we approach
the problem of learning fine-grained user preferences for micro-
video recommendation by first collecting two real-world datasets.
To address the challenges of preference modeling and weak super-
vision signal, we propose a solution named FRAME (short for Fine-
gRAined preference-modeling for Micro-video rEcommendation).
Specifically, we first adopt visual feature extraction and transfor-
mation to maintain the fine-grained video embeddings. We then
propose graph convolution layers to learn the user preference
from complex and fine-grained user-clip relations, and hybrid-
supervision objectives for enhancing the supervision signal. The
experimental results on two collected real-world datasets demon-
strate the effectiveness of our proposed model. We release the
datasets and codes in https://github.com/tsinghua-fib-lab/FRAME,
which we believe can benefit the community.
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1 INTRODUCTION
Micro-video applications such as TikTok are increasingly popular
nowadays, with billions of active users each day. Its great success
largely owns to recommender system, which learns user preference
from behavioral data and effectively filters videos. Existing works
of traditional recommender systems are limited to the explicit feed-
back such as rating or implicit feedback such as click, purchase, etc.
However, the feedback in micro-video recommendation is brand
new, which is presented in a continuous form. Precisely, the users’
browsing behavior can end at any specific position/frame of a video
(when users choose to skip over), yielding a special preference sig-
nal. Therefore, it is not reasonable to directly consider the whole
video as a positive or negative one.

Although micro-video recommendation is a widely-explored
topic [4, 23, 26, 27, 31, 42], existing works only introduce the video-
level preferences, such as [42] which extracts content features from
the whole video or [23, 27] which uses the embedding of thumbnail
as the video feature. That is, existing user-video interaction only
contains whether the user skips or does not skip a video, but does
not consider which clip the user skips, which is coarse-grained.
While the modeling of fine-grained user-video feedback, which is
critical for micro-video recommendation, is still less-explored. Dif-
ferent from traditional user feedback, fine-grained feedback consid-
ers the skipping behavior together with corresponding fine-grained
video content, which could benefit modeling user preference on
a more fine-grained level (e.g., clip-level). As a brand new kind
of feedback, learning fine-grained user interests for micro-video
recommendation suffers from the following challenges.
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• Fine-grained feature learning. Learning fine-grained user pref-
erences is supported by fine-grained video features, such as clip-
level or even frame-level. One reason for the missing literature
is that there is no public dataset consisting of both fine-grained
user feedback and video features.

• The user-video relations are complex. Since the user feedback
towards the video is fine-grained, there exist more complex user-
video relations. When a user interacts with a video, he/she may
have only watched a fraction of the video, while the remaining
is not involved. It is challenging to learn from the new kind of
user-video relation.

• The supervision signal is weak. The continuous feedback,
different from explicit feedback or implicit feedback in existing
recommenders, reveals very weak prediction signals. A video
that the user skips over indeed contains two parts of content that
matches and does not match user preferences at the same time.
To address the challenges mentioned above, in this work, we

collect two real-world large-scale datasets from amainstreammicro-
video platform. The datasets differ from existing public datasets
on the users’ fine-grained feedback including the user’s watch-
ing time of interacted videos and fine-grained visual pixel data
of videos. Aiming to learn fine-grained user and video represen-
tation, we then propose a graph neural network-based solution
named FRAME (short for Fine-gRAined preference-modeling for
Micro-video rEcommendation). Specifically, we first obtain the fine-
grained video features via pre-trained neural networks, based on
which we deploy a simple yet effective transformation layer to
obtain fine-grained video embeddings. We then construct a user-
clip relation graph, which contains two kinds of user fine-grained
feedback: skip and non-skip, reflecting weak-negative and weak-
positive user preferences, respectively. Then the graph convolu-
tional layers on these two kinds of relations are deployed to learn
user representations, which are further merged for the prediction
of user-video interaction. We finally propose hybrid objectives for
enhancing the supervision signals. The contribution of our work
can be summarized as follows:

• We take the first step to propose a new paradigm of fine-grained
feedback learning, which is seldom considered in the existing
literature of recommender systems. We carefully collect two
real-world large-scale datasets with fine-grained user-video in-
teraction and video features and release the datasets.

• We propose a novel solution named FRAME for the new problem.
We first combine video feature extraction into preference learning
and then propose a graph convolutional network-based approach
to extract user fine-grained preferences. Lastly, we introduce a
hybrid loss into the model training, which captures the user
decision process well when interacting with micro-videos.

• Extensive experiments on two real-world datasets verify the
effectiveness of our proposed method. Further experiments of
ablation study demonstrate the rationality of our method’s each
component. We have also conducted case studies with insight-
ful conclusions about how our proposed model captures user
preference in a fine-grained manner.
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Figure 1: The distribution of the skip-behavior time-interval.

2 PROBLEM MOTIVATION AND DEFINITION
Compared to traditional interactions like click behavior in other
recommender systems, users’ interaction manners in micro-video
recommendation differ a lot. Specifically, a user can skip a video at
any time, or does not take any action (then the next video will be
played). These behaviors reflect the user interests and preferences
in such a continuous video-playing process.

First, we conduct some data analysis on a real-world micro-video
recommendation dataset1. We present the distribution of the skip
behavior’s interval in Figure 1. For example, if the video length is
10 seconds, “0.2-0.3” means the user’s skip behavior happens at
the interval of 2-3 seconds. We can observe from the distribution
that the number of skip behaviors is more than non-skip behaviors.
Besides, the users may skip the video at any time interval. Such
data characteristics require a new paradigm of modeling user-video
interactions to capture the fine-grained signal expressed by users’
continuous feedback. Motivated by the findings of data analysis,
we define the problem of learning fine-grained user preferences for
micro-video recommendation.

Let U = {𝑢1, 𝑢2, · · · , 𝑢𝑀 } and V = {𝑣1, 𝑣2, · · · , 𝑣𝑁 } denote the
user set and the video set, respectively, in which𝑀 and 𝑁 represent
the number of users in U and videos in V . We format each user’s
historical interaction as a set of triplets,I (𝑢) = {(𝑢, 𝑣𝑖 , 𝑟𝑖 )𝑚𝑖=1}where
𝑟𝑖 represents the ratio of the user 𝑢’s watching time to the duration
time of the video 𝑣𝑖 . For example, (𝑢1, 𝑣1, 0.6) means that user 𝑢1
watched the first 60% of video 𝑣1 and (𝑢2, 𝑣2, 1) means user 𝑢2
watched all of video 𝑣2. Besides, the fine-grained user-preference
modeling relies on the fine-grained video features (clip-level or even
frame-level), which means the videos’ raw features are required.

The studied problem can be formulated as follows2:
Input: the interaction data I (𝑢) of each user 𝑢 ∈ U; videos’ raw
features X i.e., image pixels of frames.
Output: A micro-video recommendation model that estimates the
probability that the user 𝑢 with interaction set I (𝑢) will like the
given video 𝑣 , of which “like” follows a widely-accepted definition
of watching 100% of the given video.

3 METHODOLOGY
Our proposed FRAME (shown in Figure 2) has four components.

• Visual-enhanced embedding layer. To model the fine-grained
user interest and video features, we first extract visual features
of clips in each video by a convolutional neural network rather
than the thumbnail widely used in existing works of micro-video
recommendation [23, 27, 42]. In addition, since not all vision

1The dataset details will be introduced in experiments (Section 4).
2For better understanding, notations used in this paper are summarized in Table 1.
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uvŷ
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Figure 2: Illustration of the FRAMEmodel. Clip-level visual features are extracted and enhanced (A) to construct the fine-grained
micro-video representation. Based on the fine-grained video features, a graph convolutional layer on the user-clip relation is
applied to aggregate users’ positive and negative interests (B). Finally the video-level prediction is aggregated from the clips to
the video, where we adaptively fuse positive and negative preferences for the final prediction (C).

Table 1: The description of commonly used notations.
Notations Description
U, V , I The set of users, videos and interactions.
𝑀,𝑁,𝐶 The number of total users, videos and clips.
f𝑐 , e𝑐 The original and enhanced visual feature of clips.
C𝑝
𝑢 , C𝑛

𝑢 The positive and negative clip set of user 𝑢.
𝑁

(𝑢)
+ , 𝑁 (𝑢)

− The number of videos fully watched and skipped by user 𝑢.
R𝑝 , R𝑛 The positive and negative user-clip interaction matrix.
R̃𝑝 , R̃𝑛 Normalized positive and negative user-clip interaction matrix.
H𝑐 The clip embedding matrix for prediction.

H𝑝
𝑢 , H𝑛

𝑢 Final positive and negative user interest embedding matrix.
𝛼𝑝 , 𝛼𝑛 The weight of positive and negative clip-level result.
𝛼 , 𝛽 The weight of point-wise and pair-wise loss.

features will affect users’ behaviors, we deploy a simple yet ef-
fective transformation operation to obtain the fine-grained video
embeddings, i.e. the embeddings of video clips.

• Fine-grained user-preference graph convolutional layer.
Based on the fine-grained video features, we can further conduct
fine-grained user-preference learning. As the videos are split into
clips, we can build the user-clip relation, of which there are two
kinds, skip (negative) and non-skip (positive). We then propose a
graph convolutional layer on the user-clip relation to aggregate
users’ positive and negative interests.

• Preference-fusion based prediction Layer. Standing on the
shoulder of the user’s positive and negative preference and en-
hanced clip features of each micro-video, we make clip-level
predictions via a multi-layer perception (MLP) network, respec-
tively. The video-level prediction is aggregated from the clip to

Figure 3: A real example of the content difference between
different clips in the same video.

the video. Here we adaptively fuse positive and negative prefer-
ences for the final prediction.

• Hybrid supervision learning. To train our model, we design
two different supervision learning methods. On the one hand, we
adopt an improved binary cross-entropy loss to supervise user
clip-level interest. On the other hand, we propose utilizing the
pair-wise BPR loss [34] on the fine-grained preferences on the
different clips of the same video.

3.1 Visual-enhanced Embedding Layer
The visual content of micro-videos plays a leading role in their
multimodal information. Thus most existing works of micro-video
recommendation [4, 23, 27] use visual features of thumbnail to
represent the video content. However, even though for one video, its
content varies between different clips as revealed by the example in
Figure 3. Therefore, it is essential to explore extracting fine-grained
features of videos and adopt them into the recommendation model.

3.1.1 Visual Feature Extraction. Aiming tomodel the fine-grained
user interest and video features, we use a pre-trained 2D-CNN archi-
tecture ResNet-50 [18] as the vision encoder F𝑣 , similar to existing
works [27, 42]. Specifically, we reserve the first five CNN layers
of the pre-trained ResNet-50 and add a pooling layer to get the
feature vectors. To reduce the dimension of the visual feature, a
fully connected layer is further deployed in the end. For each clip
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𝑐 , we uniformly sample 𝐾 frames and get 𝐾 frame-level visual fea-
tures. A fusion layer (here we use mean-pooling) is made use of
to obtain the visual feature of the clip by aggregating its frames’
visual feature as follows,

f𝑐 = Aggregate
(
F𝑣 (𝑋𝑓𝑖 ) |𝑓𝑖 ∈ 𝑐, 𝑖 ∈ (1, 𝐾)

)
, (1)

where 𝑓𝑖 denotes the 𝑖-th frame in the clip 𝑐 and 𝑋𝑓𝑖 ∈ Rℎ×𝑤×𝑑𝑐 (𝑑𝑐
is the number of channels) represents the image of the 𝑖-th frame.
We take the obtained clip visual embedding f𝑐 ∈ R𝑑 as the initial
clip embedding in our recommendation model.

3.1.2 Visual Feature-enhanced Embedding Layer. Considering
in recommender systems, not all vision features such as the back-
ground scene of one frame will affect user behaviors. Therefore, we
feed the clips’ visual features into a transformation layer to obtain
the embeddings in the user-preference space. It can help reserve
useful signals for preference learning. Specifically, we make a trans-
formation with the embedding dimension unchanged as e𝑐 = W𝑡 f𝑐 ,
where f𝑐 ∈ R𝑑 and e𝑐 ∈ R𝑑 are the original visual embedding and
enhanced embedding of the clip 𝑐 respectively, andW𝑡 ∈ R𝑑×𝑑 is
a learnable transformation matrix to map the visual embedding to
an enhanced form.

3.2 Fine-grained User-preference Graph
Convolutional Layer

With the first challenge addressed by the above embedding layer,
we then propose a graph convolutional layer to learn from the com-
plex user-video relationships. Different from traditional user-item
interactions which mainly include explicit and implicit feedback,
in micro-video recommendation, the user-video relations are in a
continuous and fine-grained form.

3.2.1 Positive and Negative interest set Construction. Although
user-video relation is complex, and we even cannot determine
whether an interaction is positive or negative, luckily the user-clip
relations are easier to handle. We use 𝑁 (𝑢)

+ and 𝑁 (𝑢)
− to represent

the number of videos fully watched and skipped by the user 𝑢,
respectively. Meanwhile let 𝑁𝑐 denotes the number of clips in each
video, we collect all clips from the fully watched videos as the
positive clip set of the user 𝑢, which is formulated as:

C𝑝
𝑢 =

𝑁
(𝑢)
+⋃
𝑖=1

{𝑐𝑝
𝑖,1, 𝑐

𝑝

𝑖,2, · · · , 𝑐
𝑝

𝑖,𝑁𝑐
}, (2)

As for the negative set, we take the clips during which the skip-
ping behavior happens as the negative clips for users. The reason is
that users’ interests may drop to some extent when they are watch-
ing a certain clip, at which moment they tend to skip the video.
Then we generate the negative clip set of the user 𝑢 as follows:

C𝑛
𝑢 = {𝑐𝑛1 , 𝑐

𝑛
2 , · · · , 𝑐

𝑛

𝑁
(𝑢)
−

}, (3)

where 𝑐𝑛1 is the clip from the video 𝑣𝑛1 inwhich the skipping behavior
of user 𝑢 happens and other clips are the same.

3.2.2 User-Clip Graph Construction. As mentioned above, we
have constructed both positive and negative user-clip interaction
for each user, which can be re-constructed to a user-clip interaction
graph.

Let 𝐶 denotes the number of total clips, then the interaction ma-
trix R𝑝 (R𝑛) ∈ R𝑀×𝐶 is applied to describe the positive (negative)
relationship between users and clips, where 𝑀 is the number of
users as mentioned in previous sections. The elements of the matrix
are defined as follows:

𝑅
𝑝

𝑖 𝑗
=

{
1, 𝑐 𝑗 ∈ 𝐶

𝑝
𝑢𝑖
;

0, otherwise; 𝑅𝑛
𝑖 𝑗 =

{
1, 𝑐 𝑗 ∈ 𝐶𝑛

𝑢𝑖
;

0, otherwise; (4)

where 𝐶𝑝
𝑢𝑖 and 𝐶

𝑛
𝑢𝑖

are the positive and negative clip set of the user
𝑢𝑖 . We then obtain the dual-side adjacency matrix of the user-clip
graph as follows,

A𝑝 =

(
0 R𝑝

(R𝑝 )⊤ 0

)
, A𝑛 =

(
0 R𝑛

(R𝑛)𝑇 0

)
. (5)

We use �̃� to denote the normalized form of adjacency matrix, and
the positive and negative adjacency matrix are formulated as fol-
lows respectively:

Ã𝑝
= (D𝑝 )−

1
2 A𝑝 (D𝑝 )

1
2 =

(
0 R̃𝑝(

R̃𝑝
)⊤

0

)
,

Ã𝑛
= (D𝑛)−

1
2 A𝑛 (D𝑛)

1
2 =

(
0 R̃𝑛(

R̃𝑛
)⊤

0

)
,

(6)

where D𝑝 (D𝑛) ∈ R(𝑀+𝐶)×(𝑀+𝐶) is a diagonal matrix (the degree
matrix), in which each entry 𝐷𝑝

𝑖𝑖
(𝐷𝑛

𝑖𝑖
) denotes the number of

nonzero entries in the i-th row of the corresponding adjacency
matrix.

3.2.3 Dual-side user-clip modeling GCN layer. Inspired by the
success of GCN [25] in modeling different-order interactions be-
tween nodes by aggregating information from different-hop neigh-
bors [14, 20, 28, 39, 41, 42]. Since user behaviors may be extremely
sparse, we do not explicitly assign the user embedding matrix. In-
stead, we obtain user embedding by the mechanism of embedding
propagation in GCN models, through which user embeddings are
calculated by aggregating neighbours’ embeddings. Specifically, we
can obtain users’ two parts of embeddings, reflecting positive and
negative interests respectively as follows,

H𝑝
𝑢 = 𝜎

(
R̃𝑝H(0)

𝑐 W(1)
𝑝

)
,H𝑛

𝑢 = 𝜎

(
R̃𝑛H(0)

𝑐 W(1)
𝑛

)
, (7)

where H(0)
𝑐 ∈ R𝐶×𝑑 is the clip embedding matrix, which is set

as the visual-enhanced clip embedding, R̃𝑝 and R̃𝑛 are shown in
Equation (6) , 𝜎 (·) denotes the nonlinear activation function. Here
W(1)

𝑝 andW(1)
𝑛 ∈ R𝑑×𝑑 denote the trainable weight matrix. Thus,

we obtain H𝑝
𝑢 and H𝑛

𝑢 as the positive and negative user interest
embedding matrix, which will be used for prediction later.

In the real-world scenario, digging out the clip-clip relationship
could further help improve the effect of clip modeling. For exam-
ple, if two clips are connected by the same user in the positive or
negative interaction graph, they might be close. To capture such
higher-order information transmission between clips, we conduct
a two-hop embedding propagation, which can be formulated as
follows,

H𝑝 (1)
𝑐 = 𝜎

((
R̃𝑝

)⊤
H𝑝
𝑢W

(2)
𝑝

)
,H𝑛 (1)

𝑐 = 𝜎

((
R̃𝑛

)⊤
H𝑛
𝑢W

(2)
𝑛

)
, (8)
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whereW(2)
𝑝 andW(2)

𝑛 ∈ R𝑑×𝑑 represent the trainable weight ma-
trix in the second GCN layer. Since positive and negative are defined
towards user preferences, actually, here we do not need to distin-
guish positive and negative for clips. Therefore, we apply a mean
pooling to get the final representation of clips as follows,

H(1)
𝑐 = Mean

(
H𝑝 (1)
𝑐 ,H𝑛 (1)

𝑐

)
. (9)

To sum up, we have acquired H(0)
𝑐 and H(1)

𝑐 as the embedding
of clips with different information and they can work together to
represent the clips.

3.3 Preference-fusion Based Prediction Layer
After obtaining users’ dual-side interest embedding and clips’ em-
bedding from different GCN layers, we can nowmake the prediction.
Specifically, we adaptively combine two layers of clip embeddings
by the coefficient 𝛼0 and 𝛼1 to get the final clip embedding used for
prediction, which is formulated as follows,

H𝑐 = 𝛼0H
(0)
𝑐 + 𝛼1H(1)

𝑐 . (10)

Given the clip embedding h𝑐 from the clip embedding matrix H𝑐

and the dual-side user interest embedding h𝑝𝑢 and h𝑛𝑢 from H𝑝
𝑢 and

H𝑛
𝑢 respectively, first we concatenate the clip embedding with the

positive and negative interest separately and then feed them into
a multi-layer perception (MLP) network respectively to get the
prediction:

𝑦
𝑝
𝑢𝑐 = MLP𝑝 (ℎ𝑝𝑢 ∥ ℎ𝑐 ), 𝑦𝑛𝑢𝑐 = MLP𝑛 (ℎ𝑛𝑢 ∥ ℎ𝑐 ) . (11)

Next we combine both positive and negative results with weight
as the prediction result towards the user 𝑢 and the clip 𝑐 . Different
from existing work [27] which gives positive weight to both the
dual-side result, we argue that the negative feedback should have
a negative weight for fusion. The final clip-level prediction is as
follows:

𝑦𝑢𝑐 = 𝛼𝑝𝑦
𝑝
𝑢𝑐 − 𝛼𝑛𝑦𝑛𝑢𝑐 . (12)

Finally the fusion of each clip’s result is set as the probability that
the user 𝑢 might finish watching the given video 𝑣 . Although many
choices could be applied, here we conduct a simple yet effective
average-pooling operation to obtain the final prediction as follows,

𝑦𝑢𝑣 =
1
𝑁𝑐

𝑁𝑐∑︁
𝑖=1

𝑦𝑢𝑐𝑖 , (13)

where 𝑁𝑐 is the number of clips used to divide the video.

3.4 Hybrid Supervision Learning
The target of industrial micro-video recommendation is always
defined tomaximize the probability that the user will fully watch the
video. To address the third challenge of limited supervision signal,
we introduce a hybrid loss to enhance the learning procedure.
User-clip point-wise loss. First we design an improved point-
wise loss to learn user preference from the fine-grained user-clip
interactions. Here we choose to optimize the prediction of user-
clip score rather than user-video score as the former one carries
fine-grained preference information. We regard the clips that users
have watched as positive samples and clips at which users skipped
as negative samples. For example, if a user has watched three 10-
second clips and then chooses to skip during the fourth 10-second

clip, our method considers the first three as weak-positive and
the fourth as weak-negative. As for the clips after the skipping
behavior’s timestamp, we choose to give up endowing labels since
we don’t know users’ attitudes towards these unexposed parts.

It is worth considering that clips in different positions may have
different impacts on user interest modeling, but directly modeling
the relationwill largely increase the computation complexity. There-
fore, we try to encode the temporal (position) relation between clips
indirectly through the supervision signal design. To be specific, we
set different penalty coefficients for clips at different positions to
distinguish the strength of these positive samples. Specifically, the
penalty coefficient of the i-th clip is set as 𝜖𝑖 = 𝑖

𝑁𝑐
, which suggests

that with the extension of users’ watching time, the clip could get
higher confidence when it is defined as a positive sample. Taking
an example where 𝑁𝑐 = 4, the penalty coefficient of the first clip in
videos (denoted as 𝜖1) is set as 0.25, and the coefficient of other clips
is calculated in a similar way. Eventually the improved point-wise
loss is formulated as follows:

L1 = −
∑︁
𝑖∈U

©«
𝑁𝑐∑︁
𝑗=1

∑︁
𝑘∈𝐶𝑝,𝑗

𝑖

𝜖 𝑗 log𝜎 (�̂�𝑖𝑘 ) +
∑︁

𝑘∈𝐶𝑛
𝑖

log (1 − 𝜎 (�̂�𝑖𝑘 ))
ª®®¬ , (14)

where 𝐶𝑝,𝑗

𝑖
is the positive clip set of the user 𝑖 in which clips are

all the j-th clip in one video,𝐶𝑛
𝑖
is the negative clip set of the user 𝑖 .

Clip-clip pair-wise loss. To further enhance the supervision sig-
nal, we introduce a pair-wise loss. Specifically, in the same video,
the clips at which user skipped always reflect more negative pref-
erence than the part that user has watched. In other words, the
watched part, which may consist of several clips, can be merged as
a positive signal taking a mean-pooling operation towards these
clips’ embedding. Here we employ Bayesian Personalized Ranking
(BPR) loss [34] as the pair-wise loss for our training to encourage
our model to distinguish the positive and negative clips for the
same video. Therefore for each triplet (𝑢, 𝑣, 𝑟 ) with 𝑟 < 1, there’s
a pair represented as (𝑐 (𝑢)𝑝,𝑣 , 𝑐

(𝑢)
𝑛,𝑣 ). Then the pair-wise loss can be

formulated as follows,

L2 = −
∑︁
𝑖∈U

∑︁
𝑗 ∈V (𝑖 )

𝑛

log𝜎
(
𝑦
𝑖𝑐

(𝑖 )
𝑝,𝑗

− 𝑦
𝑖𝑐

(𝑖 )
𝑛,𝑗

)
, (15)

where V (𝑖)
𝑛 represents the videos skipped by the user 𝑖 .

Finally, we use the joint loss obtained by combining the two types
of loss mentioned above as our final objective function, which can
be formulated as follows,

L = 𝛼L1 + 𝛽L2 + _∥Θ∥2, (16)

where 𝛼 and 𝛽 control the weight of the point-wise loss and pair-
wise loss, Θ is the set of parameters to be regularized, and _ is the
𝐿2 regularization factor.

3.5 Complexity Analysis
We conduct some complexity analysis of our proposed models
including memory and time complexity.

3.5.1 Memory Complexity. The main memory consumption of
our model comes from node embeddings, user-clip adjacency ma-
trix and trainable weights of GCN layers. The node embeddings
includes clip embedding H(0)

𝑐 and H(1)
𝑐 ∈ R𝐶×𝑑 , and positive and

negative user interest embedding H𝑝
𝑢 and H𝑛

𝑢 ∈ R𝑀×𝑑 , where
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𝑑 is the embedding dimension, 𝑀 and 𝐶 denotes the number of
users and clips, respectively. The dual-side adjacency matrix Ã𝑝

and Ã𝑛 ∈ R(𝑀+𝐶)×(𝑀+𝐶) , we use sparse matrix to store the ma-
trix, extremely decreasing the memory consumption. By compar-
ison, the trainable parameters of GCN layers W(1)

𝑝 , W(1)
𝑛 , W(2)

𝑝

W(2)
𝑛 ∈ R𝑑×𝑑 consumes much less memory. To sum up, it will not

bring much memory burden because of the fine-grained modeling.

3.5.2 Time Complexity. We extract the visual features of clips
in the data preparation step, which will not increase time complex-
ity in the process of model training. Because our model is made
up of graph convolutional layers based on the user-clip interac-
tions, the time complexity mainly derives from the embedding
propagation on dual-side user-clip relation graphs. For example, in
the positive relation graph, first we conduct an embedding prop-
agation step to maintain user embeddings , and the time cost is
O(∥R̃𝑝 ∥0𝑑 + 𝑀𝑑2), where ∥R̃𝑝 ∥0 is number of nonzeros in the
positive interaction matrix R̃𝑝 ,𝑀 is number of users and 𝑑 is the
dimension of embeddings. Next a two-hop embedding propagation
is conducted to capture the higher-order information transmis-
sion between clips, the time cost of which is O(∥R̃𝑝 ∥0𝑑 + 𝐶𝑑2).
Therefore, the time cost on positive-side graph convolution is
O(2∥R̃𝑝 ∥0𝑑 + 𝑀𝑑2 + 𝐶𝑑2). Similarly, the time cost on negative-
side graph convolution is O(2∥R̃𝑛 ∥0𝑑 +𝑀𝑑2 +𝐶𝑑2). The total time
cost is O(2∥R̃𝑝 ∥0𝑑 + 2∥R̃𝑛 ∥0𝑑 + 2𝑀𝑑2 + 2𝐶𝑑2). It can be seen that
we decrease the time complexity compared with traditional GCN
propagation by distinguishing the embedding propagation accord-
ing to node types and decreasing the size of adjacency matrix from
(𝑀 +𝐶) × (𝑀 +𝐶) to𝑀 ×𝐶 . In conclusion, our model will not take
more time than existing GCN models.

4 EXPERIMENT
In this section, we carefully collect two real-world datasets and
conduct experiments to answer the following research questions.

• RQ1: How does the proposed method perform compared with
state-of-the-art models for micro-video recommendation?

• RQ2: How do the fine-grained modeling of video features and
user preferences influence our model’s effectiveness?

• RQ3: How do the hyper-parameters settings affect the final per-
formance of our model?

• RQ4: Can the proposed method capture the evolution of fine-
grained user interest during the video playing process effectively?

4.1 Experimental Settings
4.1.1 Dataset. We evaluate the recommendation performance

on two large-scale micro-video datasets both from one of the largest
micro-video platforms. Specifically, two datasets are collected from
different mobile Apps, covering different users and videos. 3 The
datasets include both the users’ fine-grained feedback and the orig-
inal video data, which has not been covered by any public data.
Table 1 summarizes the basic statistics of the two datasets.

3The data collection strictly follows both user privacy protection and commercial
regulations, confirmed by both involved users and the company.

Table 2: Statistics of our collected datasets.

Dataset #Users #Videos #Interactions

Micro-video-A 12,739 58,291 342,694
Micro-video-B 22,049 61,903 2,111,566

• Micro-video-A. This dataset is collected from one specific ver-
sion of the platform’s mobile App. Each interaction record in-
cludes user-id, video-id, the user’s playing time, duration time
of the video, interaction timestamp and multi-level behaviors
including like, follow, and forward. The playing time and dura-
tion time are used to calculate the skip time of the user. Besides,
we have collected all the micro-video files that appeared in the
interaction record to extract visual features.

• Micro-video-B. This dataset is collected from another mobile
App of the same platform,which includesmore interaction records
than Micro-video-A dataset. The data fields are similar to Micro-
video-A, but it has different users and videos on a different
App and thus can be regarded as a totally-different dataset.

4.1.2 Evaluation Metrics. To evaluate the performance of each
model, we use four widely adopted metrics including AUC, Logloss,
Recall and NDCG, which are defined as follows:

• AUC indicates the probability that the positive sample’s score is
higher than the negative counterparts, reflecting the quality of
the model’s discriminating ability.

• Logloss measures the gap between the prediction probability
score and the ground-truth, which incarnates the accuracy on
an absolute level.

• Recall@K measures the ratio of test items that have been suc-
cessfully recommended in the top-K ranking list.We set K as 3 and
5, which are both widely-used settings in existing works [1, 9].

• NDCG@K assigns higher scores to hits at higher positions in the
top-K ranking list, which emphasizes that the positive samples
should be ranked as higher as possible.

4.1.3 Baselines. To demonstrate the effectiveness of our FRAME
model, wemake comparisons with competitive methods suitable for
the micro-video recommendation task. The baselines are classified
into two categories: state-of-the-art micro-video recommendation
models and feature-based recommendation models, which are also
known as CTR prediction models, that can well leverage complex
features. To make a fair comparison for feature-based methods, we
feed the same video visual feature as our model, which makes the
models work on a fine-grained level as well.
Micro-video recommender Models:

• ALPINE [27]: This method aims to model user’s dynamic and di-
verse interests, which utilizes a temporal graph-guided LSTM net-
work connecting the videos with similar visual features. What’s
more, this method learns the representation of users by consider-
ing multi-level user interests.

• MTIN [23]: This method concentrates on addressing the multi-
scale time effect on user interests and constructs user interest
groups based on user interaction sequences to model diverse user
interests. It achieves state-of-the-art performance in micro-video
recommendation.
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Table 3: Overall performance comparison (all models have the same input for fair comparison; values are the average of three
running instances with different random seeds; best baseline is marked with underline).

Method Type Method Micro-video-A Micro-video-B

AUC Logloss Recall@3 NDCG@3 Recall@5 NDCG@5 AUC Logloss Recall@3 NDCG@3 Recall@5 NDCG@5

Feature-based recommender model

DeepFM 0.5834 0.8675 0.0563 0.1975 0.0832 0.2348 0.6566 0.8319 0.0785 0.2498 0.1064 0.3172
NFM 0.6049 0.7835 0.0682 0.2374 0.0886 0.2591 0.6673 0.8125 0.0876 0.2631 0.1296 0.3319

AutoInt 0.6279 0.7931 0.0694 0.2244 0.0907 0.2652 0.6865 0.7847 0.0842 0.2653 0.1287 0.3574
DIFM 0.6338 0.7531 0.0749 0.2448 0.1104 0.3086 0.6913 0.7957 0.0861 0.2710 0.1256 0.3724
AFN 0.6376 0.7438 0.0762 0.2683 0.1085 0.3106 0.6808 0.8045 0.0903 0.2794 0.1376 0.3830

Micro-video recommender model ALPINE 0.6218 0.7692 0.0701 0.2324 0.0925 0.2886 0.6995 0.7834 0.0922 0.2748 0.1320 0.3783
MTIN 0.6427 0.7228 0.0836 0.2715 0.1125 0.3327 0.7489 0.7647 0.1036 0.3081 0.1417 0.3938

Our model FRAME 0.7039 0.6732 0.1083 0.3219 0.1378 0.3722 0.7870 0.7619 0.1149 0.3296 0.1796 0.4358

Feature-basedRecommenderModels:We compared ourmethod
with five competitive feature-based recommender models shown
as follows, to make a fair comparison for the methods, we feed the
same video visual feature as our model, which makes these models
work on a fine-grained level as well.

• DeepFM [17]: This method combines LR and FM to model the
second-order feature interaction.

• AutoInt [35]: This method introduces self-attention networks
to model high-order feature interactions.

• NFM [19]: This method uses FM and neural network to model
second and higher-order feature interactions.

• DIFM [30]: This method combines the bit-wise and vector-wise
feature representation to learn more flexible representations for
given features.

• AFN [7]: This method takes logarithmic transformation layers
to learn adaptive-order feature interactions.

Discussion of baseline selection.We make careful consideration
of the baselines for comparison. As for feature-based methods, we
use the stable and effective ones; for micro-video recommender
models, we choose the state-of-the-art methods with attention to
user interest modeling. It is worth mentioning that some other
recommendation models [26, 39, 42] using micro-video datasets are
not appropriate for comparison. For example, some works like [26]
focus on the cross-domain recommendation which is different from
our task definition. Some othermethods aim to explore themodality-
specific recommendation [39, 42], which share rare similarities with
us on the utilization of video content.

4.1.4 Hyper-parameter Settings. Our model is implemented in
PyTorch. We use Adam [24] for optimization with the initial learn-
ing rate as 0.001. The batch size is set as 1024 and the embedding
size is 128 for all models, following existing works [23]. Xavier
initialization [16] is used to initialize the parameters. We use the
extracted visual video features as the input of all compared meth-
ods. We carefully tune the hyper-parameter setting for all baselines
following the original papers’ settings or suggestions. In our model,
the number of clips for each video 𝑁𝑐 is carefully searched in [1, 4,
8], based on the limit of our computation resources. The ratio of the
positive and negative result weight 𝛼𝑝 : 𝛼𝑛 is carefully searched in
[1:0.1, 1:0.2, 1: 0.3, 1:0.4, 1:0.5]. The ratio of the point-wise loss and
pair-wise loss 𝛼 : 𝛽 is searched in [0.2:1, 0.5:1, 1:1, 1:0.2, 1:0.5]. The
L2 normalization coefficient _ is searched in [1e-6, 1e-5, 1e-4].

4.2 Overall Performance (RQ1)
From the results in Table 3, we have the following observations:
• Our proposed method consistently achieves the best per-
formance compared with baselines. We can observe that our
model FRAME consistently outperforms all baselines in all met-
rics. Specifically, on Micro-video-A our model improves AUC by
9.52% compared with the best baseline MTIN, average 26.02%
for Recall, 15.22% for NDCG and improves Logloss by 6.86%. As
for Micro-video-B, our model improves AUC by 5.09% compared
with the best baseline MTIN, average 18.82% for Recall, 8.59%
for NDCG and decreases Logloss by 0.37%. The improvement is
more obvious on Micro-video-A in which users are not so active.
In this situation fine-grained user modeling can aggregate more
information than previous methods.

• Fine-grained user interest modeling indeed improves the
model performance. ALPINE and MTIN are two effective base-
lines in micro-video recommendation, while their designs still
stay on the video-level. In comparison our model utilizes a fine-
grained user-clip interaction manner to learn users’ fine-grained
positive and negative interests. On the one hand, it weakens
the worse performance caused by the insufficiency of histori-
cal interactions. On the other hand, it considers the variety of
user interests in one video, enhancing the representation power
of user embedding. Intuitively, the comparison shows that our
fine-grained user interest modeling achieves better performance.

• Fine-grained video features support to improve the per-
formance. In the comparison experiments, we perform the fine-
grained clipping on the videos for the feature-based methods
as well. The result shows that some methods outperform the
micro-video recommender models, indicating that the obtained
fine-grained video features benefit the performance. For example,
AFN gets better performance on all metrics than ALPINE on
two datasets. While in FRAME, we have more ingenious designs
which guide to learn better features for users and clips from the
fine-grained user-video interactions. This further improves the
performance of our model compared with feature-based methods.

4.3 Ablation Study (RQ2)
4.3.1 Effectiveness of fine-grained clip dividing on videos. In our

model design, we divide each video into 𝑁𝑐 clips and extract the
visual feature of each clip, which reflects the fine-grained model-
ing of both video features and user preferences. We compare the
performance of our model without dividing the video (𝑁𝑐 = 1) and
dividing the video into 4 and 8 clips, as shown in Table 4.
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Table 4: Ablation study of the fine-grained clip dividing.

Dataset Model AUC LoglossRecall@3NDCG@3

Micro-video-A
w/o clip dividing (𝑁𝑐 = 1) 0.6329 0.7658 0.0736 0.2715
w/ clip dividng (𝑁𝑐 = 4) 0.6967 0.6903 0.1058 0.3145
w/ clip dividng (𝑁𝑐 = 8) 0.7039 0.6732 0.1083 0.3219

Micro-video-B
w/o clip dividing (𝑁𝑐 = 1) 0.7318 0.8054 0.0910 0.2684
w/ clip dividng (𝑁𝑐 = 4) 0.7739 0.7715 0.1127 0.3173
w/ clip dividng (𝑁𝑐 = 8) 0.7870 0.7619 0.1149 0.3296

Table 5: Ablation study of the treatment on visual features.

Dataset Model AUC LoglossRecall@3NDCG@3

Micro-video-A
w/o visual features 0.6318 0.7435 0.0677 0.2648

w/ original visual features 0.6628 0.7268 0.0946 0.2895
w/ enhanced visual features 0.7039 0.6732 0.1083 0.3219

Micro-video-B
w/o visual features 0.7035 0.8255 0.0898 0.2739

w/ original visual features 0.7642 0.7936 0.1026 0.3077
w/ enhanced visual features 0.7870 0.7619 0.1149 0.3296

Table 6: Ablation study about introducing negative clips into
the model.

Dataset Model type AUC Logloss Recall@3 NDCG@3

Micro-video-A full model 0.7039 0.6732 0.1083 0.3219
w/o negative clips 0.6019 0.7613 0.0628 0.2069

Micro-video-B full model 0.7870 0.7619 0.1149 0.3296
w/o negative clips 0.6724 0.8429 0.0812 0.2696

It is shown that the more clips divided for the video, the better
performance achieved by the model. The gap between the model
without clip dividing and with 4 clips for each video is especially
obvious. On average we get 7.9% improvement on AUC, 7.1% on
Logloss, 33.8% on Recall@3 and 17.0% on NDCG@3 respectively
by using clips rather than the full video on the two datasets, which
demonstrates the significance of using more clips in our model.
While the difference between 𝑁𝑐 = 4 and 𝑁𝑐 = 8 shrinks. Since
setting 𝑁𝑐 > 8 will cause larger computation cost while a tiny
improvement, we do not choose larger values here.

4.3.2 Effectiveness of the treatment on visual features. We first
conduct visual feature extraction in our method and then introduce
an enhanced layer to encourage the clip embedding to express more
information. Here we explore the effect of different treatments on
visual clip features including without visual features, with original
extracted visual features and with enhanced visual features. The
performance comparison is shown in Table 5.

It can be seen that the model without using the visual feature
learning from user-clip interaction can’t catch up with the model
with extracted visual features. To be specific, we get improvement
on the two datasets by 6.8% on AUC, 3.1% on Logloss, 26.9% on
Recall@3 and 10.8% on NDCG@3. In addition, the enhanced clip
embedding can further improve performance, which indicates the
necessity of the feature transformation operation.

4.3.3 Effectiveness of introducing negative clips into the user in-
terest modeling. One of the key designs in fine-grained user interest
modeling is introducing negative clips to learn user interest repre-
sentation. Here we compare the performance of the full model and
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Figure 4: Study of negative/positive ratio in prediction on
Micro-video-A dataset.
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Figure 5: Study of the ratio of point-wise loss and pair-wise
loss on Micro-video-A dataset.

the version without using negative clips, which means removing
the message-passing through negative relation graph and no use
of the pair-wise loss term. The result is shown in Table 6, from
which it can be found that introducing negative clips can bring sig-
nificant improvements (37.04% in average). Therefore, it’s of great
significance to consider the negative feedback in the micro-video
recommendation, which serves as an effective signal complement-
ing with the positive feedback.

4.4 Hyper-parameter Study (RQ3)
As our model takes the combination form of dual-side sets to give
prediction and the hybrid loss function with weight, in this sec-
tion we investigate the influence of settings on these two parts to
the performance of our model on Micro-video-A as presented in
Figure 4-5.

First we explore the impact of the ratio between weights of
positive-side and negative-side sets for the clip-level prediction. We
evaluate the ratio of the negative and positive prediction weight
𝛼𝑛 : 𝛼𝑝 in [0.1, 0.2, 0.3, 0.4, 0.5]. In Micro-video-A, we can observe
that the best performance on AUC, Recall and NDCG appears when
the ratio is 0.2. The best Logloss is achieved when the ratio is 0.1.
We choose 0.2 as the final hyper-parameter setting on this dataset.

Next we conduct experiments on how the ratio of two loss func-
tions’ weight 𝛼 : 𝛽 influences our model’s effectiveness. We com-
pare the performance when this ratio is traversed in [0.2:1, 0.5:1,
1:1, 1:0.5, 1:0.2]. Intuitively from the result we can find that as the
weight of the point-wise loss decreases, the Logloss rises. The other
three metrics get the best results at the same time when the ra-
tio reaches 1:1 on Micro-video-A, where the model maintains the
best performance. Therefore, we use 1:1 as the final setting of the
dataset.

4.5 Case Study (RQ4)
Here we conduct experiments to verify the ability to capture fine-
grained user interest during the playing process of videos. A visu-
alization example is shown in Figure 6. We take one interaction
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Clips

Time

Skip 

Figure 6: A visualization of capturing fine-grained evolution
of user interest between clips in one video.

record from the test set of Micro-video-B, in which videos are di-
vided into 8 clips. The figure above displays the clip-level prediction
score given by our model. It can be seen that the user preference
varies between clips in the same video, which gets the lowest score
at the 5-th clip. Meanwhile we calculate the ratio the user watched
of the video, that is 0.584. We can easily find that the skipping
moment falls in the 5-th clip exactly. The figure below shows the
content of different clips of this video, which actually differs from
each other. A reasonable explanation is that users keep watching
until the content makes them intolerable or bored. Intuitively it
verifies the ability to capture fine-grained user interest via learning
the continuous user feedback in this scenario, which meets the
expectation in our initial motivation.

5 RELATEDWORK
5.1 Micro-video Recommendation
Generally speaking, the existingmethods ofmicro-video recommen-
dation can be classified into three categories: collaborative filtering
methods [19, 22, 36, 37], content-based methods [5, 8, 10, 38, 40]
and hybrid ones [3, 45]. Collaborative filtering methods models
user interests assuming that users with similar interests tend to
make similar decisions. Wang et al. [36] described user-item interac-
tions in a graph network and adopted sequential recommendation
paths to model the user-item correlations. While there are disad-
vantages for CF-based methods due to the cold-start problem and
data sparsity, leading to the performance limitation of these meth-
ods [12, 29, 36]. In order to address these problems, content-based
methods are developed, which measure the similarity between the
target video and the videos in user interactions. These approaches
regard user interest modeling as a common issue when handling
user-video interactions. For instance, Chen et al. [4] made use of
category-level and item-level attention mechanisms to model user’s
diverse interests. As for hybrid methods, they tend to integrate two
types of methods mentioned above into one framework.

In spite of the remarkable advancement of the performance,
almost all existing methods learn user interest taking the entire
video as a unit, which is not capable of capturing fine-grained user
interest towards different parts of the video. Different from them,
we first conduct fine-grained clip segmentation on the videos and

then exploit the user-clip interactions via a brand new manner to
capture the fine-grained user interest.

5.2 Feature-based Recommendation
Click-through rate (CTR) prediction, which goal is to predict the
probability of a user clicking on an ad or an item, is of great sig-
nificance to many online applications such as online advertising
and recommender systems [6, 11, 13, 15, 21]. Machine learning
has been widely used in click-through rate prediction, which is
usually formulated as a supervised learning task with user pro-
files and item attributes as input features. An earlier influential
CTR prediction scheme is Factorization Machines (FM) [33] which
combines SVM with factorization methods to model feature inter-
actions. While it can only capture the low-order interaction but
fail to model the high-order feature interaction. As the growing
and widely application of deep learning, many methods based on
deep neural networks [2, 6, 7, 17, 19, 32, 35, 43, 44] are proposed
to model high-order interaction. For example, AutoInt [35] uses
self-attention networks to learn high-order feature interactions, in
which different orders of feature combinations of input features
can be considered.

Our model aims to predict the probability a user finishes watch-
ing a given video, which is essentially finding representations of
input features and modeling the interactions between features.
Therefore methods for CTR prediction can also be adopted here.

6 CONCLUSIONS AND FUTUREWORK
In this work, we approach the problem of micro-video recommen-
dation from a brand new perspective, learning from fine-grained
user feedback, which is critical but cannot be supported by public
datasets. In the real-world scenario, the user feedback in micro-
video recommendation is presented in a continuous form, which
reveals fine-grained user preferences. While existing methods still
model user interest at a coarse-grained level which is limited in
learning fine-grained user preference. To address these problems,
we first carefully collect two real-world large-scale datasets. Then
we propose a method named FRAME, which first transforms the
pre-trained visual features, then employs graph convolutional lay-
ers to learn from complex user-clip interactions from both positive
and negative side, and finally supervises the training process by a
hybrid loss function. Experiments show the significant performance
improvement of FRAME and verify the effectiveness of fine-grained
user modeling.

In the future, we plan to conduct an online A/B test to evaluate
the proposed method. We also plan to conduct experiments on more
powerful computation clusters with finer-grained video processing
by increasing the granularity of clips. Besides, we will encode the
temporal relations between clips to improve the work further.
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