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ABSTRACT
In the era of information explosion, numerous items emerge every
day, especially in feed scenarios. Due to the limited system dis-
play slots and user browsing attention, various recommendation
systems are designed not only to satisfy users’ personalized infor-
mation needs but also to allocate items’ exposure. However, recent
recommendation studies mainly focus on modeling user prefer-
ences to present satisfying results and maximize user interactions,
while paying little attention to developing item-side fair exposure
mechanisms for rational information delivery. This may lead to
serious resource allocation problems on the item side, such as the
Snowball Effect. Furthermore, unfair exposure mechanisms may
hurt recommendation performance. In this paper, we call for a shift
of attention from modeling user preferences to developing fair ex-
posure mechanisms for items. We first conduct empirical analyses
of feed scenarios to explore exposure problems between items with
distinct uploaded times. This points out that unfair exposure caused
by the time factor may be the major cause of the Snowball Effect.
Then, we propose to explicitly model item-level customized time-
liness distribution, Global Residual Value (GRV), for fair resource
allocation. This GRV module is introduced into recommendations
with the designed Timeliness-aware Fair Recommendation Frame-
work (TaFR). Extensive experiments on two datasets demonstrate
that TaFR achieves consistent improvements with various backbone
recommendation models. By modeling item-side customized Global
Residual Value, we achieve a fairer distribution of resources and, at
the same time, improve recommendation performance.
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1 INTRODUCTION
In the age of information explosion, a large number of new items
enter the candidate pool of recommendation systems each day, es-
pecially in feed scenarios [42]. However, user browsing attention is
limited and system display slots are scarce. So various recommenda-
tion systems are designed to provide a personalized ranked list for
each user from the growing candidate pool, which also determines
items’ exposure mechanisms, i.e. the allocation of resources.

An ideal recommendation system should not only meet users’
distinct preferences for items, but also provide fair chances for the
exposure of items. Most existing recommendation systems mainly
focus on modeling users’ preferences to generate satisfying recom-
mendation results for users, which may provide more user-item
interactions (e.g., clicks, durations, etc.) within the system. However,
most of them pay inadequate attention to item exposure mecha-
nisms and ignore the item fairness issue.

The lack of rational item exposure mechanisms could lead to se-
vere problems in real scenarios. For instance, early uploaded items
are more likely to receive more resources, such as exposures, due
to the Snowball Effect, which entails a self-amplifying process that
originates from a minor impact and grows in magnitude over time,
potentially resulting in either negative outcomes. In contrast, items
uploaded recently often encounter the cold-start challenge and
struggle to receive exposure opportunities compared to established
items that currently dominate recommendation systems. Figure 1
presents exposure distribution between two groups of items, which
are uploaded in two consecutive hours. They have comparable
user feedback (CTR), but the newly uploaded group (G1, in orange)
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(a) MIND News Dataset (b) Kuai Short Video Dataset

Figure 1: Items uploaded earlier constantly receive more
exposure opportunities: G0 contains entire items uploaded
at 4 PM and G1 is all the items uploaded at 5 PM in two real-
world systems.

receives significantly less exposure. We dub this unfair exposure be-
tween items uploaded at different times as the time-sensitive unfair
exposure issues. It will negatively affect the spread of time-sensitive
information and further influence the quality of recommendations,
which will eventually hurt both user satisfaction and the passion
of item providers.

It is worth noting that our goal is to establish a fair competitive
environment among items with varying upload times, rather than
prioritizing the recommendation of a particular subset, such as
newly uploaded items, or suppressing a certain portion of items,
such as the current dominant items. Considering that each item
undergoes a cold-start process, every item in the system will benefit
if our approach can mitigate the Snowball Effect in the recommen-
dation loops and allocate a fair amount of resources to fresh items.

The time-sensitive unfair exposure problem is a type of item fair-
ness issue, which is different from another type of exposure-related
study, i.e., popularity de-biasing. The reason is that de-biasing work
mostly tackles popularity bias for higher recommendation accuracy
without concurrently considering item exposure fairness [37, 45].
Existing studies on item fairness point out that for a fair recom-
mendation system, each item should get resources proportionally
to its utility. They have explored fair exposure mechanisms but
treated item utility as a static score that ignores its global timeli-
ness trends [20, 24, 28, 30, 41]. Thus they are unsuitable for handling
this problem.

In this study, we call for a shift of attention from user-side overly
modeling to item-side fair exposure mechanism designs. We con-
duct empirical analyses on two real-world feed datasets to show the
unfair exposures between items with different upload times. Anal-
yses show that the Snowball Effect can be mitigated by improving
the competitiveness of newly uploaded items and removing exces-
sive exposure for dominant items. At the same time, we observe
that different items have their own trends of timeliness decay in
feed scenarios. Based on these findings, we then propose to explic-
itly model the item-level timeliness distribution, namely Global
Residual Value, for fair resource competition between items up-
loaded at different times and design the Timeliness-aware Fair
Recommendation Framework (TaFR). With abundant experiments,
we show that more exposure resources can be fairly allocated to
support the neglected new items, and recommendation quality is
improved simultaneously.

To summarize, our main contributions are as follows:
(1) We conduct empirical analyses on unfair exposure issues be-

tween items with different upload times in feed recommenda-
tion scenarios, which demonstrate that unfair exposure caused
by the time factor may be the major cause of the Snowball Effect
and items have diverse timeliness trends.

(2) We propose to explicitly model items’ Global Residual Value,
which is defined as the item-level customized timeliness distribu-
tion. The GRVmodule is designed to alleviate the time-sensitive
unfair exposure issues (e.g., Snowball Effect) and provide a fair
way for competition between items in exposures. The proposed
GRV module is flexible to work with various backbone rec-
ommendation methods in our proposed Timeliness-aware Fair
Recommendation Framework.

(3) Extensive experiments with three types of backbone models
demonstrate the effectiveness of TaFR in achieving both fairer
exposure mechanisms and recommendation performance im-
provements.

2 RELATEDWORK
2.1 Fairness-aware Recommendation
Fairness in recommendation systems can be divided into three ma-
jor categories by research subjects: user fairness, item fairness, and
joint fairness (also called market fairness [34]) [20, 28, 41]. User
fairness seeks equal treatment, in recommendation accuracy, ex-
plainability, etc., among different (groups of) users [9, 10]. Item
fairness concerns whether the system treats items fairly [5, 29],
such as equal prediction errors or resource allocations. They mainly
treated item utility as static and have not modeled its utility changes
over time, namely timeliness. Work [21] shows that improvements
in item fairness are possible to increase recommended diversity.
[44] introduces context bias in feed recommendations for unbiased
learning to rank. Note that fairness considerations are different
with de-biasing for recommendation accuracy, as works focused
on mitigating popularity bias without simultaneous considerations
of fairness metrics might result in negative impacts on item fair-
ness [17, 45].

In this paper, we focus on item-side time-sensitive exposure
fairness issues, especially in feed systems where items have diverse
timeliness trends. We address this unfair exposure problem, such
as the Snowball Effect, by explicitly modeling items’ customized
timeliness across time in macroscopic views, instead of using static
utility or absolute upload time for timeliness portrayal.

2.2 Time-sensitive Recommendation
Time-sensitive recommendation tasks aim to recommend the most
desirable item at the right moment [8], in which temporal patterns
are important to both user and item modelings. In particular, feed
recommender platforms (for news, weblogs, short-video, etc.), pro-
viding users with frequently updated content, are a typical type of
time-sensitive systems [25, 42]. In time-sensitive recommendation
tasks, time-aware algorithms are often used [11, 35, 36]. Survey [6]
evaluates the state of the art on time-aware recommendation sys-
tems (TARS), which deal with the time dimension in user modeling
and recommendation methods. We incorporate the time-aware se-
quential model, TiSASRec [19], as one of the backbone models for
comparisons. Note that most previous works are concentrated on
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users’ browsing sequences and dynamic interesting modelings [2–
4, 32], putting little attention on timeliness modeling on the item
side.

This paper focuses on feed recommendation systems, which is
a typical type of time-sensitive scenario with large-scale and fre-
quently updated items. These features raise great challenges in the
fair exposure allocation between items uploaded at different times.
In this work, we aim to alleviate this time-sensitive unfair exposure
with minimal negative or even positive impacts on recommendation
accuracy.

2.3 Item Timeliness Modeling
Item timeliness modeling is equally important with the more thor-
oughly researched user dynamic interestsmodeling in time-sensitive
recommendation scenarios, as user and item together form an in-
formation system, and both have temporal characteristics (item’s
diverse timeliness features are introduced in empirical analysis
in Section 3.3). [40] models the dependencies between items in-
side a session and re-ranking works also focus on the pair-wise or
list-wise item-item relationship constructions [1, 26, 27]. Work [14]
focuses on the age of an item and its effect on selection bias and user
preferences for enhancements in rating predictions and work [38]
uses survival analysis in recommended opportunities modelings
for accuracy enhancements in e-commerce scenarios. Survival anal-
ysis, also called time-to-event analysis [15, 16, 39], is a branch of
techniques that focused on lifetime modelings, such as the death
in biological organisms, failure in mechanical systems, and user
churns in games [18]. Among all related techniques, the Cox pro-
portional hazards model is a widely used procedure for modeling
the relationship between covariates to survival or other censored
outcome [22, 23, 33]. In this paper, inspired by the survival analysis,
we define items’ Global Residual Value as the timeliness distribution
and design the GRV modeling module for fair recommendations.

3 EMPIRICAL ANALYSES IN FEED
RECOMMENDATION

In order to better understand the time-sensitive unfair exposure
issues in recommendation scenarios, we conduct empirical analyses
on two real-world recommendation systems, which are introduced
in Section 3.1. In Section 3.2, we first investigate the exposure situ-
ation between items uploaded at different times, and then evaluate
the degree of exposure unfairness at the system level. Section 3.3
presents diverse item-level timeliness trends, which demonstrate
that different items in feed systems have their own timeliness dis-
tribution over time. Based on these analyses, we call for further
modeling of item-level customized timeliness distribution, defined
as Global Residual Value, for fair exposure mechanisms.

3.1 Two Feed Scenarios
Feed recommendation systems are typical time-sensitive scenar-
ios, where items evolve rapidly, and delivering timely content is a
system requirement. We select a PC-side news recommendation
website and a mobile-side short video social application as repre-
sentative scenarios for analysis and experiments in this paper:

• MIND [43]: the publicly available dataset collected from
anonymized behavior logs of the Microsoft News website.

• Kuai: desensitized impression log of a mobile application
for short-video recommendation and the collected data, with
considerable size and diverse types of real users’ feedback,
will be publicly released along with this paper after accep-
tance.

3.2 Analysis on Items’ Exposure Distribution
There are numerous items in the candidate pools of recommen-
dation systems and they are uploaded at different times. Items
uploaded at earlier times may accumulate more exposure and user
feedback, leading to precise modeling and becoming dominant
in the system. Newly uploaded items are experiencing cold start
problems, mainly resulting in tentative recommendations. In feed
recommendation scenarios, it is critical to deliver updated informa-
tion and iterate over outdated items.

In this work, we examine the competition for exposure resources
between items uploaded at different times on the two real-world
platforms. Exposure opportunities are adopted as resource measure-
ments since they are the most important system-controlled benefits
for items. For item utility (also called merit) [5, 24], CTR is adopted
as the user feedback metric. In the following part, we evaluate the
time-sensitive unfair exposure issues through an item-level case
study and system-level assessment.

3.2.1 Item-level Case Study.
Figure 1 in the Introduction illustrates the exposure and user feed-
back situation between two groups of items uploaded in two con-
secutive hours. Group 0, colored in blue, contains all the items
uploaded in 4PM and items uploaded in 5PM belongs to Group 1,
which is in orange. Dashed lines reflect the user feedback and solid
bars show the system-allocated exposures in the following days.
Although Group 1 has comparable or even higher CTR, it received
less exposure compared with the early uploaded and currently pre-
vailing group in Day 1. The suppression trend continue to hold in
the following days, and eventually, both group lose timeliness.

This case study shows that in real-world recommendation sys-
tems, there are situations where established item crowd out re-
sources of new items. This trait is not conducive to items’ cold start
and the dissemination of fresh content, especially in feed systems.
It can also mix with the Snowball Effect, creating a pernicious circle.
In the following analyses, we look further at the prevalence and
severity of this time-sensitive unfair exposure allocation problem
from a holistic perspective.

3.2.2 System-level Evaluation.
To gain further insight into the system-wide picture, we group all
items according to their upload time and evaluate the subsequent
performance of each group in recommendation systems. Results
are shown in Figure 2. As the group number increases, the items
belonging to the group are uploaded more recently. Specifically,
for MIND, we group items first exposed on Day 1 12 AM to 12
PM into 4 groups, and each group contains items uploaded in 3
hours. We evaluate each group’s performance from Day 1 12 PM
to Day 2 12 AM. For Kuai, we group items uploaded on Day 1 into
4 groups with each group uploaded within 6 hours, and examine
their performance on the following Day 2. Each group’s CTR and
exposure situations in the following observation period are plotted.

https://microsoftnews.msn.com/
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(a) MIND news dataset (b) Kuai short video dataset

Figure 2: Time-sensitive unfair exposure: G0-G3 contain all
items uploaded on four consecutive equal lengths of time,
respectively. As upload times move backward (larger group
number), exposure opportunities decrease.

Both metrics are normalized as follows:

𝑌𝐸𝑥𝑝 =
𝐸𝑥𝑝𝑖∈𝐺𝑥

𝐸𝑥𝑝𝑖∈𝐺
, 𝑌𝐶𝑇𝑅 =

𝐶𝑇𝑅𝑖∈𝐺𝑥

𝐶𝑇𝑅𝑖∈𝐺
(1)

First we calculate the average exposure (or CTR) of items in Group
x, and we divided it by the average exposure (or CTR) of the system.
For MIND, the earliest uploaded groups crowd the most exposure
opportunities in the system while each group has comparable user
feedback. The same time-sensitive unfair exposure issue holds still
for the Kuai dataset, where the latest uploaded item group has the
highest user feedback while receiving the least resources.

As shown above, unfair exposure allocation issues are prevailing
in recommendation systems, especially in scenarios with frequently
uploaded new items. The unfairness might build up like snowballs,
resulting in serious information churn and further affecting user
satisfaction. In the next section, we further dive into item-level per-
spectives for causes and mitigation methods of these time-sensitive
unfair exposure problems.

3.3 Diverse Timeliness Characteristics of Items
Analyses in the previous subsection identify the time factor as one
of the causes and solutions of unfair exposure problems, such as
the Snowball Effect. Focusing on this idea, we further investigate
the major item-level time factor in feed scenario, timeliness, which
is related to while different from items’ uploaded time.

For further understanding of the item-level timeliness character-
istics, we carry out the case study in feed scenarios. Figure 3 gives
out two typical items’ performances and system-allocated exposure
resources across a time range of 7*24 hours in Kuai dataset. Item
performances are plotted in orange and bars in blue present the
system-allocated exposure amounts. Note that the scales of the
exposure coordinate axes are inconsistent and we provided the
average exposure amounts per hour on the top.

3.3.1 Time-sensitive Unfair Exposure.
Comparing Figure 3(a) and 3(b), which are uploaded on the same day
while getting their first exposures in less than 12 hours difference,
the former gets more exposures in the early stages and keeps getting
system exposures even if it has relatively low user feedback in
the following days. These cases further verify the presence of the
Snowball Effect. If an item accumulates a considerable amount of
resources at early time stages, it tends to enjoy greater privileges
in the subsequent competition.

(a) Item A (b) Item B

Figure 3: Items with diverse timeliness patterns in Kuai
dataset.

3.3.2 Item-level Diverse Time Patterns.
In order to mitigate unfair exposure situations, such as the Snow-
ball Effect shown above, recommendation systems need to support
newly uploaded items and remove excessive exposure to currently
dominant items. We need to model the timeliness of items in a
macroscopic view. This is different from items’ uploaded time or
exposure amounts since different items have different time pat-
terns. Some headline items might have strong timeliness in feed
scenarios, quickly replaced by new contents, and some might be
time-insensitive, possessing long spread periods. Figure 3 gives the
examples of these two kinds of items in our Kuai dataset.

Based on the above analyses of item-side exposure situations
and items’ diverse timeliness characteristics, we propose to model
an item-level customized dynamic descending value (namely Global
Residual Value) to model their timeliness distribution at each time
point. In the next section, we introduce the definition and modeling
module of the proposed Global Residual Value.

4 GLOBAL RESIDUAL VALUE MODULE
4.1 Task Statement
Given a newly uploaded item 𝑖 and its interaction history in the ob-
servation period of duration 𝑇𝑜𝑏𝑠 , the item dynamic modeling task
is to forecast 𝑖’s changing global timeliness distribution, 𝐺𝑅𝑉𝑖 (𝑡),
which is the probability of keeping active (i.e., having of timeliness
or interactions) at each future moment. This value is different from
the user-item level relevance score as GRV portrays the timeliness
of content at the system level. Table 1 displays the main concepts
used in the Global Residual Value module.

Table 1: Notations used in the Global Residual Module.
Notations Explanations

𝑇𝑜𝑏𝑠 duration of the observation period
𝑇𝑝𝑟𝑒𝑑 duration of the prediction period
𝑇𝑖,0 upload time of item 𝑖

𝑇𝑖,𝑑 deactivate label time of item 𝑖

Fi interaction history in observation period
𝑆𝑖 (𝑡) timeliness status of item 𝑖 at time 𝑡
ℎ𝑖 (𝑡) deactivate hazard by survival analysis at time t

To calculate items’ GRV, we need to utilize item interactions
in the systems, so we define the mentioned observation period to
collect interactions of each item from upload time𝑇𝑖,0 to𝑇𝑖,0 +𝑇𝑜𝑏𝑠 .
𝑇𝑜𝑏𝑠 is a hyper-parameter in distinct scenarios. Then, we can use
the collected information to forecast the GRV of the prediction
period (𝑇𝑖,0 +𝑇𝑜𝑏𝑠 to 𝑇𝑖,0 +𝑇𝑜𝑏𝑠 +𝑇𝑝𝑟𝑒𝑑 ).
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Figure 4: The Global Residual Value Module, which models the item’s timeliness distribution in the prediction time period
with its past performances in the observation window. The input is item 𝑖’s user feedback from upload time 𝑇𝑖,0 to the end of
observation period 𝑇𝑖,0 +𝑇𝑜𝑏𝑠 . The output is Global Residual Value vector GRVi with the length of 𝑇𝑝𝑟𝑒𝑑 .

4.2 GRV Modeling
First, we formally define the Global Residual Value of item 𝑖 at
future time point 𝑡 (t ≥ 0), which is the quantitative measurement
of timeliness:

𝐺𝑅𝑉𝑖 (𝑡) = 𝑃 (𝑆𝑖 (𝑡) = active) = 𝑃 (𝑇𝑖,𝑑 > 𝑡 |Fi) (2)

where 𝑆𝑖 (𝑡) ∈ {active, deactivated}, Fi = Fi (t) ∈ R𝑇𝑜𝑏𝑠∗|𝐹 | ,𝑇𝑖,𝑑 ∈ R.
The Global Residual Value measures the probability that an item
will remain active at a time point, which is equivalent to the deac-
tivation event occurring after the time point 𝑡 . By capturing item-
level timeliness evolution patterns in the system, we use items’
performances in the observation period to predict the future Global
Residual Value. Note that 𝑇𝑖,𝑑 , the deactivation time of items, can
be manually labeled by administrators or automatically generated
by systems. Subsection 4.3.3 introduces a design for the system de-
termination method used in this paper, with no additional labeling
requirements.

As the Global Residual Value can not be directly calculated, in-
spired by survival analysis, we further construct its relationship
with the hazard probability, ℎ𝑖 (𝑡), which is defined as the following:

ℎ𝑖 (𝑡) = lim
𝛿 (𝑡 )→0

P(𝑡 ≤ 𝑇𝑖,𝑑 < 𝑡 + 𝛿 (𝑡) | 𝑇𝑖,𝑑 > 𝑡)
𝛿 (𝑡) (3)

Equation 4 portrays the relationship between hazard function
ℎ𝑖 (𝑡), accumulated hazard function𝐻𝑖 (𝑡) and our designed𝐺𝑅𝑉𝑖 (𝑡).
As shown below, by modeling the hazard function, we are able to
obtain the Global Residual Value.

𝐻𝑖 (𝑡) =
∫ 𝑡

0
ℎ𝑖 (𝑥)𝑑𝑥 =

∫ 𝑡

0
−
𝐺𝑅𝑉 ′

𝑖
(𝑥)

𝐺𝑅𝑉𝑖 (𝑥)
𝑑𝑥 = − log(𝐺𝑅𝑉𝑖 (𝑡))

𝐺𝑅𝑉𝑖 (𝑡) = exp(−𝐻 (𝑡))
(4)

To further model the hazard function, we introduce the assump-
tion in Cox’s proportional hazard model [16], which is that the log
hazard of an individual is a linear combination of its covariates and

a system-level time-varying benchmark hazard. According to [31],
we can adopt this assumption in our item timeliness modeling task
and construct hi as follows:

ℎ𝑖 (𝑡) = ℎ0 (𝑡) ∗ 𝐸𝑥𝑝 [
𝑇𝑖,0+𝑇𝑜𝑏𝑠∑︁
𝑡𝑥=𝑇𝑖,0

∑︁
𝑓 ∈𝐹

𝛼 𝑓 (𝑡𝑥 ) ∗ (𝑓𝑖 (𝑡𝑥 ) − 𝑓𝐼 (𝑡𝑥 ))]

𝑡 ∈ (𝑇𝑖,0 +𝑇𝑜𝑏𝑠 ,𝑇𝑖,0 +𝑇𝑒𝑛𝑑 ]

(5)

where we use the item’s performance in the observation window,
Fi, as covariates.

4.3 Module Overview
The Global Residual Value module is described in Figure 4. The
following parts illustrate the inference and training procedures of
our designed Global Residual Value modeling module.

4.3.1 Inference.
The upper box in Figure 4 is a diagram of the inference process.
The input is items’ past performance in the system, marked red
on the upper left in the figure, and the module predicts the item-
level customized Global Residual Value vector across time. More
specifically, when an item is uploaded at time 𝑇𝑖,0 and passes its
observation period (from 𝑇𝑖,0 to 𝑇𝑖,0 +𝑇𝑜𝑏𝑠 ), its performance in the
system is transport to the GRV module as its features for timeliness
distribution calculations. Items’ performance, F, contains various
user feedback such as CTR, watch ratio, like rate, etc. The module
follows Equation 5 to forecast 𝑖’s Global Residual Value vector in the
prediction period (from time 𝑇𝑖,0 +𝑇𝑜𝑏𝑠 to 𝑇𝑖,0 +𝑇𝑜𝑏𝑠 +𝑇𝑝𝑟𝑒𝑑 ). This
vector is further sent into Timeliness-aware Fair Recommendation
Framework introduced in Section 5.

4.3.2 Training.
The training process is illustrated in the lower box in Figure 4. It
contains mainly two parts: the deactivation label generation and
the parameter learning.
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GRV module collects all the impression data from items’ upload
to 𝑇𝑖,0 + 𝑇𝑜𝑏𝑠 + 𝑇𝑝𝑟𝑒𝑑 , where the subsequent performance after
the observation period, [𝑇𝑖,0 + 𝑇𝑜𝑏𝑠 ,𝑇𝑖,0 + 𝑇𝑜𝑏𝑠 + 𝑇𝑝𝑟𝑒𝑑 ), marked
orange in the lower left of the framework figure, is unreachable
at the inference time point. Logs in this period are sent to the
timeliness detection part. Note that items’ deactivation of timeliness
can be manually labeled by administrators in feeds systems or
automatically determined by strategies. Subsection 4.3.3 introduces
the method we adopt for deactivation label detection.

If the deactivation of an item does not trigger during the whole
observation and prediction period, we cannot get the deactivation
label time and this item forms a censored case. Since censors might
occur, it is not appropriate to use the loss function such as mean
squared error or mean absolute error loss for GRV module learn-
ing. We maximize the log-likelihood in module training to get the
parameter h0 and 𝜶 in Equation 5.

The following subsection introduces the deactivation label de-
tection method adopted in our module. This label (𝑇𝑖,𝑑 ) is used
in the training process. Note that it can also be labeled manually
according to the system’s needs for content timeliness.

4.3.3 Deactivation Label.
The deactivation alert can be triggered up to once for each item.
The occurrence of an alert means that the item’s global timeliness is
close to 0 and should be eliminated from the time-sensitive system.
The deactivation trigger time is marked as𝑇𝑖,𝑑 . If the item does not
trigger any alerts within the whole time period of [𝑇𝑖,0,𝑇𝑖,0 +𝑇𝑜𝑏𝑠 +
𝑇𝑝𝑟𝑒𝑑 ), it will become a censored case and will be removed from
modeling training.

𝑣𝑖 (𝑡) = 1𝐸𝑥𝑝𝑖 (𝑡 )>0 ∗ (𝑅𝑖 (𝑡) − 𝛽𝐸 ) + 1𝐸𝑥𝑝𝑖 (𝑡 )=0 ∗ (−𝛽𝑛𝐸 )
𝑅𝑖 (𝑡) = 𝑅𝑎𝑛𝑘 (𝑓𝑖 (𝑡), 𝑓𝐼 (𝑡))

(6)

𝑇𝑖,𝑑 = argmin
𝑡

𝑡∑︁
𝑡𝑥=𝑇𝑖,0

𝑣𝑖 (𝑡𝑥 ) < 𝛽𝑑 (7)

The deactivation label generation mechanism is designed under
item-level feedback. We give each item a vitality score under Equa-
tion 6. 1𝑓 is the indicator function, 𝐸𝑥𝑝𝑖 (𝑡) is the exposure amounts
of item 𝑖 at time period t, 𝑅𝑖 (𝑡) is the percentile rank of i’s feedback
in the system at time t, 𝛽𝐸 and 𝛽𝑛𝐸 are two hyper-parameters. As
we gain the item’s evaluation at each time granularity, which ranges
from min(−𝛽𝐸 , −𝛽𝑛𝐸 ) to 1 − 𝛽𝐸 , we add up this score to get the
cumulative vitality performance. If it is less than the threshold 𝛽𝑑 ,
then the item triggers the deactivation alert at this time point. This
module is presented in the bottom part in Figure 4. We need to con-
trol the censoring rate by appropriately designing the deactivation
detection mechanism and selecting appropriate hyper-parameters
to replace manual labels. Detailed parameter settings are tested and
introduced in experimental settings in Section 6.1.

5 TIMELINESS-AWARE FAIR
RECOMMENDATION

In this section, we introduce the calculated GRV of items into the
top-K recommendation models for fair exposure allocations. We use
𝑟𝑥 = (𝑢𝑥 , 𝑡𝑥 ) to denote the request by user𝑢𝑥 in time 𝑡𝑥 , where each
request 𝑟𝑥 consists of a user id and inquiry time. Recommendation

systems receive a request list, 𝑅 = {𝑟1, 𝑟1, ..., 𝑟𝑛}, and respond to
each request, producing the recommendation list 𝑂 = {𝐿1, ...𝐿𝑛}
with 𝐿𝑥 = [𝑖𝑥,1, ..., 𝑖𝑥,𝑚]. These lists are consumed (i.e., read or
watched) by users in time sequences, and the corresponding user
feedback is recorded by systems for further modeling. Viewed from
the global system level, items, with different exposed hours and
timeliness trends, get resources in the order of [𝑖𝑢1,𝑝𝑜𝑠1 , ..., 𝑖𝑢𝑛,𝑝𝑜𝑠𝑚 ]
with a length of |𝑅 | ∗ |𝐿 | = 𝑛 ∗𝑚.

Given a user request 𝑟𝑥 = (𝑢𝑥 , 𝑡𝑥 ) and candidate item set 𝐼 , TaFR
generates the recommendation list based on the pre-calculated
Global Residual Value, GRVI, and the backbone model produced
recommendation scores between items 𝐼 and the user 𝑢𝑥 for per-
sonalized and fair exposure.

Figure 5: Timeliness-aware Fair Recommendation Frame-
work explicitly models items’ Global Residual Values for per-
sonalized recommendations and fair exposure allocations.

5.1 Framework Overview
We design the Timliness-aware Fair Recommendation Framework,
TaFR1, aiming to alleviate the time-sensitive unfair exposure in
recommendation scenarios with minimal negative or even positive
impacts on recommendation accuracy. The overall structure of TaFR
is shown in Figure 5. It is composed of two parts: the backbone
model for personalized recommendations and the Global Residual
Value Module for items’ timeliness distribution modeling.

Typical recommendation systems generate output (exposure list
𝐿𝑥 ) based on the user request 𝑟𝑥 = (𝑢𝑥 , 𝑡𝑥 ) and the candidate item
set 𝐼 . In this process, each item is assigned a certain recommenda-
tion score (mainly representing the degree of relevance between
the user and item at time t). When allocating exposure opportu-
nities, each exposure list is generated individually based on the
predicted recommendation scores for the current user request. The
system-level deviations of recommendation scores, especially un-
fair competitions between items with different upload times and
timeliness patterns, are not properly and explicitly considered.

In TaFR, we utilize the personalized recommendation models
as backbone modules and integrated them with the item-level cus-
tomized timeliness distribution pre-calculated in the Global Resid-
ual Value module. These two modules and their integration meth-
ods are introduced in the following subsections. Table 2 displays
notations used in TaFR.

5.1.1 Backbone Recommendation Score.

𝐵𝐵𝑀𝑟 (𝑢,𝑡 ) (𝐼 ) = B(𝑢 (𝑡), 𝐼 , 𝑡) (8)

1https://github.com/Alice1998/TaFR
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Table 2: Notations used in the framework.
Notations Explanations

𝐵𝐵𝑀𝑟 (𝑢,𝑡 ) (𝑖) Backbone module
B(𝑢, 𝑖, 𝑡) Backbone modeling algorithms
𝐺𝑅𝑉𝐼 (𝑡) Global Residual Value module
G𝑖 (𝑡) GRV modeling algorithms
𝑃𝑖 (𝑡) system predicted score for item 𝑖 at time 𝑡
𝐹𝑖 (𝑡) users feedback for item 𝑖 at time 𝑡
𝛾 hyper-parameter for GRV integration

Backbonemodule𝐵𝐵𝑀𝑟 (𝑢,𝑡 ) (𝐼 ) produces recommendation scores
based on the user request 𝑟 (𝑢, 𝑡) and item candidate set 𝐼 . The
backbone algorithm B, requires user-item interaction logs for the
id-based recommendation score prediction. Note that TaFR has no
special requirements for backbone models and most recommenda-
tion algorithms can be used as the backbone. 𝐵𝐵𝑀𝑟 (𝑢,𝑡 ) (𝐼 ) module
mainly focuses on improving recommendation accuracy and lacks
macroscopic consideration of fair item exposure mechanisms.

5.1.2 Global Residual Value.
The Global Residual Value is defined in Section 4.2 as items’ global
timeliness distribution. It represents the probability that potentially
interested users for item 𝑖 exist among the unexposed users at time
𝑡 . This could be quantified as the probability that the item is active
at the current 𝑡 and is modeled by the G𝑖 as shown in Equation 9.

𝐺𝑅𝑉𝑖 (𝑡) = 𝑃 (𝑆𝑖 (𝑡) = active) = G𝑖 (𝑡 −𝑇𝑖,0) (9)

In the feed recommendation scenario, items typically obtain cer-
tain timeliness patterns as illustrated in Section 3. More specifically,
at the end of observation time 𝑇𝑖,0 +𝑇𝑜𝑏𝑠 , the system acquires user
feedback on the item 𝑖 from the time it is uploaded (𝑇𝑖,0) to the
current moment. Usually, the system also predicts items’ relevant
scores with candidate users. These two types of information, pre-
dicted recommendation score P if available, and real user feedback
F, are used as the input factors in Global Residual Value Module.
This modeling process G is shown in Equation 10.

𝐺𝑅𝑉𝑖 (𝑡) = G
(
𝑃𝑖 (𝑇𝑖,0), 𝐹𝑖 (𝑇𝑖,0); · · · ;

𝑃𝑖 (𝑇𝑖,0 +𝑇𝑜𝑏𝑠 − 1), 𝐹𝑖 (𝑇𝑖,0 +𝑇𝑜𝑏𝑠 − 1); 𝑃𝑖 (𝑇𝑖,0 +𝑇𝑜𝑏𝑠 )
)
(𝑡)

𝑡 ∈
[
𝑇𝑖,0 +𝑇𝑜𝑏𝑠 ,𝑇𝑖,0 +𝑇𝑜𝑏𝑠 +𝑇𝑝𝑟𝑒𝑑

]
(10)

5.2 GRV-based Recommendation
The framework calculates personalized recommendation scores
𝐵𝐵𝑀𝑟 (𝑢,𝑡 ) (𝐼 ) and Global Residual Value𝐺𝑅𝑉𝐼 (𝑡) for item timeliness
modelings. TaFR combines the ratings from two perspectives for
final rankings. In this work, the aggregation method is shown in
Equation 11.

G𝑟 (𝑢,𝑡 ) (𝐼 ) = (1 − 𝛾) ∗ 𝐵𝐵𝑀𝑟 (𝑢,𝑡 ) (𝐼 ) + 𝛾 ∗𝐺𝑅𝑉𝑖 (𝑡)
= (1 − 𝛾) ∗ B(𝑢 (𝑡), 𝐼 , 𝑡) + 1 − 𝛾 ∗ G𝐼 (𝑃𝑖 (tP); 𝐹𝑖 (tF)) (𝑡 −𝑇𝐼 ,0)
𝑡 ∈ [𝑇𝐼 ,0 +𝑇𝑜𝑏𝑠 ,𝑇𝐼 ,0 +𝑇𝑜𝑏𝑠 +𝑇𝑝𝑟𝑒𝑑 ]
tP = [𝑇𝐼 ,0 : 𝑇𝐼 ,0 +𝑇𝑜𝑏𝑠 ], tF = [𝑇𝐼 ,0 : 𝑇𝐼 ,0 +𝑇𝑜𝑏𝑠 )

(11)
𝛾 is the weight between user preferences and item timeliness. 𝑇𝑜𝑏𝑠
is the hyper-parameter for the length of the observation window

and 𝑇𝑝𝑟𝑒𝑑 is the duration for the prediction period. GRV module
obtains items’ user feedback and system scoring and at the end
of the observation period forecasts items’ timeliness distribution
vector, 𝐺𝑅𝑉𝑖 (𝑡), with the length of 𝑇𝑝𝑟𝑒𝑑 .

6 EXPERIMENTS AND EVALUATIONS
As introduced in Section 5.1, TaFR can easily accommodate most
personalized recommendation algorithms as backbones and is ap-
plicable to various time-sensitive recommendation scenarios. In
this section, we conduct extensive experiments with three types
of backbone models on two datasets to verify the effectiveness of
our framework in terms of recommendation accuracy and time-
sensitive exposure fairness. Experimental settings are described
in Section 6.1. Overall performances of TaFR are presented in Sec-
tion 6.2 and analysis of exposure fairness is shown in Section 6.3.
In Section 6.4, we further examine the item GRV module to validate
its ability on item-level customized timeliness modeling.

6.1 Experimental Settings
6.1.1 Datasets.
We use two datasets described in Section 3.1. The dataset settings
for GRV module and recommendation framework are introduced
below:

• MIND [43]: We use the train and validation set in MIND,
including 7 days’ logs, and conduct a 10-core filter. For GRV,
we randomly sample 20% for testing and conduct recommen-
dations on these 20% items to prevent information leakage.

• Kuai: We collect and use items uploaded in two days and
their exposure feedback in the following 7 days. For GRV,
we use logs of items uploaded on the first day and use the
second-day-uploaded items to compose the recommendation
sets.

For GRV module, we use CTR as the only user feedback Fi and
set the system predicted relevance score Pi to null for offline simu-
lations due to dataset limitations. For recommendations, on both
datasets, we use the first 3 days for training and randomly split the
last 2 days for validation and testing. To better test TaFR’s abilities
for fair resource allocations, we conduct experiments based on the
test-all settings. Note that this will lead to an overall decrease in
the accuracy of the recommendation.

6.1.2 Framework Backbones.
TaFR has no special requirements for backbone models because
the GRV module could integrate with most recommendation algo-
rithms. We test three types of models as our backbones:

• NeuMF [12]: neural collaborative filtering method.
• GRU4Rec [13]: sequential recommendation algorithm.
• TiSASRec [19]: sequential and time interval aware recom-
mendation.

For each backbone algorithm, we test it only and integrate it with
the normalized uploaded time and our Global Residual Value vector.
Specifically, the upload time baseline (+time) replaces the GRV with
the normalized upload time, ti,exp, which is calculated as follows:

𝑡𝑖,𝑒𝑥𝑝 (𝑡) = 1 −
𝑡 −𝑇𝑖,0

𝑡 − min 𝑇𝐼 ,0 + 𝛿
=
𝑇𝑖,0 −min 𝑇𝑖,0 + 𝛿

𝑡 − min 𝑇𝐼 ,0 + 𝛿
(12)
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Table 3: Overall Recommendation Results: The Timeliness-aware Fair Recommendation Framework (TaFR) is tested with three
types of backbone models (NeuMF, GRU4Rec, TiSASRec) on two datasets (MIND and Kuai). For each backbone model, we test its
performance alone and integrated it with upload time (TaFR𝑡𝑖𝑚𝑒 ) and our proposed Global Residual Value module (TaFR𝐺𝑅𝑉 ).
This table presents the evaluation on recommendation accuracy, measured by Hit Rate (HR@k) and Normalize Discounted
Cumulative Gain (NDCG@k), time-sensitive exposure fairness, evaluated by (New) Item Coverage ((N_)Cov@k). Higher values
of all metrics represent better results. ** represents p<0.05 significance and * means p<0.1 significance comparing with backbone
model. For each dataset, the best performance row is marked in bold and the second best is underlined.

Dataset BackBone Method HR@5 NDCG@5 N_Cov@5 Cov@5 HR@10 NDCG@10 N_Cov@10 Cov@10

MIND

NeuMF
backbone 0.0953 0.0754 0.0026 0.0059 0.1251 0.0846 0.0026 0.0099
TaFR𝑡𝑖𝑚𝑒 0.0972 0.0762 0.0026 0.0058 0.1266 0.0855 0.0026 0.0087
TaFR𝐺𝑅𝑉 **0.2204 **0.1511 **0.2992 **0.0657 **0.2403 **0.1574 **0.4698 **0.1037

GRU4Rec
backbone 0.1344 0.0906 0.0031 0.0099 0.1626 0.0995 0.0037 0.0153
TaFR𝑡𝑖𝑚𝑒 0.1302 0.0909 0.0026 **0.0067 0.1533 0.0982 0.0026 **0.0101
TaFR𝐺𝑅𝑉 **0.2141 **0.1494 **0.0110 0.0074 **0.2453 **0.1592 **0.0147 0.0113

TiSASRec
backbone 0.1321 0.0897 0.0698 0.0562 0.1867 0.1071 0.1050 0.0860
TaFR𝑡𝑖𝑚𝑒 0.1239 0.0808 **0.0100 **0.0134 0.1479 0.0883 **0.0142 **0.0216
TaFR𝐺𝑅𝑉 **0.1764 **0.1158 **0.1417 0.0492 **0.2219 **0.1303 **0.2247 0.0779

Kuai

NeuMF
backbone 0.2422 0.1911 0.1128 0.6309 0.3114 0.2134 0.1579 0.7013
TaFR𝑡𝑖𝑚𝑒 **0.2255 **0.1641 **0.1323 **0.6933 **0.3025 **0.1889 **0.2015 **0.7780
TaFR𝐺𝑅𝑉 0.2440 0.1923 0.1158 0.6315 0.3140 0.2149 0.1598 0.7037

GRU4Rec
backbone 0.2892 0.2105 0.0150 0.2079 0.3885 0.2425 0.0169 0.2612
TaFR𝑡𝑖𝑚𝑒 0.2940 0.2124 0.0113 **0.1884 0.3912 0.2437 0.0169 **0.2444
TaFR𝐺𝑅𝑉 **0.3129 **0.2328 *0.0245 **0.3021 **0.4111 **0.2645 **0.0357 **0.3782

TiSASRec
backbone 0.3903 0.3298 0.4211 0.7876 0.4713 0.3559 0.4862 0.8356
TaFR𝑡𝑖𝑚𝑒 **0.3018 **0.2316 **0.2005 **0.3816 **0.3932 **0.2611 **0.2807 **0.5017
TaFR𝐺𝑅𝑉 0.3893 0.3278 0.4236 0.7899 0.4706 0.3540 **0.5013 0.8373

Equation 12 first normalizes 𝑖’s exposed time with the maximum
item expose time at the current system and reverses it since longer
expose time represents lower timeliness.

6.1.3 Parameter Settings.
For the Global Residual Value module, we set the observation and
prediction duration𝑇𝑜𝑏𝑠+𝑇𝑝𝑟𝑒𝑑 as 7*24 hours, which is one complete
week, and the observation window𝑇𝑜𝑏𝑠 as 12 hours in MIND and 24
hours in Kuai due to different update frequency in news and short-
video platforms. For hyper-parameters in GRV module (Equation 6
and 7), aggregation settings in TaFR (Equation 11) and the baseline
method (Equation 12), we conduct pilot experiments for grid search
in the range of [0, 0.5] with the step size of 0.1 respectively, 𝛽𝐸 , 𝛽𝑛𝐸
are set to 0.5 and the 𝛽𝑑 = −3. 𝛾 is set as 0.3, 0.3, 0.1 in MIND and
0.2, 0.1, 0.1 in Kuai for three backbones respectively. 𝛿 is set to 0,
when min 𝑇𝐼 ,0 = 0 we set the value of 𝑡𝑖,𝑒𝑥𝑝 (𝑡) as 0 in Equation 12.

6.1.4 Evaluation Metrics.
We evaluate the accuracy of recommendations and the fairness de-
gree of exposure mechanisms simultaneously. For recommendation
accuracy, we use standard metrics: hit rate at k (HR@k) and nor-
malized discounted cumulative gain at k (NDCG@k). For exposure
fairness, we report the newly uploaded items’ coverage (N_Cov@k),
measured as #exposed_new_items_in_topK_lists/#new_items, and
also show the overall item coverage (Cov@k) in Section 6.3. In
MIND, we mark the 20% of items with the latest upload time in the
training set as new items. For Kuai, we label the newly uploaded
10% of items as Kuai is less sparse than MIND. For each setting, we

run experiments with random seeds 0 ∼ 4 and report the average
results with significant tests compared with the backbone model.

6.2 Overall Performance
The overall performance of the Timeliness-aware Fair Recommen-
dation Framework is reported in Table 3. We evaluate TaFR’ rec-
ommendation quality and time-sensitive exposure fairness on the
backbone model only, TaFR𝑡𝑖𝑚𝑒 and TaFR𝐺𝑅𝑉 .

(1) In general, TaFR achieves steady improvements in recom-
mendation accuracy and time-sensitive exposure fairness simul-
taneously across different types of backbones and datasets com-
pared with using backbone models only. This verifies the validity
of explicitly modeling item timeliness distribution. Compared with
integrating upload time baseline (TaFR𝑡𝑖𝑚𝑒 ), TaFR with our pro-
posed GRV module (TaFR𝐺𝑅𝑉 ) improves new items’ coverage with
steady recommendation quality. This proves the effectiveness of
GRV module designs.

(2) For MIND dataset, the three types of backbones show an
upward trend in both recommendation accuracy and new items’
coverage on the top 10 results. Integrating Global Residual Value
reduces the gap. When adopting the basic model NeuMF as the
backbone, TaFR achieves comprehensive better results. Note that
TaFR brings in lifts of recommendation quality and new items’ expo-
sure coverage based on the time-aware recommendation algorithm,
TiSASRec. This further points out that the item-side timeliness
distribution is an important modeling direction different and inde-
pendent of user-side sequence modeling.
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(3) In Kuai, the backbone model only, TaFR integrated with up-
load time and TaFR with GRV module all maintain increasing pat-
terns when the backbone model is used in order with the basic,
sequential, and time-aware methods. At the same time, TaFR with
the GRV module consistently surpasses the +time baseline in both
time-sensitive item exposure fairness and recommendation quality.

(4) Results on the two datasets show relatively different trends
and this may relate to the different sparsity and timeliness patterns.
Recommendation performances and item coverages in MIND are
relatively low. This pattern is consistent with the interaction spar-
sity and fast iteration characteristics of the MIND news dataset.
Improvements in both recommendation quality and fairness of TaFR
with GRV module integrated are more significant in MIND. This
is probably because the items in MIND are uploaded on different
days and for Kuai, items are uploaded within 24 hours.

6.3 Impact on Time-sensitive Exposure Fairness

(a) Top 5 results of Kuai, GRU4Rec (b) Top 10 results of Kuai, GRU4Rec

(c) Top 5 results of MIND, TiSASRec (d) Top 10 results of MIND, TiSASRec

Figure 6: Exposed item coverage among items with different
upload times. Higher group numbers represent later upload
times. The backbone model only, TaFR𝐺𝑅𝑉 , and its percent-
age lift based on the backbone are shown, validating that
TaFR boosts exposures opportunities.

We further evaluate TaFR’s modification on exposure between
items uploaded at different times. Figure 6 groups all the items
into 10 groups in Kuai and 5 groups in MIND evenly according
to upload times and presents each group’s exposed item coverage
when recommend with the backbone (in blue) or TaFR (in green),
and the TaFR’s lift percentage based on backbone (in orange). Fig-
ure 6(a),6(b) adopt GRU4Rec as the backbone and plot the Top 5 or
10 recommendation results in Kuai. As the group number increase,
items are uploaded later and the exposed item coverage decreases
significantly. TaFR constantly improves each group’s item cover-
age in recommendation lists compared with the backbone and the
boosted percentages are much higher for later uploaded items. Fig-
ure 6(c),6(d) select TiSASRec as the backbone and is tested in MIND.
TaFR greatly improves coverage of the last uploaded group, further
enhancing the exposure of new items in the feed system.

6.4 Evaluation on Global Residual Value Module
This section examines the GRV module’s ability in modeling the
global timeliness of items. We carry out an analytical experiment
for verification that the module produced GRV matches items’ time-
liness characteristics in future times. Following PageRank’s bucket
evaluation methods [7], we divide items in the Kuai dataset into 10
groups based on historical CTR (baseline) and GRV module’s out-
put, 𝐺𝑅𝑉𝑖 (𝑇𝑖,0 + 48), at 𝑇𝑖,0+48 hours and evaluate the group-level
performance on user’s feedback in play rate (playtime divided by
video duration) and comment rate, which are distinguished from the
input CTR. Figure 7 presents the results. We can see that blue bars
show a monotonically increasing trend in diverse user feedback,
while red bars have no apparent distinguishing abilities between
groups. This result points to the modeling capabilities of the GRV
module in TaFR and the possible problems in using linear CTR
weighting methods as item timeliness modeling.

(a) play rate (b) comment rate

Figure 7: Items are divided into 10 groups based on historical
CTR (upper fig, colored in red) or GRV (lower fig, colored in
blue), respectively. We present each group’s performances
on two user feedback dimensions, the play rate for (a) and
comment for (b). GRV shows more accurate modeling capa-
bilities compared with history CTR.

7 CONCLUSION
In the era of data explosion, recommendation systems play a cru-
cial role in people’s access to information. However, information
systems often seek to maximize delivery accuracy for higher user
satisfaction and duration times, leaving relatively less attention on
designing item-side fair exposure mechanisms, resulting in resource
allocation issues such as the Snowball Effect.

In this paper, we first investigate the exposure situation between
items uploaded at different times and name it as the time-sensitive
exposure issues. Analyses point out the Snowball Effect may be
caused by the time-sensitive unfair exposure and items in feed
scenarios have diverse timeliness patterns. Then, we propose to
explicitly model the item-level customized timeliness distribution,
namely Global Residual Value, and introduce the designed GRV
module into recommendations with the Timeliness-aware Fair Rec-
ommendation Framework, TaFR, aiming to alleviate time-sensitive
unfair exposures with minimal negative or positive impacts on
recommendation accuracy. Abundant experiments are conducted
with three types of backbone models on the two datasets, validat-
ing the ability of the TaFR for simultaneous improvements in both
time-sensitive exposure fairness and recommendation quality.
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