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ABSTRACT
Query and point of interest (POI) matching is a core task in location-
based services (LBS), e.g., navigation maps. It connects users’ intent
with real-world geographic information. Lately, pre-trained lan-
guage models (PLMs) have made notable advancements in many
natural language processing (NLP) tasks. To overcome the limitation
that generic PLMs lack geographic knowledge for query-POI match-
ing, related literature attempts to employ continued pre-training
based on domain-specific corpus. However, a query generally de-
scribes the geographic context (GC) about its destination and con-
tains mentions of multiple geographic objects like nearby roads and
regions of interest (ROIs). These diverse geographic objects and
their correlations are pivotal to retrieving the most relevant POI.
Text-based single-modal PLMs can barely make use of the impor-
tant GC and are therefore limited. In this work, we propose a novel
method for query-POI matching, namely Multi-modal Geographic
languagemodel (MGeo), which comprises a geographic encoder and
amulti-modal interactionmodule. Representing GC as a newmodal-
ity,MGeo is able to fully extractmulti-modal correlations to perform
accurate query-POI matching. Moreover, there exists no publicly
available query-POI matching benchmark. Intending to facilitate
further research, we build a new open-source large-scale benchmark
for this topic, i.e., Geographic TExtual Similarity (GeoTES). The POIs
come from an open-source geographic information system (GIS)
and the queries are manually generated by annotators to prevent
privacy issues. Compared with several strong baselines, the exten-
sive experiment results and detailed ablation analyses demonstrate
that our proposed multi-modal geographic pre-training method
can significantly improve the query-POI matching capability of
PLMs with or without users’ locations. Our code and benchmark
are publicly available at https://github.com/PhantomGrapes/MGeo.
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1 INTRODUCTION
As an essential function of location-based services (LBS) like nav-
igation maps (e.g., Google Maps), ride-hailing applications (e.g.,
Uber), and food delivery platforms (e.g., Uber Eats), query and point
of interest (POI) matching aims to find a list of candidate POIs
based on users’ specific or implicit intent. The candidate results
are crucial for providing users with real-world geographic informa-
tion, which directly impacts the navigation, routing, and ordering
process. Therefore, effective and accurate query-POI matching is in-
dispensable for delivering a satisfactory user experience. A typical
query-POI matching procedure is illustrated in Figure 1, which con-
sists of a two-stage retrieve-then-rank pipeline [36, 38]. In specific,
given a query, the lightweight retriever first produces an initial
set of candidate POIs by searching a massive database, then the
ranker sorts the most relevant candidate. This kind of architecture
is widely adopted in information retrieval (IR) systems on account
of the efficiency-effectiveness trade-off.

Recent literature on natural language processing (NLP) as well
as IR shows a flourishing advancement of pre-trained language
models (PLMs), notably in semantic textual similarity (STS) and
open-domain question answering (QA) [3, 14, 17]. Continued self-
supervised training on domain-specific corpus is shown to be effec-
tive for adapting generic PLMs to other domains [9]. To improve
the capability of PLMs for tasks in LBS, various methods have lately
been proposed to inject geographic knowledge based on textual
data related to geography and user behavioral data [10, 11, 20, 29].
Although these methods are better at capturing semantic similarity
than generic PLMs for query-POI matching, they can barely make
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Figure 1: A typical query-POI matching procedure.

use of the more important circumstantial geographic context (GC),
i.e., the diverse geographic objects and their correlations from the
geographic information system (GIS) (detailed in Definition 2).
Specifically, the geographic objects consist of roads represented
as lines and regions of interest (ROIs) represented as polygons, the
correlations include near, covered, and their relative position.

A query usually mentions multiple geographic objects in the
background of the target POI. Fully capturing the information in
the GC is necessary for accurate query-POI matching. For example,
given the query "school gate on underground road", as shown in
Figure 1, several relevant POIs are retrieved. The nearest "under-
ground road" to the user is the "Nankai Underground Rd", and the
"Nankai Secondary School" has a gate (c) on the "Underground
Rd". Therefore, the most matched POI should be the gate (c). The
problem is that the "Nankai Secondary School" is formally located
on the "Shapingba S St" with its main gate (a). Its side gate (c) is not
recorded in the GIS as located on the "Underground Rd". It should
also be noticed that the user is currently in the "Sanxia Square",
which has a gate (b) located on the "Underground Rd". The seman-
tic textual similarity alone is not enough to distinguish these two
hard negatives (a) and (b). Moreover, the gate (d) of the "United
Secondary School" is the closest school gate to the user. Simply
considering the relative position of the user and the POI will match
the wrong gate (d). Only by taking the entire GC into consideration
can we find the correct gate (c).

To this end, we propose a novel method that draws on GC for
query-POI matching, namely Multi-modal Geographic language
model (MGeo). MGeo bridges the modality gap between semantics
and GC. MGeo consists of a geographic encoder and a multi-modal
interaction module. The geographic encoder makes use of the GC
by representing it as a new modality. The multi-modal interaction
module then incorporates the geographic features with the seman-
tics. MGeo makes use of the textual, geographic, and cross-modal
interactions between queries and POIs. Since the interaction mod-
ule is compatible with queries that have no GC, it is optional to
provide the users’ locations, as many applications may require. As
a result, rich correlations among textual and geographic modalities
can be fully extracted to ensure the quality of query-POI matching.

In addition, there is no public unencrypted benchmark for query-
POI matching mostly due to privacy issues. Large publicly available
corpus could lead to many breakthroughs in research, e.g., MS
MARCO [22]. Intending to facilitate further research on this topic,
develop robust techniques, and track progress, we introduce Ge-
ographic TExtual Similarity (GeoTES), which is an open-source
large-scale benchmark for query-POI matching with GC (detailed
in Section 4). The POIs come from the open-source GIS Open-
StreetMap (OSM)1. To prevent privacy issues, the queries are man-
ually generated by annotators thus do not require encryption.

Our major contributions are highlighted as follows:
• We formalize the important concept GC for the query-POI
matching problem and propose a novel method MGeo that
uses geographic encoder to represent it as a new modality.

• Amulti-modal interaction module is proposed to incorporate
the correlations among textual and geographic modalities. It
is compatible with queries that have no GC as well.

• A new open-source large-scale benchmark GeoTES is built
to facilitate further research. The POIs come from an open-
source GIS and the queries are manually generated by anno-
tators to prevent privacy issues.

• Compared with strong baselines, the experiment results
demonstrate that our proposed methods can significantly
improve the query-POI matching capability of PLMs, even
when no GC is provided for the queries.

2 RELATEDWORK
2.1 Relevance Model
Traditional approaches for retrieving documents from large corpus
generally use exact term-level matching, e.g., Okapi Best Match-
ing (BM25) [27]. Despite such heuristic retrievers having low la-
tency via inverted list data structure, their measurement of similar-
ity is only based on document statistics. Latterly, Deep neural net-
work (DNN) models have been introduced to IR. For example, Deep
Structured Semantic Model (DSSM) [12] measures the relevance of
queries and documents in a semantic vector space by computing
their cosine similarity. Along with the success of PLMs in NLP,
studies on IR have also made remarkable progress [7, 14, 17]. On ac-
count of the efficiency-effectiveness trade-off, there are two major
architectures, i.e., bi-encoder and cross-encoder [31]. Bi-encoder
allows efficient indexing [4, 26] and is usually used in the retrieval
system. In contrast, cross-encoder concatenates the query and doc-
ument to perform cross-interaction over all input terms. Although
cross-encoder can provide a more accurate estimation of relevance,
it needs more computing resources and is usually used only in
the ranking system. MGeo can be applied on both bi-encoder and
cross-encoder architecture.

2.2 Multi-Modal Representation Learning
Following the tremendous success of various pre-training tech-
niques in NLP, a lot of Transformer-based models are proposed for
other modalities, such as compute vision (CV) [1, 6, 16]. Except for
single-modal, recent studies also show the derivative models have
great potential in multi-modal representation learning [2, 16, 18, 28].

1https://www.openstreetmap.org

https://www.openstreetmap.org
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For example, CLIP [25] converts classification to a retrieval task and
enables zero-shot learning via large-scale multi-modal pre-training.
In addition to image, layout of document and table can also be
represented as different modalities [32, 35]. In this paper, our pro-
posed MGeo use the geographic encoder to represents GC as a new
modality for query-POI matching.

2.3 Query-POI Matching
Previous work on query-POI matching generally focuses on model-
ing the relative position between queries and POIs. Based on DSSM,
PALM [38] obtains the positional relationship of queries and POIs
from coordinate-based and kernel-based location embeddings, and
incorporates the relationship with semantic similarity for POI re-
trieval. STDGAT [37] further takes multiple spatiotemporal factors
into consideration via dual graph attention network when quanti-
fying the query-POI relevance. On account of the ubiquity of PLMs
in NLP, domain-adaptive pre-training methods have been proposed
to inject extralinguistic knowledge into the generic PLMs [10, 20].
Typically, GeoL [11] makes use of the static geographic knowledge
based on user behavior (search logs), e.g., geocoding [8]. Although
the domain-adapted PLMs may be better at capturing the semantic
similarity than generic PLMs for query-POI matching, they are still
limited by ignoring GC in the background.

Moreover, to facilitate further research and promote the devel-
opment of robust techniques, we also establish a reliable public
large-scale query-POI matching benchmark named GeoTES.

3 PRELIMINARY
We first introduce the formal description of the query-POI matching
problem, as well as some important definitions related to GC. Table 1
gives the frequently used notations.

Let 𝑃 be the set of POIs𝑝 . 𝑃 can either contain dozens of candidate
POIs or a large number of POIs in the massive database. Each
POI 𝑝 consists of a textual description 𝑡𝑝 and its geolocation 𝑙𝑝 .
The textual description of the POI 𝑡𝑝 contains its formal address
and name. Let 𝑞 denote a query made by the user. The textual
description of the query 𝑡𝑞 belongs to three types, i.e., common
address description, formal street number description, and casual
colloquial description. The street number query contains standard
numerical designation for a target POI, while the address query does
not. The colloquial query uses spoken language and may contain
colloquial noisy words. The query’s geolocation 𝑙𝑞 can be the users’
geolocation. When the user searches for another area using the
map, 𝑙𝑞 is the center location displayed on screen. Furthermore, 𝑙𝑞
may or may not be provided. We denote geolocation of a POI or
query as 𝑙𝑝𝑞 .

Problem 1. Query-POI matching problem. Given the POI set
𝑃 and a user’s query 𝑞 in LBS, we aim to estimate the POI 𝑝 ∈ 𝑃 that
best matches the user’s intent.

We define two tasks based on the size of 𝑃 , i.e., ranking and
retrieval. Specifically, for the ranking task, 𝑃 is a list of candidate
POIs with a limited number, where the best-matched one is included.
As for the retrieval task, 𝑃 is the massive database that contains all
POIs, and the total number of POIs is large. Since cross-encoder
is inefficient for large size of 𝑃 , it only runs on the ranking task.
Bi-encoder can run on both the ranking and retrieval tasks.

Table 1: Table of notations.

Notation Description

𝑃, 𝑝 The POI set and a POI.
𝑞 A query given by the user.
𝑜 A geographic object.
𝑜𝑠 The shape of geographic object, ∈ {𝐿𝐼𝑁𝐸, 𝑃𝑂𝐿𝑌𝐺𝑂𝑁 }.
𝑜𝑚 The position of 𝑜 in the map.
𝑟𝑡 The relation type ∈ {𝑁𝐸𝐴𝑅,𝐶𝑂𝑉𝐸𝑅𝐸𝐷 }.
𝑟𝑝 The relative position.
𝑡 The textual description of POI or query.
𝑙 = (𝑙𝑛𝑔, 𝑙𝑎𝑡 ) The geolocation represented by longitude and latitude.
𝑙𝑝𝑞 The geolocation of a POI or query.
𝑙𝑜 A vertex of 𝑜 .
𝑜 The rectangle that approximates the shape of 𝑜 .

Definition 1. Geographic object. GIS is constructed on spatial
data that defines the real-world geometric space. Let G be the spatial
database. Each geographic object 𝑜 ∈ G with𝑚 vertices is described
as a sequence of geolocation {𝑙𝑜1 , 𝑙

𝑜
2 , . . . , 𝑙

𝑜
𝑚}. A geographic object is

intrinsically characterized by its ID, absolute position in the map, and
shape 𝑜𝑠 ∈ {𝐿𝐼𝑁𝐸, 𝑃𝑂𝐿𝑌𝐺𝑂𝑁 }. Specifically, 𝐿𝐼𝑁𝐸 represents the
real-world road and 𝑃𝑂𝐿𝑌𝐺𝑂𝑁 represents the ROI.

Here we use𝑚 to denote the number of vertices in 𝑜 . Note that
given the geolocation of the POI or the query, we can form a list of
nearby geographic objects {𝑜1, 𝑜2, . . . , 𝑜𝑛} sorted by distance, i.e.,
𝑜1 is the nearest geographic object to the POI or query. 𝑛 is used to
denote the number of geographic objects for a geolocation 𝑙𝑝𝑞 . We
export OSM to PostGIS2 and get the Geographic Context (GC) of a
geolocation from it.

Definition 2. Geographic context (GC). Given the geolocation
𝑙𝑝𝑞 of a POI or query, where 𝑙𝑝𝑞 is represented by a geographic coor-
dinate (𝑙𝑛𝑔, 𝑙𝑎𝑡), the GC is characterized by the correlations between
𝑙𝑝𝑞 and its 𝑛 geographic objects {𝑜1, 𝑜2, . . . , 𝑜𝑛}. Formally, the rela-
tion type 𝑟𝑡 ∈ {𝑁𝐸𝐴𝑅,𝐶𝑂𝑉𝐸𝑅𝐸𝐷} indicates whether 𝑙𝑝𝑞 is inside
𝑜𝑖 or at a distance. The relative position 𝑟𝑝 depicts a more detailed
positional relationship between 𝑙𝑝𝑞 and 𝑜𝑖 .

When searching for a target POI, a user usually explores the
nearby circumstantial spatial data and mentions multiple related
geographic objects in the query. The intrinsic characteristics of
geographic objects are also important to extract GC information.
Therefore, modeling the intrinsic characteristics of geographic ob-
jects is pivotal to capturing correlations in GC and ensuring the
quality of query-POI matching. The methods used to encode GC
are detailed in Section 5.1.1.

4 THE GEOTES BENCHMARK
In this section, we introduce our proposed large-scale benchmark
GeoTES, which stands for Geographic TExtual Similarity. It is the
first open-source benchmark for query-POI matching. The POIs are
obtained from the open-source OSM and the queries are manually
generated by annotators to prevent privacy issues.

In this version of GeoTES, all the POIs are located in Hangzhou
and use Chinese text. Table 2 give examples from the benchmark.
Since geographic objects in GIS and GC are language-agnostic,
MGeo can be easily applied to multilingual situations. Section 5.1.1
2https://postgis.net/

https://postgis.net/
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Table 2: Examples from GeoTES. We only show the positive POI and one geographic object here for simplicity. Every query
can have multiple negative POIs similar to the positive POI. Every query and candidate POI can have GC of multiple related
geographic objects. Note that query GC is optional to simulate the absence of user location.

Query Positive POI

Text 滨海大厦对面江汉路 6号线江汉路(地铁站)
Jianghan Road opposite to Binhai Building Line 6 Jianghan Road (subway station)

Location (Longitude, Latitude) (120.20435566081441, 30.210982121527547) (120.20039749738959, 30.20525878443309)

Geographic Object
ID 41935 42599
Shape 𝑃𝑂𝐿𝑌𝐺𝑂𝑁 𝐿𝐼𝑁𝐸

Map Position [1324, 1341, 1325, 1342] [1322, 1335, 1323, 1336]

Geographic Context Relation 𝑁𝐸𝐴𝑅 𝐶𝑂𝑉𝐸𝑅𝐸𝐷

Relative Position [31, 24, 22, 22] [27, 27, 18, 19]

Table 3: Statistics of different query types.

Query Type # Query

Address 81,286
Street No. 6,013
Colloquial 2,701

Total 90,000

Table 4: Statistics of geographic objects, which describe the
average number of shapes with corresponding relation to
queries and POIs.

𝐿𝐼𝑁𝐸 𝑃𝑂𝐿𝑌𝐺𝑂𝑁

𝑁𝐸𝐴𝑅 𝐶𝑂𝑉𝐸𝑅𝐸𝐷 𝑁𝐸𝐴𝑅 𝐶𝑂𝑉𝐸𝑅𝐸𝐷

we Query 4.4 0.005 14.2 0.7
POI 3.7 0.003 10.4 0.6

details how to obtain map position and relative position. A query
is equipped with a positive POI, and negative POIs with a limited
number are provided for the ranking task. 3

4.1 Annotation Process
We recruited 20 annotators and 4 experienced experts to annotate
three types of queries based on POIs defined in Section 3. Table 3
gives the statistics of these query types, which follows the distribu-
tion of our online LBS. In OSM, each POI comes with a geographic
location under the WGS84 coordinate system.4 Neighbouring POIs
of the OSM POIs from several open-accessed map services are se-
lected by the annotators to enrich the diversity of POI description
and also serve as hard negatives. To simulate the queries’ location in
real scenes, the annotators are asked to randomly select a location
within 1km of corresponding POI for 50% of the queries and ran-
domly select a location in the city for the rest queries. All the anno-
tators have adequate linguistic knowledge and educational/cultural
background to produce appropriate queries. To eliminate biases
during the annotation process, they are instructed with detailed
3Benchmark is available at https://modelscope.cn/datasets/damo/GeoGLUE.
4https://wiki.openstreetmap.org/wiki/Converting_to_WGS84

Table 5: Statistics of train/dev/test splits.

# Query # Candidate POI

Train 50,000 20

Dev 20,000 40

Test (Ranking) 20,000 40
Test (Retrieval) 2,849,754

annotation principles. A quality inspector verifies the annotations
and confirms that each query has exactly one positive POI.

4.2 Benchmark Statistics
GeoTES has a total number of 90,000 queries with an average length
of 17.2 and 2,849,754 POIs with an average length of 13.7. We ex-
tract the geographic surrounding objects for the queries and POIs
from OSM. There are 21,950 lines and 65,722 polygons in our ex-
tracted geographic objects. Table 4 gives the averaged number of
different shapes and relations, each query and POI has more 𝑁𝐸𝐴𝑅
relation and more relations to polygons (ROIs) than lines (roads).
As shown in Table 5, the benchmark is randomly split in to train,
development, and test sets. For the train, development, and ranking
test sets, we provide a list of candidate POIs and ensure that one
exact matched positive POI is contained. The retrieval test set use
the same queries as the ranking test set while no candidate POI
list should be provided. GeoTES is thus a reliable and challenging
benchmark for evaluating both retrieval and ranking models.

5 METHODS
In this section, we present the detailed architecture and pre-training
process of MGeo. Following state-of-the-art multi-modal meth-
ods [2, 16, 19], MGeo is composed of a geographic encoder and
a multi-modal interaction module, as shown in Figure 2. The full
training process of MGeo consists of three steps: (1) we first train
geographic encoder alone to learn representations of GC, and the
trained geographic encoder is fixed in the following stages; (2) text-
GC pairs are then used to pre-train MGeo in a multi-modal way,
by modeling geographic objects along with text and pre-training
with massive text-GC pairs, and MGeo successfully aligns these

https://modelscope.cn/datasets/damo/GeoGLUE
https://wiki.openstreetmap.org/wiki/Converting_to_WGS84
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Figure 2: Architecture of MGeo. Left part shows encoding and pre-training process of geographic encoder and right part shows
the multi-modal pre-training process of MGeo. Word embeddings of text t and GC representations of geographic encoder h are
concatenated together and fed to multi-modal interaction module, which produces final representations ĥ𝑡 for each text token
and ĥ𝑙 for each geographic object.

two modals into a same latent space; (3) MGeo is lastly fine-tuned
on ranking and retrieval tasks and gains significant improvements.

5.1 Geographic Encoder
The geolocation alone is meaningless unless it has GC. Taking a
geolocation 𝑙 as input, geographic encoder maps the GC as a new
modality to dense representations, which contains features of the
surrounding geographic objects {𝑜1, 𝑜2, . . . , 𝑜𝑛}.

5.1.1 Encoding. Geographic encoder can extract the correlations
between query/POI geolocation (point) and their surrounding geo-
graphic objects (line or polygon). Geographic encoder respectively
represents the intrinsic characteristics of geographic objects (i.e., ID,
shape, and map position), the relations (i.e., 𝑁𝐸𝐴𝑅 or 𝐶𝑂𝑉𝐸𝑅𝐸𝐷),
and the relative position as embeddings.

ID. To extract the intrinsic features of geographic objects, the
OSM IDs are mapped to embeddings in a similar way to word
embeddings. The ID embeddings of 𝑜𝑖 are denoted as e𝑑

𝑖
.

Shape. A one-hot function is used to encode the categorical
shape type 𝑜𝑠

𝑖
as a numeric array and to obtain its corresponding

embeddings e𝑠
𝑖
. The shape type embeddings are denoted as e𝑠

𝑖
.

Map position. The absolute position of 𝑜𝑖 in the map e𝑚
𝑖
is pivotal

to distinguishing itself from other geographic objects. The entire
map area as a rectangle is split into a 𝑁 × 𝑁 grid to obtain its scale
factors 𝑠𝑙𝑛𝑔 and 𝑠𝑙𝑎𝑡 for longitude and latitude respectively:

𝑠𝑙𝑛𝑔 =
𝑙𝑛𝑔𝑚𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑛𝑔𝑚𝑙𝑒 𝑓 𝑡

𝑁
, 𝑠𝑙𝑎𝑡 =

𝑙𝑎𝑡𝑚𝑡𝑜𝑝 − 𝑙𝑎𝑡𝑚𝑏𝑜𝑡𝑡𝑜𝑚

𝑁
, (1)

where 𝑙𝑛𝑔𝑚𝑟𝑖𝑔ℎ𝑡 denotes longitude of the map’s right side and so
on. The position of 𝑜𝑖 in the map 𝑜𝑚

𝑖
can thus be calculate with the

scale factors. For example, 𝑜𝑚𝑙𝑒 𝑓 𝑡

𝑖
and 𝑜𝑚𝑏𝑜𝑡𝑡𝑜𝑚

𝑖
are calculated as:

𝑜
𝑚𝑙𝑒 𝑓 𝑡

𝑖
= ⌊ 𝑜

𝑙𝑒 𝑓 𝑡

𝑖
−𝑙𝑛𝑔𝑚𝑙𝑒𝑓 𝑡

𝑠𝑙𝑛𝑔
⌋ ∈ N, (2)

𝑜
𝑚𝑏𝑜𝑡𝑡𝑜𝑚

𝑖
= ⌊ 𝑜

𝑏𝑜𝑡𝑡𝑜𝑚
𝑖

−𝑙𝑎𝑡𝑚𝑏𝑜𝑡𝑡𝑜𝑚

𝑠𝑙𝑎𝑡
⌋ ∈ N. (3)

The discretized position feature of 𝑜𝑖 in the map is then encoded as
e𝑚
𝑖

= {e𝑚𝑙𝑒 𝑓 𝑡

𝑖
, e𝑚𝑏𝑜𝑡𝑡𝑜𝑚

𝑖
, e
𝑚𝑟𝑖𝑔ℎ𝑡

𝑖
, e
𝑚𝑡𝑜𝑝

𝑖
}.

Relation. Similar to the shape type, a one-hot function is used to
encode the relation type 𝑟𝑡

𝑖
of 𝑜𝑖 as a numeric array and to obtain

its corresponding embeddings e𝑡
𝑖
.

Relative Position. To simplify the relative position 𝑟𝑝
𝑖
, we form a

rectangle 𝑜𝑖 of similar size to approximate the shape of 𝑜𝑖 . Each side
of the substituted rectangle (left, bottom, right, and top) is defined
as:

𝑜
𝑙𝑒 𝑓 𝑡

𝑖
= 𝑚𝑖𝑛

(
{𝑙𝑛𝑔𝑜𝑖

𝑗
} 𝑗∈{1,...,𝑚𝑖 }

)
, (4)

𝑜𝑏𝑜𝑡𝑡𝑜𝑚𝑖 = 𝑚𝑖𝑛
(
{𝑙𝑎𝑡𝑜𝑖

𝑗
} 𝑗∈{1,...,𝑚𝑖 }

)
, (5)

𝑜
𝑟𝑖𝑔ℎ𝑡

𝑖
= 𝑚𝑎𝑥

(
{𝑙𝑛𝑔𝑜𝑖

𝑗
} 𝑗∈{1,...,𝑚𝑖 }

)
, (6)

𝑜
𝑡𝑜𝑝

𝑖
= 𝑚𝑎𝑥

(
{𝑙𝑎𝑡𝑜𝑖

𝑗
} 𝑗∈{1,...,𝑚𝑖 }

)
, (7)

where 𝑙𝑛𝑔 denotes longitude and 𝑙𝑎𝑡 denotes latitude of 𝑙𝑜𝑖
𝑗

for sim-

plicity. The relative position 𝑟𝑝
𝑖
= {𝑟𝑝𝑙𝑒 𝑓 𝑡

𝑖
, 𝑟
𝑝𝑏𝑜𝑡𝑡𝑜𝑚
𝑖

, 𝑟
𝑝𝑟𝑖𝑔ℎ𝑡
𝑖

, 𝑟
𝑝𝑡𝑜𝑝
𝑖

} is
then calculated by the normalized distances between 𝑙𝑝𝑞 and each
side of the 𝑜𝑖 . For example, 𝑟𝑝𝑙𝑒 𝑓 𝑡

𝑖
is calculated as:

𝑟
𝑝𝑙𝑒 𝑓 𝑡
𝑖

= 𝑠𝑔𝑛(𝑙𝑛𝑔𝑝𝑞 − 𝑜𝑙𝑒 𝑓 𝑡
𝑖

) ∗𝑚𝑖𝑛
(
𝑘, ⌊𝑘

|𝑙𝑛𝑔𝑝𝑞 − 𝑜𝑙𝑒 𝑓 𝑡
𝑖

|

𝑜
𝑟𝑖𝑔ℎ𝑡

𝑖
− 𝑜𝑙𝑒 𝑓 𝑡

𝑖

⌋
)
+ 𝑘, (8)

where 𝑠𝑔𝑛(·) is the sign function, and ⌊·⌋ is the floor function that
outputs the greatest integer less than or equal to a number. 𝑘 ∈
N is a discretization factor that maps the relative distance ratio
to a discrete number. As a result, we have 𝑟𝑝𝑙𝑒 𝑓 𝑡

𝑖
∈ {0, . . . , 2𝑘}.

The discretized relative position feature is then encoded as e𝑝
𝑖
=

{e𝑝𝑙𝑒 𝑓 𝑡
𝑖

, e𝑝𝑏𝑜𝑡𝑡𝑜𝑚
𝑖

, e
𝑝𝑟𝑖𝑔ℎ𝑡
𝑖

, e
𝑝𝑡𝑜𝑝
𝑖

}.
Finally, the geographic encoder sums these features of 𝑜𝑖 up as:

e𝑖 = e𝑑𝑖 + e𝑠𝑖 +
∑︁

e𝑚𝑖 + e𝑡𝑖 +
∑︁

e𝑝
𝑖

(9)
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(A) Bi-Encoder. (B) Cross-Encoder.

Figure 3: MGeo can use both (A) bi-encoder and (B) cross-
encoder architectures to measure relevance between query
and POI. Dashed line indicates that geolocation of query is
optional. ⊕ denotes element-wise addition.

The intrinsic characteristics of geographic objects are described by
the three components (e𝑑 , e𝑠 , and e𝑚). e𝑑 is the unique identifier
of a geographic object, e𝑠 distinguishes road from ROI, e𝑚 depicts
the positional relation among different geographic objects. The
other two components (e𝑡 and e𝑝 ) describe correlations between
geolocation and geographic objects. After encoding surrounding
geographic objects as a sequence {e1, . . . , e𝑚}, geographic encoder
employs multi-layer bidirectional transformers [33] to learn inter-
actions among them. Following previous work [31], a 𝐺𝐶 token
is prepended at the beginning like the 𝐶𝐿𝑆 token. The outputs of
geographic encoder are therefore denoted as {h𝐺𝐶 , h1, . . . , h𝑚}.

5.1.2 Training. We design two tasks to train geographic encoder
and it is fixed in later uses, i.e., masked geographic modeling (MGM)
and geographic contrastive learning (GCL).

MGM. Like thewidely usemasked languagemodeling (MLM) [5],
MGM aims at predicting masked geographic features, i.e., OSM IDs,
geometric types, each side of the substituted rectangle, relation
types, and relative positions. The MGM loss 𝐿𝑀𝐺𝑀 is calculated by
summing up the masked loss of all features.

GCL. This task is related to multiple geolocations {𝑙𝑝𝑞1 , . . . , 𝑙
𝑝𝑞

𝑏𝑠
}

in a batch of size 𝑏𝑠 . We begin with the definition of the real-world
geographic distance matrix H ∈ R𝑏𝑠×𝑏𝑠 defined as:

H𝑖, 𝑗 = 𝜎
(
−∥ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (𝑙𝑝𝑞

𝑖
, 𝑙
𝑝𝑞

𝑗
)∥N

)
, 𝑖, 𝑗 ∈ {1, . . . , 𝑏𝑠}, 𝑖 ≠ 𝑗, (10)

whereℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 is the haversine function [23] that calculates spher-
ical distance between geolocations, ∥ · ∥N is gaussian normalization
function, and 𝜎 is sigmoid function that maps distance to range
(0, 1). As the latent distance between embeddings in the output
space should correspond to their real-world geographic distance,
we use ℎ𝐺𝐶 as the representation of geolocation 𝑙𝑝𝑞 with GC and
calculate the latent distance matrix H̃ ∈ R𝑏𝑠×𝑏𝑠 as:

H̃𝑖, 𝑗 = ⟨∥h𝑖𝐺𝐶 ∥𝐿2 , ∥h
𝑗

𝐺𝐶
∥𝐿2 ⟩ (11)

where ⟨·⟩ denotes the doc-product function and ∥ · ∥𝐿2 is 𝐿2 normal-
ization function. We use KL-divergence to measure the similarity
between H and H̃. GCL loss 𝐿𝐺𝐶𝐿 is then calculated by:

𝐿𝐺𝐶𝐿 =

𝑏𝑠∑︁
𝑖=1

𝐷𝐾𝐿
(
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝑖 ) ∥ 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (H̃𝑖 )

)
(12)

where 𝐷𝐾𝐿 (· ∥ ·) denotes the KL-divergence, and the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
function is applied to transform H𝑖 and H̃𝑖 to a distribution.

The training loss 𝐿𝑔 of geographic encoder is thus calculated by:

𝐿𝑔 = 𝐿𝑀𝐺𝑀 + 𝐿𝐺𝐶𝐿 (13)

Using such an training process, geographic encoder is capable of
modeling GC in a given GIS.

5.2 Multi-Modal Pre-Training
The input of MGeo pre-training is a pair of text and geolocation (𝑡 ,
𝑙). The pre-training data can come from diverse sources, e.g., click
of users or position of delivery clerks. The multi-modal training
aims at aligning these two modals into one latent space. Word
embeddings are used to map text into a sequence of vectors. The
geographic encoder provides the GC embeddings given 𝑙 . The two
embeddings are then concatenated together and fed into multi-layer
bidirectional Transformers.

We use three tasks to learn interaction between GC and text,
i.e., single-modal MLM, multi-modal MLM, and multi-modal MGM.
These tasks are trained in turns. Single-modal MLM is the original
MLM task used in BERT, which randomly masks and replaces the
input text with𝑀𝐴𝑆𝐾 token. The outputs of geographic encoder are
removed for single-modal MLM. While multi-modal MLM predicts
the masked token relying on the entire GC and part of textual
information. Multi-modal MGM randomly masks and replaces the
input geographic features with 𝑀𝐴𝑆𝐾 and predicts them relying
on entire textual information and part of GC.

5.3 Relevance Measurement
MGeo can use both bi-encoder and cross-encoder architectures, as
shown in Figure 3. Bi-encoder encodes query and POI separately
for efficiency issues. It can be used in both retrieval and ranking
phases. In practice, the GC of a POI or query is encoded by geo-
graphic encoder. Since user location is not always available due
to privacy issues or limited hardware, the GC of query can be ab-
sent. The outputs are then concatenated with word embeddings.
Transformer-based multi-modal interaction module then produces
hidden states as final representations. We compute the similarity
score of a query and POI pair by the cosine similarity between
their 𝐶𝐿𝑆 representations, i.e., ĥ𝑝 and ĥ𝑝 . Bi-encoder calculates
similarity scores between a query and all the POIs for retrieval task.

Different from bi-encoder, cross-encoder concatenates every
query-POI pair together before being fed to multi-modal interaction
module. Cross-encoder allows fine-grained token-level interaction
between query and POI, it usually provides a more accurate esti-
mation of relevance but is less efficient. Therefore, cross-encoder
is only used in ranking phase as usual. The GC of query or POI
is encoded separately by geographic encoder. The GC of query
is also optional. We concatenate query textual embeddings, POI
textual embeddings, query GC embeddings (optional), and POI GC
embeddings together, which are then fed to multi-modal interaction
module. Particularly, we use geographic discriminator to facilitate
geographic comparison between GC of query and POI. Geographic
discriminator adds embeddings to outputs of geographic encoder to
distinguish query GC from POI GC. Like the segment embeddings
in BERT, embeddings of geographic discriminator are randomly
initialized and trainable. We fed the hidden states of 𝐶𝐿𝑆 ĥ𝑝𝑞

𝐶𝐿𝑆
to a

multi-layer perceptron (MLP) to produce similarity scores.
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Table 6: Ranking results of bi-encoder and cross-encoder PLMs. Bold indicates the best of each column.

Bi-Encoder Cross-Encoder

PLM Recall@1 Recall@3 Recall@5 MRR@5 Recall@1 Recall@3 Recall@5 MRR@5

BERT 58.83 79.40 86.24 69.60 81.52 91.11 94.10 86.53
RoBERTa 68.52 85.41 90.25 76.15 83.20 93.09 95.77 88.30
ERNIE 58.18 81.86 88.96 70.43 81.82 91.79 94.73 87.01
StructBERT 69.09 86.29 91.09 77.96 83.51 93.21 95.67 88.53

BERT DA 72.49 89.18 93.48 81.03 83.24 92.92 95.63 88.25
StructBERT 74.30 89.78 94.06 82.28 83.65 93.33 95.92 88.61

BERT MGeo
w/o query GC

74.86 90.61 94.53 82.93 85.11 94.42 96.75 89.86
StructBERT 75.37 89.99 93.96 82.89 84.72 93.85 96.16 89.40

BERT MGeo 76.04 91.24 95.18 83.85 85.89 95.48 97.48 90.74
StructBERT 76.07 90.68 94.50 83.57 86.49 95.55 97.62 91.10

Table 7: Model sizes of pre-trained and fine-tuned models.

Pre-Train Fine-Tune

BERT-DA 118M 102M
BERT-MGeo 213M 129M

6 EXPERIMENTS
In this section, we compare the proposed MGeo with several strong
baselines on GeoTES.

6.1 Setup
6.1.1 Tasks. The experiments are conducted on two tasks, i.e.,
ranking and retrieval. The two tasks use the same train, develop-
ment, and test sets as shown in Table 5. A list of candidate POIs
that contains the positive POI is provided for the ranking test set.
Both bi-encoder and cross-encoder are evaluated on ranking task.
Since retrieval task requires searching the full POI corpus, and
cross-encoder needs too much computing resources to complete
retrieval task, only bi-encoder is evaluated on retrieval task.

6.1.2 Evaluation metrics. Following previous IR work [24], we
use Recall and Mean Reciprocal Rank (MRR) at top 𝑘 ranks to
evaluate the performance on both tasks. Recall@𝑘 calculates the
proportion of queries that have the positive POI contained in the
top-𝑘 candidates, and MRR@𝑘 calculates the averaged reciprocal
of the rank at which the positive POI is placed. We report the
evaluation scores on the test set of models that perform best on the
development set during training.

6.1.3 PLM Baselines. We first evaluate the performance of four
widely used PLMs with the base model size on GeoTES, including
BERT [5], RoBERTa5 [21], ERNIE 3.0 [30], and StructBERT [34].
We further apply domain-adaptive pre-training techniques (DA)
on BERT and another top-performing model. DA is a widely used
single-modal pre-training baseline [9]. For a fair comparison, do-
main corpus used in DA is the same as that used in our proposed
multi-modal geographic pre-training (MGeo), except that MGeo
has additional GC along with query and POI.
5https://huggingface.co/clue/roberta_chinese_base

6.1.4 Hyperparameters. The architecture of the multi-modal in-
teraction module is multi-layer transformers. The model sizes are
listed in Table 7.

Geographic Encoder. All geographic feature embeddings are set
to 256. The discretization factor 𝑘 is 10 and the grid number 𝑁
is 2000. Geographic encoder has 4 layers of transformer with 256
hidden sizes. The mask probability is 0.15. The training batch size
is 512. We use AdamW as optimizer with learning rate being 1e-4,
weight decay being 0.02. We train geographic encoder for 30 epochs
and take the last epoch checkpoint.

Pre-Training. The training batch size is 512. We use AdamW as
optimizer with learning rate being 5e-5, weight decay being 0.02.
We train for 10 epochs and take the last epoch checkpoint.

Fine-Tuning. For bi-encoder models, every training step has 56
queries, each has 20 candidates. We use AdamW as optimizer with
learning rate being 5e-5, weight decay being 0.02. Specifically,
ERNIE and StructBERT don’t converge in this learning rate, we
change it to 5e-6. We train geographic encoder for 10 epochs.

For cross-encoder models, every training step has 24 queries and
the learning rate for RoBERTa is 5e-6. Other settings are the same
as bi-encoder.

6.2 Ranking Results
Table 6 gives the ranking results of both bi-encoder and cross-
encoder PLMs. As the original StructBERT outperforms the other
generic PLMs, it is used for further DA. The generic PLMs directly
fine-tuned on the downstream tasks show a low performance, which
indicates that these two tasks are challenging. Since cross-encoder
can make fine-grained interactions among input features, while
bi-encoder only interacts with the𝐶𝐿𝑆 representations for the sake
of efficiency, cross-encoder generally outperforms bi-encoder by a
large margin.

By applying DA on bi-encoder, PLMs could gain an advantage
over the generic ones. However, DA models consider only the tex-
tual modality and neglect the geographic modality. Through multi-
modal pre-training, MGeo without query GC raises 2.37% (resp.,
1.07%) point of Recall@1 on BERT-DA (resp., StructBERT-DA) by

https://huggingface.co/clue/roberta_chinese_base
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Table 8: Ranking results of more baselines.

Recall@1

Bi-Encoder

DSSM [38] 34.59
DPAM [38] 44.15
PALM [38] 45.51
BERT 58.83
ColBERT [15] 62.36
Poly-Encoder [13] 49.87
BERT-MGeo 76.04

Cross-Encoder
BERT 81.52
ERNIE-GeoL [11] 82.94
BERT-MGeo 85.89

Table 9: Retrieval results of bi-encoder.

BERT BERT-DA BERT-MGeo

Recall@1 21.70 51.76 52.70
Recall@5 29.32 60.82 63.39
Recall@20 35.70 67.08 70.49
Recall@50 40.30 71.61 75.00
MRR@5 24.58 55.29 56.79

bridging the gap between query text and POI GC. After being ac-
companied by query GC, MGeo further shows a 3.55% (resp., 1.77%)
improvement in Recall@1 over DA models with the help of incor-
porating correlations between query GC and POI text, as well as
between query GC and POI GC. It is worth noting that GC of half
the training and test queries use random locations to simulate the
arbitrary geolocation of users, as described in Section 4. The results
show MGeo is robustness and it may gain more improvements if
the queries have more precise geolocations.

In cross-encoder, MGeo also shows superiority over baselines.
DA brings fewer benefits on PLMs than it does in bi-encoder, i.e.,
1.72% on BERT and 0.14% on StructBERT. However, improvements
brought by incorporating the new geographic modal are consistent.
MGeo without query GC gains 1.87% (resp., 1.07%) Recall@1 on
BERT-DA (resp., StructBERT-DA). Together with query GC, MGeo
boost DA models by 2.65% (resp., 2.84%) in Recall@1, showing
effectiveness of multi-modal interaction.

6.2.1 More Baseline Comparisons. Besides the PLM baselines, we
also compare with more query-POI matching baselines, includ-
ing two SOTA text-matching models, i.e., ColBERT [15] and Poly-
Encoder [13]. ColBERT uses a late interaction architecture to en-
hance bi-encoder model. Similarly, Poly-Encoder uses attention
mechanism to capture richer interactions between query and POI.
Detailed introductions of DSSM, DPAM, and PALM can be found
in [38]. ERNIE-GeoL is a strong PLM cross-encoder baseline in-
troduced in [11]. Since the data and code of ERNIE-GeoL are not
released, we only adopt the pre-training objectives. The results on
the ranking task are shown in Table 8. For bi-encoder, BERT-MGeo
still outperforms ColBERT and Poly-Encoder, which capture more
fine-grained interactions between query and POI. For cross-encoder,
ERNIE-GeoL uses specific pre-training objectives to capture static

Table 10: Inference time in seconds.

Bi-Encoder Cross-Encoder

BERT-DA 0.0219 0.0396
BERT-MGeo w/o query GC 0.0205 0.0414
BERT-MGeo 0.0269 0.0466

Table 11: Influence of different geographic object types.

Bi-Encoder Cross-Encoder

Recall@1 MRR@5 Recall@1 MRR@5

Line 74.56 82.57 83.71 88.88
Polygon 74.26 82.51 84.84 89.85

Both 76.04 83.85 85.89 90.74

geographic knowledge and outperforms BERT. While BERT-MGeo
capture dynamic GC and outperforms ERNIE-GeoL.

6.3 Retrieval Results
Bi-encoder is also evaluated on the retrieval task, which focuses on
finding the relevant POIs rather than ranking the correct POI at the
top. Table 9 reports Recall andMRRmetrics. Compared to BERT-DA,
MGeo improves 3.41% Recall@20. The results demonstrate that the
effectiveness of MGeo in bi-encoder architecture stays consistent
when the size of candidates becomes 100,000 times larger.

6.4 Inference Time
The inference time in seconds on 1 NVIDIA V100 GPU of bi-encoder
and cross-encoder models is listed in Table 10. For bi-encoder, we
only count the time of query encoding, since the document can be
encoded in advance in many industrial scenarios. We use 26 queries
and 1040 documents for inference.

6.5 Ablation Study
Since we use the same bi-encoder models for both retrieval and
ranking tasks, the ablation study is mainly conducted on ranking
task of BERT-based models.

6.5.1 Geographic Object. We first study the influence of training
queries with GC. We randomly remove GC of the same propor-
tion from the training, development, and test queries. As shown
in Figure 4, the performance is impaired when a small proportion
of queries contain GC. This decrease comes from a larger propor-
tion of noise. Taking 30% of queries having GC as example, there
are already 15% of GC inputs are random (half GC are randomly
selected). Since it is difficult to distinguish query without GC from
query without geographic object (but with geolocation), the rest
queries without GC can be considered as noise too. Thus we have
in total 75% queries with noisy GC, which damages model perfor-
mance. When noises proportion becomes smaller than 65% (70%
query with GC), the performance is better than training without
query GC.



MGeo: Multi-Modal Geographic Language Model Pre-Training SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Figure 4: RankingMRR@5 for different percentage of queries
that have GC.

(A) Bi-Encoder. (B) Cross-Encoder.

Figure 5: Ranking Recall@1 for (A) bi-encoder and (B) cross-
encoder with different query types.

The influence of different geographic object types is reported in
Table 11. There is not a huge gap between line and polygon for bi-
encoder, while cross-encoder can perform better with only polygon
than only line, as there are more polygons than lines in the GIS.
This also suggests that cross-encoder is better at capturing the fine-
grained correlations than bi-encoder. Nevertheless, using either
line or polygon is better than the single-modal baselines. Besides,
bi-encoder and cross-encoder can have a better performance when
the two types of geographic objects both present.

6.5.2 Query Type. Figure 5 shows the performance on three query
types, i.e., address, street number, and colloquial. Bi-encoder models
perform best on address description, while cross-encoder models
perform best on street number description. This suggests that cross-
encoder is better at capturing fine-grained correlations. Colloquial
query contains many daily expressions, which rarely appear in
domain corpus. Thus BERT-DA is even worse than BERT on it.
However, the use of GC help reduce this shortcoming of DA.

6.5.3 Amount of Training Data. We study the performance ofMGeo
with different amounts of training data. As shown in Figure 6, the
dashed line is used for representing BERT-DA and the dotted line
for the original BERT.With only 30% of training data, the bi-encoder
and cross-encoder using MGeo can outperform the BERT baseline
by a large margin.

6.5.4 Query Incompleteness. POI suggestion also plays an impor-
tant role in LBS, where the name of POIs are listed when the input
is unfinished. To simulate such scenario, we also evaluate MGeo

(A) Bi-Encoder. (B) Cross-Encoder.

Figure 6: Ranking Recall@1 for (A) bi-encoder and (B) cross-
encoder with different amounts of training data.

(A) Bi-Encoder. (B) Cross-Encoder.

Figure 7: Ranking Recall@1 for (A) bi-encoder and (B) cross-
encoder with different percentage of query incompleteness.

on incomplete queries by truncating the trailing characters. Fig-
ure 7 shows the performance with different truncation ratio of the
test queries. The results demonstrate that bi-encoder using MGeo
could outperform the BERT baseline with full queries with a small
truncation ratio. Whereas the cross-encoder could not, since the
semantic similarity is more important for cross-encoder.

7 CONCLUSION
In this paper, we formalize the important concept of Geographic
Context (GC), which is indispensable for real-world human POI ex-
ploration process. We propose a multi-modal geographic language
model MGeo, which considers GC as a newmodality. Therefore, GC
can be represented together with text. In addition, we build a new
open-source large-scale benchmark GeoTES to facilitate further
research on the query-POI matching topic. Extensive experiments
are conducted to evaluate our proposed method on the state-of-the-
art PLMs, and the detailed analyses demonstrate that MGeo can
significantly outperform other baselines. Even though geolocation
of user may be absent and query has no GC, MGeo can still obtain
improvements over the baselines, showing its capability of model-
ing text-to-text, GC-to-GC and text-to-GC correlations. For future
work, other modalities like POI image can be further explored, as
well as more inventive geographic encoder. Besides, our proposed
GC modeling has the potential to boost all geography-related tasks.
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