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ABSTRACT
As an indispensable personalized service in Location-based Social
Networks (LBSNs), the next Point-of-Interest (POI) recommenda-
tion aims to help people discover attractive and interesting places.
Currently, most POI recommenders are based on the conventional
centralized paradigm that heavily relies on the cloud to train the
recommendation models with large volumes of collected users’ sen-
sitive check-in data. Although a few recent works have explored
on-device frameworks for resilient and privacy-preserving POI
recommendations, they invariably hold the assumption of model
homogeneity for parameters/gradients aggregation and collabora-
tion. However, users’ mobile devices in the real world have various
hardware configurations (e.g., compute resources), leading to het-
erogeneous on-device models with different architectures and sizes.
In light of this, We propose a novel on-device POI recommendation
framework, namely Model-Agnostic Collaborative learning for on-
device POI recommendation (MAC), allowing users to customize
their own model structures (e.g., dimension & number of hidden
layers). To counteract the sparsity of on-device user data, we pro-
pose to pre-select neighbors for collaboration based on physical
distances, category-level preferences, and social networks. To assim-
ilate knowledge from the above-selected neighbors in an efficient
and secure way, we adopt the knowledge distillation framework
with mutual information maximization. Instead of sharing sensitive
models/gradients, clients inMAConly share their soft decisions on a
preloaded reference dataset. To filter out low-quality neighbors, we
propose two sampling strategies, performance-triggered sampling
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and similarity-based sampling, to speed up the training process and
obtain optimal recommenders. In addition, we design two novel
approaches to generate more effective reference datasets while pro-
tecting users’ privacy. Extensive experiments on two datasets have
shown the superiority of MAC over advanced baselines.
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1 INTRODUCTION
Recently, the rapid growth of Location-based Social Networks (e.g.,
Weeplace and Foursquare) has boosted the popularity of next Point-
of-Interest (POI) recommendation, which facilitates diverse appli-
cations such as mobility prediction, route planning, and location-
based advertising [22]. In personalized POI recommendation, vari-
ous state-of-the-art methods based on attentive neural networks
[25, 29, 45] and graph networks [23, 37] have recently achieved qual-
ity recommendation performance given large volumes of historical
check-in data. To support large-scale recommendation services, a
powerful cloud server is commonly required to host all users’ data,
and to perform training and inference of the recommender, mak-
ing the maintenance of such services monetarily and ecologically
expensive [28]. In addition, viewing privacy as a priority, users are
increasingly reluctant to share their personal check-in trajectories
with the service provider, impeding recommendation quality. Be-
sides, in this paradigm, users’ devices only act as a terminal for
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transmitting user data and displaying server-generated recommen-
dations. As a result, could-based POI recommendation is overly
reliant on the server’s capacity and internet connectivity [33, 46],
weakening its resilience.

As such, recent research resorts to on-device POI recommenda-
tions [16, 28, 33] to counter the shortfalls of centralized paradigms.
The core objective of this new paradigm is to deploy an accurate yet
relatively lightweight recommendation model on the user side, such
that recommendations can be generated in a fully on-device fashion
with locally acquired user data. To fulfill this goal, a straightforward
solution in the literature is based onmodel compression [1, 8, 17]. In
the context of on-device POI recommendation, model compression
methods aim to condense a sophisticated POI recommender into
a compact model to support on-device inference. For instance, a
teacher-student distillation framework is utilized in [33] to trans-
fer knowledge from the powerful teacher model to the compact
student model. The well-trained student model is then deployed
on mobile devices for all users. However, the framework is still
resource-intensive due to the server’s full engagement in training
both the teacher and student models. Furthermore, all users are
assigned the same model and there are no update mechanisms to
account for the dynamics of spatial activities and diversity of user
interests, leading to suboptimal performance.

Consequently, recent research is more inclined towards collab-
orative learning (CL) frameworks, which allow models/gradients
sharing. Thus, CL is less demanding on complex model designs and
more suited to the dynamic nature of POI recommendation tasks.
In CL, federated learning-based POI recommenders (e.g. [16]) are
a highly representative solution, where users train their models
locally while retaining all private data on-device. To avoid sparsity
of local data, a central server is to iteratively collect and aggregate
these trained local models, and then redistribute the aggregated
model to all users. However, aggregating all local models into a
single global model helps the recommender to generalize, but ampli-
fies bias towards active users’ preference [34]. So, further remedies
are proposed in federated POI recommenders [19, 32, 39], which
group similar users and perform group-wise aggregation to allow
for more personalization of learned on-device models.

Despite the improved performance and flexibility over model
compression approaches, CL-based methods still bear deficiencies
for on-device POI recommendations in the real world. Firstly, a cen-
tral server is always involved throughout the learning process of
federated POI recommenders. This entanglement only gets stronger
with the need for repetitively identifying user groups via model
parameter comparison or clustering on the server. Given that, the
semi-decentralized learning paradigm proposed by [28] can be
viewed as one step above federated recommenders that can signifi-
cantly lower the dependency on a central server. In short, the server
only needs to provide pretrained model parameters and assign sim-
ilar users to the same group, which is a one-off engagement in the
early stage of training. Afterward, users’ on-device models are opti-
mized by alternating local training and inter-device communication
within the same user group. Unfortunately, as the intra-group col-
laborations require exchanging raw model parameters between
users [28], it breaks the purposes of privacy and communication
efficiency in a decentralized POI recommender. Secondly, there
has been a strong assumption that user-specific knowledge can be

aggregated via model parameters or gradients. However, the model
homophily assumption significantly harms the practicality of such
decentralized POI recommendation paradigms, as in practice, each
on-device model should have a customized structure to meet the
specific device capacity [7]. With an exponentially increasing di-
versity of user devices capable of delivering POI recommendations,
this assumption has to be relaxed to allow a host of structurally het-
erogeneous on-device models to be jointly optimized. As such, there
still lacks a capable CL-based POI recommendation paradigm that
can accommodate heterogeneous on-device recommenders, mini-
mize dependency on the central server, and ensure all on-device
recommenders’ expressiveness without incurring privacy breaches
or a heavy communication overhead.

To this end, we propose a novel on-device POI recommendation
framework, namely Model-Agnostic Collaborative learning for on-
device POI recommendation (MAC). In MAC, users are allowed to
tailor the model configurations to suit their device capacities. As
the POI embeddings are the major source of memory consumption
in the recommender [24, 33], we propose to store embeddings only
for POIs with high relevance to the current location context on the
user device. The core solution to model-agnostic CL in MAC is a
novel knowledge distillation (KD) scheme that facilitates knowl-
edge exchange between heterogeneous recommendation models.
Instead of sharing sensitive model parameters/gradients for equidi-
mensional aggregations in homogeneous settings, models in MAC
only share their soft decisions on a reference dataset shared among
all users. In the KD process, we let models mutually incorporate
knowledge from their neighbors with mutual information maxi-
mization w.r.t. the soft decisions exchanged. On the one hand, using
soft decisions on the reference data bypasses the equidimensional
constraint for learning decentralized models, thus scaling CL-based
POI recommendation to a larger user base with heterogeneous
devices and on-device models. On the other hand, the soft deci-
sions generated from the desensitized reference data are immune
to breaching user-sensitive information, which also brings a sub-
stantially small communication footprint compared with model
aggregation [28] approaches. Apparently, for each user, letting her
model collaborate with all other models is computationally prohib-
itive and prone to lack of personalization. Given this, we propose
identifying neighbors for communication regarding physical dis-
tances, category preferences, and social network distance. However,
simple preliminary screening fails to filter out worthless clients
and we further propose two neighbor sampling strategies, namely
performance-triggered sampling and similarity-based sampling, to
speed up the training process and obtain optimal recommenders.
Another concern of the normal knowledge distillation is that pre-
vious works fail to consider the source of the reference datasets,
and they just split the whole dataset to get the reference dataset
[2, 41]. However, simply treating users’ historical data as reference
datasets has privacy concerns, and it will fail in the cold start sce-
nario. Considering this, we design two novel approaches, namely
transformative generating and probabilistic generating, to build
more practical and effective reference datasets while protecting
users’ privacy. The primary contributions of this study are as fol-
lows:
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• We propose a novel on-device POI recommendation frame-
work, namely Model-Agnostic Collaborative learning for on-
device POI recommendation (MAC), where users are allowed
to tailor the model configurations and store embeddings only
for POIs with high relevance to the current context. The core
solution to model-agnostic collaborative learning (CL) is a
novel knowledge distillation (KD) scheme that facilitates
knowledge exchange between heterogeneous recommenda-
tion models.

• To filter out low-quality neighbors, we design two sampling
strategies, namely performance-triggered and similarity-based
sampling, to speed up the training process and obtain op-
timal user-specific recommenders. In addition, we propose
two novel approaches, namely transformative generating
and probabilistic generating, which can build more practical
reference datasets while protecting users’ privacy.

• We evaluate MAC with two real-world datasets. The experi-
mental results show the effectiveness and efficiency of the
proposed model in terms of privacy protection, recommen-
dation accuracy, and the utilization efficiency of on-device
computing resources.

2 PRELIMINARIES
In this section, we first introduce important notations used in this
paper and then formulate our core task.

We denote the sets of users𝑢, POIs 𝑝 and categories 𝑐 asU, P, C,
respectively. Each POI 𝑝 ∈ P is associated with a category tag (e.g.,
entertainment or restaurant) 𝑐𝑝 ∈ C and coordinates (𝑙𝑜𝑛𝑝 , 𝑙𝑎𝑡𝑝 ).

Definition 1: Check-in Sequence. A check-in activity of a
user indicates a user 𝑢 ∈ U has visited POI 𝑝 ∈ P at times-
tamp 𝑡 . By sorting a user’s check-ins chronologically, a check-in
sequence contains𝑀𝑖 consecutive POIs visited by a user𝑢𝑖 , denoted
by X(𝑢𝑖 ) = {𝑝1, 𝑝2, ..., 𝑝𝑀𝑖

}.
Definition 2: Category Sequence. A category sequence substi-

tutes all POIs in the check-in sequence X(𝑢𝑖 ) with their associated
category tags, denoted by X𝑐 (𝑢𝑖 ) = {𝑐𝑝1 , 𝑐𝑝2 , ..., 𝑐𝑝𝑀𝑖

}.
Definition 3: Region. A region 𝑟 is essentially a geograph-

ical segment that can provide additional information about the
POIs within it. Without any assumptions on predefined city dis-
tricts/suburbs, we obtain a set of regions R by applying 𝑘-means
clustering [30] on all POIs’ coordinates in our paper.

Definition 4: Geographical Reference Dataset. A geograph-
ical reference dataset D𝑔 (𝑟 ) = {X𝑣}𝑉𝑟𝑣=1 for region 𝑟 contains 𝑉𝑟
anonymous check-in sequences. Each region has its dedicated,
unique reference dataset, of which the check-in activities only cover
POIs in region 𝑟 . Each user 𝑢 only holds region-specific reference
datasets of regions she is currently or previously at.

Definition 5: Semantic Reference Dataset. A semantic ref-
erence dataset D𝑠 = {X𝑐

𝑧 }𝑍𝑧=1 contains 𝑍 anonymous categorical
sequences covering all POI categories C. The semantic reference
dataset is universal and shared among all users. We will detail our
strategies for generating both D𝑠 and D𝑔 in Section 3.

Task 1: Decentralized Next POI Recommendation. In MAC,
the roles of devices/users and the central server are defined below:

• User/Device: Each user𝑢𝑖 holds her dataX(𝑢𝑖 ),X𝑐 (𝑢𝑖 ) and
a structurally personalized model 𝜙𝑖 (·) that jointly trained

with the local data and enhanced by collaborating with other
users. To save storage, we assume that the model 𝜙𝑖 (·) only
stores the embeddings of POIs from the regions she is cur-
rently or previously at, denoted by 𝑟 ∈ R(𝑢𝑖 ).

• Server: The server is responsible for identifying neighbor
sets for all users with the low-sensitivity data collected, as
well as gathering reference datasets and transmitting this
information back to users.

Then, by enabling model-agnostic collaborations between users,
we aim to learn a performant local model for each user, which
estimates a ranked list of possible POIs for her next movement.

3 THE FRAMEWORK
This section introduces our design of the MAC framework, where
an overview is depicted in Figure 1. The main components include:
(1) A local objective function that guides the optimization of each
user’s on-devicemodel. (2) Aneighbor identification process for
securely identifying cohesive user groups, operated under the coop-
eration between local devices and the central server. (3) Two data
generation methods for constructing quality yet anonymous ref-
erence datasets. (4) A knowledge distillation-based collabora-
tive learning scheme with neighbor sampling that allows re-
fined knowledge sharing within model-agnostic user groups.

3.1 Local Objective Function
The main objective of MAC is to enhance personalized POI recom-
menders that are locally trained with users’ own check-in histories.
To obtain locally trained recommenders at the first place, we define
the following local objective function:

𝐿𝑙𝑜𝑐 (𝑢𝑖 ) = 𝑙 (𝜙𝑖 (X(𝑢𝑖 )) ,Y(𝑢𝑖 )) , (1)

where 𝜙𝑖 (X(𝑢𝑖 )) is the prediction made by the recommender 𝜙𝑖 (·)
givenX(𝑢𝑖 ). In the POI recommendation setting, the predictions are
made successively on historical POI sequences {𝑝1}, {𝑝1, 𝑝2}, ..., {𝑝1,
𝑝2, ..., 𝑝𝑀𝑖−1}, andY(𝑢𝑖 ) = {𝑝2, 𝑝3, ..., 𝑝𝑀𝑖

} is the set of correspond-
ing ground truth POIs. 𝑙 is the loss function (i.e., cross-entropy in
our case) to quantify the prediction error. It is worth noting that,
MAC is compatible with most of the deep neural network POI rec-
ommenders as its base model, where the key innovation of our work
lies in the distributed collaborative learning (CL) paradigm that
coordinates with individual POI recommenders deployed on-device.

3.2 Neighbor Identification
To alleviate data scarcity compared with learning individual on-
device recommenders in silos and reduce possible noise and over-
head compared with communicating with all user devices, each
user device 𝑢𝑖 in MAC is allowed to exchange knowledge with its
neighbors, which are a subset of users having high affinity to𝑢𝑖 . For
a robust CL process, we present two parallel strategies to identify
quality neighbors for 𝑢𝑖 below.

Geographical Neighbors. Given the location-sensitive nature
of POI recommendation tasks, users have high geographical affinity
if they frequently visit venues in the same region 𝑟 ∈ R, thus mak-
ing geographically similar users’ information mutually beneficial
for future movement prediction. We term such users as geographi-
cal neighbors of 𝑢𝑖 , denoted by G(𝑢𝑖 ). As mentioned above, with
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Figure 1: The overview of our proposed MAC.

a moderate granularity of R, we can identify a relatively dense
neighbor set without risking the exposure of user privacy. Formally,
we use R(𝑢𝑖 ) = {𝑟 𝑖0, 𝑟

𝑖
1, 𝑟

𝑖
2, ..., 𝑟

𝑖
𝑅𝑖
} to represent all regions visited by

𝑢𝑖 , where 𝑟 𝑖0 denotes the user’s current region (that corresponds
to 𝑝𝑀𝑖

) while all others are regions the user has been to. In our
definition, for two users𝑢𝑖 and𝑢 𝑗 , only if𝑢 𝑗 has visited𝑢𝑖 ’s current
region, i.e., 𝑟 𝑖0 ∈ R(𝑢 𝑗 ), 𝑢 𝑗 is regarded as the geographical neighbor
of𝑢𝑖 . Note that, this relationship is directional, and we only identify
𝑢𝑖 ’s neighbors via 𝑟 𝑖0 instead of all historical regions, because the
prediction on 𝑢𝑖 ’s next POI is mainly based on her most recent
check-in 𝑝𝑀𝑖

.
Semantic Neighbors. Meanwhile, users’ relevance is mani-

fested in not only being physically close to each other, but also
being similar at the semantic level. That is, even if being geograph-
ically distant, users can be highly relevant if their visited POIs fall
into the same categories [23], and we term such users as seman-
tic neighbors of 𝑢𝑖 , denoted by S(𝑢𝑖 ). On this basis, we leverage
category-level user preferences to quantify two users’ semantic sim-
ilarity. Formally, we use 𝐶𝑃 (𝑢𝑖 ) = {P(𝑐1), P(𝑐2), ...P(𝑐 |C |)} to de-
note each user’s distribution over all |C| POI categories, which can
be easily observed from X𝑐 (𝑢𝑖 ). Then, we adopt Kullback-Leibler
(KL) divergence [13] to quantify the distance between two users’
categorical preferences:

𝑑𝑐𝑎𝑡 (𝑢𝑖 , 𝑢 𝑗 ) = 𝐾𝐿
(
𝐶𝑃 (𝑢𝑖 ) | |𝐶𝑃 (𝑢 𝑗 )

)
. (2)

For user𝑢𝑖 , we regardℎ userswith the smallest distances𝑑𝑐𝑎𝑡 (𝑢𝑖 , 𝑢 𝑗 )
as semantic neighbors. we also account for the explicit social con-
nections by adding users who are actual friends with 𝑢𝑖 into S(𝑢𝑖 ).

Notably, in our decentralized setting, with their own check-in
data, users cannot get the information to decide their geographi-
cal/semantic neighbors. As such, a central server is maintained to
collect related regions R(𝑢𝑖 ) and categorical preferences 𝐶𝑃 (𝑢𝑖 )
computed from X𝑐 (𝑢𝑖 ), and thus, the server can inform all users
of their neighbor IDs. Compared with transmitting raw trajecto-
ries or models, the privacy risk of uploading related regions and
categorical preferences is substantially lower [28].

3.3 Generating Anonymous Reference Data
Given the geographical neighbors G(𝑢𝑖 ) and semantic neighbors
S(𝑢𝑖 ), the new challenge is how to extract their knowledge to en-
hance each user’s personalized model. Although model aggregation

has been proven effective in previous works [16, 28], it requires all
participants to hold homogeneousmodels, and the recommendation
utility is restricted by the device with the least computational re-
sources. Thus, parameter sharing is impractical with the increasing
diversity of personal devices and their varying computational capac-
ity. As a solution, we propose a novel knowledge distillation-based
CL method. Rather than transmitting gradients or weights, clients
only need to share their soft decisions on desensitized reference
datasets with their neighbors. Essentially, with the same reference
dataset, those generated soft decisions are a compact characteriza-
tion of each on-device model. Besides, compared with exchanging
gradients/models, the use of soft decisions can substantially lower
the communication cost and is far less sensitive.

Previous CL frameworks [2, 41] have tried assigning the same
reference dataset across all users to facilitate such model-agnostic
knowledge exchange, but they are subject to strong limitations in
POI recommendation tasks. Firstly, the reference dataset is sup-
posed to cover all regions’ POIs, allowing all users to produce
probability distributions that are mutually comparable. Apparently,
this will harm the quality of soft decisions, since each user’s local
model is learned with geographically constrained data, and can
hardly make reliable predictions on POIs outside familiar regions.
Secondly, storing and processing check-in sequences covering a full
set of POIs is a heavy burden for user devices, marking down the
practicality of MAC. Thirdly, despite the important role of the refer-
ence datasets in CL, a common practice to obtain them [2, 41] is to
draw a subset of real samples from the user data, which negatively
affects user privacy and thus hurts real-world usability.

Geographical and Semantic Reference Datasets. For knowl-
edge sharing among geographical neighbors, to guarantee each lo-
cal model’s prediction quality over the reference dataset, we prepare
one reference dataset for each region, where each region-specific
reference dataset D𝑔 (𝑟 ) = {X𝑣}𝑉𝑣=1 contains 𝑉 anonymous check-
in sequences in region 𝑟 . Given this, user 𝑢𝑖 can communicate with
her geographical neighbors by comparing their soft decisions w.r.t.
each check-in sequence in D𝑔 (𝑟 𝑖0) (recall that 𝑟

𝑖
0 is 𝑢𝑖 ’s current re-

gion). Also, as now each D𝑔 (𝑟 ) only contains region-specific POIs,
the amount of POI information needed to be stored is substantially
reduced. Unfortunately, this strategy is inapplicable to CL with
semantic neighbors, as 𝑢𝑖 and her semantic neighbors might be
geographically distant from each other, and their locally trained
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models may exhibit divergent behaviors on the same region-specific
reference dataset. Hence, instead of predicting the actual POIs, we
let them predict high-level categorical transitions on a semantic
reference dataset D𝑠 = {X𝑐

𝑧 }𝑍𝑧=1 with 𝑍 anonymous categorical
sequences, defined in Section 2. Analogously, knowledge sharing
between 𝑢𝑖 and her semantic neighbors is enabled by computing
soft decisions upon D𝑠 . Given that only categorical transitions
are modeled with this dataset and the number of POI categories is
relatively small, sharing one universal semantic reference dataset
will meet both quality and memory efficiency demands.

Meanwhile, the challenge from privacy aspect still needs further
attention. To maintain all users’ privacy when building reference
datasets, we resort to pseudo data as a natural solution. Specifically,
we put forward two data generation strategies, namely transforma-
tive generation and probabilistic generation, which allow MAC to
produce sensible yet anonymous trajectories. We introduce both
strategies below, which are adopted alternatively in MAC.

Transformative Generation. Instead of directly publishing
users’ check-in sequences, we propose to obfuscate them by a se-
ries of transformations, which are widely used for augmenting
time series data [11, 12, 14]. In a nutshell, we mix and match two
users’ check-in/category sequences via a decompose-recompose
pipeline, where the revamped sequences differ from but imitate
original ones. As the raw check-ins are exchanged in this process,
we only allow this to happen between two users 𝑢𝑖 and 𝑢𝑚 if (1)
they are mutual friends; and (2) they have visited at least one same
POI, which can be judged once 𝑢𝑚 sends her check-in sequence
to 𝑢𝑖 . Specifically, with two check-in sequences X(𝑢𝑖 ), X(𝑢 𝑗 ), we
decompose each of them into two subsequences by slicing from
a common POI 𝑝𝑖 𝑗 ∈ X(𝑢𝑖 ) ∩ X(𝑢 𝑗 ), i.e., X′(𝑢𝑖 ) = {𝑝𝑖1, ..., 𝑝

𝑖 𝑗 }
and X′′(𝑢𝑖 ) = {𝑝𝑖 𝑗 , ..., 𝑝𝑖

𝑀𝑖
} for X(𝑢𝑖 ), and X′(𝑢 𝑗 ) = {𝑝 𝑗1, ..., 𝑝

𝑖 𝑗 }
and X′′(𝑢 𝑗 ) = {𝑝𝑖 𝑗 , ..., 𝑝 𝑗

𝑀𝑗
} for X(𝑢 𝑗 ). Then, we join X′(𝑢𝑖 ) with

X′′(𝑢 𝑗 ), and X′(𝑢 𝑗 ) with X′′(𝑢𝑖 ) to form two new sequences X𝑔

1
and X𝑔

2 , where a repetitive 𝑝
𝑖 𝑗 is deleted from both sequences. For

both newly generated sequences, we specify their region(s) 𝑟 as the
most frequently visited one, and discard POIs out of region 𝑟 to guar-
antee all generated POI sequences are region-specific. Analogously,
the universal semantic reference dataset D𝑠 can be constructed via
transformative generation on users’ category sequences, while the
additional step of region-specific processing is not required.

Probabilistic Generation. Though only perturbed data is used
in transformative generation, it originates from users’ raw histori-
cal data. To meet stricter privacy restrictions and deal with regions
with limited check-ins, we propose an alternative that only lever-
ages the statistics from users’ insensitive category sequences for
data generation, which we call probabilistic generation. Firstly,
we calculate the conditional probabilities of all categories based
on the category sequences submitted by all users. Formally, we
use 𝑃 (𝑐𝑛) = {P(𝑐𝑛 |𝑐1), P(𝑐𝑛 |𝑐2), ..., P(𝑐𝑛 |𝑐𝑚), ..., P(𝑐𝑛 |𝑐 |𝐶 |)} to rep-
resent all conditional probabilities for 𝑐𝑛 , and each P(𝑐𝑛 |𝑐𝑚) is
calculated as:

P(𝑐𝑛 |𝑐𝑚) = 𝜇 (𝑐𝑛 |𝑐𝑚)∑ |𝐶 |
𝑚′=1 𝜇 (𝑐𝑛 |𝑐𝑚′)

, (3)

where 𝜇 (𝑐𝑛 |𝑐𝑚) denotes the number of occurrences of 𝑐𝑚 right
after 𝑐𝑛 . Then, a pseudo category sequence X𝑠 can be generated

by: (1) selecting a category randomly as the starting point; and
then (2) repeatedly deciding subsequent categories according to the
conditional probabilities of its previous category. By iteratively gen-
erating multiple X𝑐 , we can create a semantic reference dataset D𝑠

that cover all categories. The next step is to generate POI sequences
based on the semantic reference dataset. Within each region, we
randomly sample a sequence of POIs that correspond to the cat-
egory sequence X𝑐 ∈ D𝑠 , where we further restrict the distance
between any two consecutive POIs to be less than 5km.

3.4 Collaboration via Knowledge Distillation
With the reference dataset ready, we design a novel knowledge
distillation-based CL protocol to extract knowledge from soft de-
cisions received from geographical neighbors G(𝑢𝑖 ) and semantic
neighbors S(𝑢𝑖 ).

Collaborative LearningwithGeographicalNeighbors. Given
user 𝑢𝑖 and the geographical reference dataset of her current re-
gion D𝑔 (𝑟 𝑖0), the CL with her geographical neighbors G(𝑢𝑖 ) is
facilitated by minimizing their disagreement of soft decisions on
D𝑔 (𝑟 𝑖0), which is quantified as:

𝐿𝑔𝑒𝑜 =
1

|G(𝑢𝑖 ) |
∑︁

𝑢 𝑗 ∈G(𝑢𝑖 )

( ∑︁
X∈D𝑔 (𝑟 𝑖0)

����𝜙𝑖 (X) − 𝜙 𝑗 (X)
����2
2

)
, (4)

where 𝜙𝑖 (·) and 𝜙 𝑗 (·) respectively denote the local recommenders
possessed by 𝑢𝑖 and her neighbors.

Collaborative Learningwith SemanticNeighbors. Similarly,
we can also align the soft decisions on the semantic reference
dataset D𝑠 between 𝑢𝑖 and S(𝑢𝑖 ). However, as only category tags
are recorded in the reference dataset and hence predictions can
only be made on categorical preferences, we cannot directly update
the POI embeddings in 𝜙𝑖 (·) by comparing users’ soft decisions.
Instead, we design a two-step strategy to acquire knowledge from
semantic neighbors. Firstly, we update the category embeddings in
𝜙𝑖 (·) via the following:

𝐿𝑐𝑎𝑡 =
1

|S(𝑢𝑖 ) |
∑︁

𝑢 𝑗 ∈S(𝑢𝑖 )

( ∑︁
X𝑐 ∈D𝑠

����𝜓𝑖 (X𝑐 ) −𝜓 𝑗 (X𝑐 )
����2
2

)
, (5)

where𝜓𝑖 (·) is a lightweight predictor that infers a probability dis-
tribution over all categories from a historical category trajectory
𝑋𝑐 ∈ D𝑠 . Hereby, since the embeddings of a POI 𝑝 and its associ-
ated category 𝑐𝑝 can be treated as two views of the POI, we further
update POI embeddings by maximizing the mutual information
(MI) between these two views:

𝐿𝑀𝐼 = −
∑︁
∀𝑝

log
exp(𝑓 (𝑝, 𝑐𝑝 ))∑

∀𝑐′≠𝑐𝑝 exp(𝑓 (𝑝, 𝑐 ′))
, (6)

where 𝑓 (·) is a function of the pairwise similarity between the POI
and the category. In MAC it is implemented by a bilinear network
that takes the POI and category embeddings as its input:

𝑓 (𝑝, 𝑐) = 𝜎 (e⊤𝑝We𝑐 ), (7)

where e𝑝 ∈ R𝑑 and e𝑐 ∈ R𝑑 are POI and category embeddings,
and W ∈ R𝑑×𝑑 is a learnable weight matrix. By optimizing the
loss function, we can maximize the mutual information between
positive pairs while minimizing that between negative pairs. Then,
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Algorithm 1 Optimizing MAC. All processes are implemented on
user’s side unless specified.

/*Server-side engagement starts*/
1: Server receives 𝑅(𝑢𝑖 ), 𝐶𝑃 (𝑢𝑖 ) from all 𝑢𝑖 ∈ 𝑈 ;
2: Generate G(𝑢𝑖 ) and S(𝑢𝑖 ) w.r.t. 𝑅(𝑢𝑖 ) and 𝐶𝑃 (𝑢𝑖 ) for all 𝑢𝑖 ∈

U;
3: Compose D𝑔 (𝑟 ) for all 𝑟 ∈ R and D𝑠𝑒𝑚 via transformative or

probabilistic generation;
4: Send G(𝑢𝑖 ), S(𝑢𝑖 ), D𝑔 (𝑟 𝑖0), D

𝑠 to each 𝑢𝑖 ∈ 𝑈 ;
/*Server engagement ends*/

5: for 𝑢𝑖 ∈ U do in parallel
6: Impute S(𝑢𝑖 ) with 𝑢𝑖 ’s social friends;
7: Initialize 𝜙𝑖 (·), G′(𝑢𝑖 ), S′(𝑢𝑖 ) for all 𝑢𝑖 ∈ U;
8: repeat
9: Receive soft decisions on D𝑔 (𝑟 𝑖0), D

𝑠 respectively
from G′(𝑢𝑖 ), S′(𝑢𝑖 );

10: Receive soft decisions on D𝑐 from 𝑁 𝑠
𝑐𝑎𝑡 (𝑢𝑖 );

11: Take a gradient step w.r.t. 𝐿𝑙𝑜𝑐 + 𝛾 (𝜇𝐿𝑔𝑒𝑜 + (1 − 𝜇)𝐿𝑠𝑒𝑚)
to update 𝜙𝑖 (·);

12: Update G′(𝑢𝑖 ), S′(𝑢𝑖 ) with performance-triggered or
similarity-based sampling;

13: until convergence
14: end for

the final loss for collaborative learning with semantic neighbors is
defined as the ensemble of both parts:

𝐿𝑠𝑒𝑚 = 𝐿𝑐𝑎𝑡 + 𝐿𝑀𝐼 . (8)
3.5 Learning Local Recommenders with

Dynamic Neighbor Sampling
The optimization workflow of MAC is presented in Algorithm 1.
At the very beginning, we perform neighbor identification and
prepare all reference datasets on the server side (lines 1-3). Then,
the server sends the corresponding reference datasets and neighbor
information back to all users (line 4), where its engagement halts.
On the device side (lines 5-14), each user will iteratively update its
local recommender based on the synergic loss 𝐿𝑙𝑜𝑐 +𝛾 (𝜇𝐿𝑔𝑒𝑜 + (1−
𝜇)𝐿𝑠𝑒𝑚), where 𝛾 and 𝜇 jointly controls the strength of different
knowledge distillation components.

Meanwhile, while the neighbor identification process provides𝑢𝑖
with abundant users that are likely to contribute to learning 𝜙𝑖 (·),
not all users in G(𝑢𝑖 )/S(𝑢𝑖 ) are necessarily valuable and might
conversely dilute the local model’s quality. On top of the influence
of noise, it is also inefficient to communicate with all predefined
neighbors in every optimization step. Hence, we further propose
two neighbor sampling strategies to draw a small subset of 𝛼 users
G′(𝑢𝑖 ) ∈ G(𝑢𝑖 ) and S′(𝑢𝑖 ) ∈ S(𝑢𝑖 ) for CL. By swapping the full
neighbor sets G(𝑢𝑖 ) and S(𝑢𝑖 ) in Eq.(4) and Eq.(5) to G′(𝑢𝑖 ) and
S′(𝑢𝑖 ), we are able to speed up the training process and obtain
optimal recommenders.

Performance-triggered Sampling. Intuitively, picking neigh-
bors that provide high-quality knowledge is beneficial, where the
fluctuations in the local loss function 𝐿𝑙𝑜𝑐 (𝑢𝑖 ) is a strong indicator
on whether or not the knowledge distilled from 𝑢𝑖 ’s neighbors is
sufficiently informative. So, in every CL epoch 𝑜 , if the change
in Δ𝐿𝑜

𝑙𝑜𝑐
(𝑢𝑖 ) falls below a predefined threshold 𝜏 , the previously

sampled neighbors G′(𝑢𝑖 )/S′(𝑢𝑖 ) will be redrawn from G(𝑢𝑖 )/𝛼 .
In our work, we define Δ𝐿𝑙𝑜𝑐 (𝑢𝑖 ) in the following ratio format:

Δ𝐿𝑜
𝑙𝑜𝑐

(𝑢𝑖 ) =
|𝐿𝑜
𝑙𝑜𝑐

(𝑢𝑖 ) − 𝐿𝑜−1𝑙𝑜𝑐
(𝑢𝑖 ) |

𝐿𝑜−1
𝑙𝑜𝑐

(𝑢𝑖 )
× 100%, (9)

where we can adjust 𝜏 to actively control the sensitivity to perfor-
mance change, and we empirically adopt 𝜏 = 1% for both neighbor
types in our work. Note that we draw samples uniformly at random
with replacements to avoid repetition.

Similarity-based Sampling. Naturally, another feasible solu-
tion is to narrow down the neighbors to communicate inG(𝑢𝑖 )/S(𝑢𝑖 )
on the go by similarity measures. To achieve this, we utilize the
soft decisions w.r.t. the reference datasets by comparing them in
every CL iteration via KL divergence [13]:

𝑑𝑠𝑜 𝑓 𝑡 (𝑢𝑖 , 𝑢 𝑗 ) =
∑︁

∀𝑋 ∈D𝑟𝑒𝑓

𝐾𝐿
(
𝜙𝑖 (𝑋 ) | | 𝜙 𝑗 (𝑋 )

)
, (10)

where D𝑟𝑒 𝑓 = D𝑔 (𝑟 𝑖0) if 𝑢 𝑗 ∈ G′(𝑢𝑖 ), and D𝑟𝑒 𝑓 = D𝑠 if 𝑢 𝑗 ∈
S′(𝑢𝑖 ). Then, for user 𝑢𝑖 , 𝛽 users with the smallest 𝑑𝑠𝑜 𝑓 𝑡 (𝑢𝑖 , 𝑢 𝑗 )
will be respectively selected from G(𝑢𝑖 ) and S(𝑢𝑖 ).

In MAC, we employ either similarity-based or performance-
triggered sampling as they substitute each other. Also, as all models
are changing over time, the sampling process dynamically adjusts
G′(𝑢𝑖 ) and S′(𝑢𝑖 ), as shown in line 12 of Algorithm 1.

4 EXPERIMENTS
In this section, we conduct extensive experiments on two real-world
datasets to evaluate the effectiveness and efficiency of MAC.

Table 1: Dataset statistics.

Foursquare Weeplace
#users 7,507 4,560
#POIs 80,962 44,194
#categories 436 625
#check-ins 1,214,631 923,600
#check-ins per user 161.80 202.54

4.1 Datasets and Evaluation Protocols
We adopt two real-world datasets to evaluate our proposed MAC,
namely Foursquare [9] and Weeplace [27]. Both datasets include
users’ check-in histories in the cities of New York, Los Angeles, and
Chicago. Following [3, 22], users and POIs with less than 10 inter-
actions are removed. Table 1 summarizes the statistics of the two
datasets. Among those datasets, 10% of the check-in sequences are
randomly selected as the reference datasets with the constraint of
covering all POIs. The two strategies to generate reference datasets
are also processed based on those selected check-in activities. Then,
inspired by [35, 36], we employ the leave-one-out protocol for eval-
uation. Specifically, for each of the remaining check-in sequences,
the last check-in POI is for testing, the second last POI is for vali-
dation, and all others are for training. In addition, the maximum
sequence length is set to 200. For each ground truth, instead of
ranking all e-commerce products [21], we only pair it with 200
unvisited and nearest POIs within the same region of the sequence
as the candidates for ranking. The rationale is, different from e-
commerce products [21], in the scenario of POI recommendations
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Table 2: Recommendation performance comparison with baselines.

Foursquare Weeplace
HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

MF 0.0835 0.0598 0.0962 0.0669 0.1045 0.0612 0.1293 0.0872
LSTM 0.1920 0.1227 0.2812 0.1648 0.2215 0.1356 0.3301 0.1578
STAN 0.2914 0.1756 0.4157 0.2524 0.3205 0.1846 0.4503 0.2783
LLRec 0.2771 0.1488 0.3406 0.1908 0.2912 0.1781 0.3613 0.2255
PREFER 0.2895 0.1696 0.3607 0.2183 0.3055 0.1874 0.3707 0.2359
DCLR 0.3078 0.1797 0.4297 0.2653 0.3304 0.1912 0.4664 0.2838
D-Dist 0.2257 0.1193 0.2915 0.1621 0.2474 0.1343 0.3581 0.1933
SQMD 0.2818 0.1471 0.4054 0.2357 0.2953 0.1531 0.4342 0.2360
MAC-P 0.3138 0.1865 0.4319 0.2712 0.3414 0.2032 0.4843 0.2937
MAC-S 0.3055 0.1843 0.4257 0.2637 0.3365 0.1988 0.4734 0.2845

that are location-sensitive, users seldom travel between two POIs
consecutively that are far away from each other [23, 28]. On this
basis, we leverage two ranking metrics, namely Hit Ratio at Rank
𝑘 (HR@𝑘) and Normalized Discounted Cumulative Gain at Rank
𝑘 (NDCG@𝑘) [38] where HR@𝑘 only measures the times that the
ground truth is present on the top-𝑘 list, while NDCG@𝑘 cares
whether the ground truth can be ranked as highly as possible.

4.2 Baselines and Experimental Setting
We compare MAC with both the centralized and on-device POI
recommenders:

• MF [26]: It is a classic centralized POI recommendation sys-
tem based on user-item matrix factorization.

• LSTM [18]: This recurrent neural network can capture short-
term and long-term dependencies in sequential data.

• STAN [29]: It learns explicit spatiotemporal correlations of
check-in trajectories via a bi-attention approach.

• LLRec [33]: It utilizes the teacher-student training strategy
to obtain the compressed model that can be deployed locally.

• PREFER [16]: This federated POI recommendation para-
digm allows the server to collect and aggregate locally trained
models, as well as redistribute the federated model.

• DCLR [28]: This decentralized collaborative learning frame-
work allows locally trained models to share knowledge be-
tween homogeneous neighbors by model aggregation.

• D-Dist [2]: It aims at letting locally trained models with
random heterogeneous neighbors via comparing their soft
decisions on a public reference dataset.

• SQMD [41]: It is also a decentralized distillation framework
where neighbors are defined by comparing their responses
on the shared reference dataset.

4.3 Experimental Settings
As mentioned above, this work is compatible with almost any cen-
tralized POI recommendation model. To achieve advanced accuracy,
we exploit STAN [29] as the base model. Besides, since this work
supports heterogeneous structures, we randomly assign the latent
dimension 𝑑 ∈ {8, 16, 32, 64, 128} to users and each one makes up
20%. This setting is also applied to other heterogeneous frameworks
(i.e., D-Dist and SQMD). For fairness, all other baselines are eval-
uated with the above dimensions separately and the final results
are averaged. Additionally, in this work, each city is divided into

5 regions by applying k-means clustering which is discussed in
Section 2. It is worth noting that in MAC, we implement both the
performance-triggered and similarity-based approaches for neigh-
bor sampling, which are respectively marked as MAC-P andMAC-S.

For hyperparameters, we set 𝛼 to 5, 𝛽 to 10, 𝛾 to 0.5 and 𝜇 to
0.7. The impacts of the above four hyperparameters will be further
discussed in Section 4.7. Apart from this, we set ℎ to 50, and adopt
a learning rate of 0.002, dropout of 0.2 on all deep layers, batch size
of 16, and the maximum training epoch is set to 50.

4.4 Recommendation Effectiveness
The performance comparison among all the POI recommenders is
summarized in Table 2, where we observe the following findings.

Among the centralized POI recommenders, LSTM is superior to
MF on both datasets due to the effective use of short-term and long-
term dependencies of sequential check-in activities. Besides, thanks
to spatiotemporal correlations of consecutive and non-consecutive
check-in activities, STAN has higher accuracy than LSTM. Com-
pared with the advanced baseline STAN, our method still yields
highly competitive results. This is because the centralized STAN
model is trained with check-ins across multiple cities where knowl-
edge learned from one city might be noisy for the recommendation
tasks of other cities, leading to inferior performance of STAN. In-
stead, our work can achieve better personalization, and learn more
expressive models with the collaborative learning architecture.

In the meantime, MAC outperforms all on-device POI recom-
menders on both datasets in terms of all metrics. Specifically, LLRec
has the worst performance since all personal data is not included
in the training process, ignoring individual preferences, while our
method can trade negligible privacy risks for large improvement
in accuracy. Although PREFER has a noticeable improvement in
accuracy, it still needs to collect and aggregate users’ personalized
models, exposing user privacy to potential breaches. Thus, MAC is
more capable of providing both more accurate recommendations
and stronger privacy protection with less reliance on the cloud.

4.5 Efficiency Analysis
Amid all homogeneous on-device recommenders, DCLR achieves
the best performance due to its effective collaborative learning
strategies. However, it suffers from the constraint that all partici-
pants must hold homogeneous models for model aggregation. In
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Table 3: Model size (kb) and accuracy among decentralized POI recommenders.

d = 8 d = 16 d = 32 d = 64 d = 128
Size HR@10 Size HR@10 Size HR@10 Size HR@10 Size HR@10

DCLR 1130 0.3674 2252 0.4413 4502 0.5417 9020 0.5165 18127 0.4651
D-Dist 1057 0.2863 1963 0.3309 3852 0.3514 7968 0.3925 15564 0.3293
SQMD 1157 0.3637 2054 0.4194 3648 0.4845 8245 0.4585 16362 0.4449
MAC-P 232 0.4057 462 0.4678 694 0.5404 1316 0.5114 3186 0.4963
MAC-S 226 0.4026 479 0.4341 742 0.5416 1276 0.5010 2987 0.4877

Table 4: Traning time (in hours).

Foursquare Weeplace
DCLR 76 57
D-Dist 24 19
SQMD 51 39
MAC-P 40 32
MAC-S 29 21

contrast, MAC can not only support users having varied dimen-
sions like D-Dist and SQMD, but also allows user devices effectively
utilize limited storage resources by storing partial POI embeddings.
To prove the above view, with respect to all heterogeneous on-
device recommenders, we record the averaged model size (kb) and
recommendation accuracy (HR@10 on Weeplace) for the latent
dimensions 𝑑 ∈ {8, 16, 32, 64, 128}. The results are shown in Table
3, where we can observe that the average model size of MAC is far
less than that of the other three on-device recommenders among all
dimensions. Additionally, MAC still outperforms DCLR and other
heterogeneous models in terms of recommendation accuracy at
all dimensions, showing that MAC can make more efficient use of
on-device resources to provide more performant recommendations.

Besides, our proposed strategies for neighbor identification and
neighbor sampling can speed up the training process. We record the
training time till model convergence, where the results are shown
in Table 4. We can observe that D-Dist has the least training time
since each device in the network will communicate with a static
group of peers at each iteration. In exchange, D-Dist has the worst
recommendation accuracy. Beyond that, MAC converges faster than
all other models while providing more accurate recommendations.
Interestingly, compared to MAC-P, MAC-S achieves higher recom-
mendation accuracy, but it needs more training time as it tends
to change the neighbor set composition more frequently. Instead,
MAC-S only communicates with a relatively stable neighbor set,
thus converging faster but being prone to local optima.

4.6 Analysis on Reference Data Generation
To validate the efficacy of two proposed strategies for generating
reference datasets described in Section 3.3, we evaluate the rec-
ommendation accuracy of both MAC-P and MAC-S on original,
transformative generated, and probabilistic generated reference
datasets. The results are shown in table 5. Apparently, the perfor-
mance on the original reference datasets is similar to the transfor-
mative generated reference datasets. This proves the efficacy of the
transformative strategy considering the strong privacy protection.
Meanwhile, although the performance on the probabilistic refer-
ence datasets lightly drops, it is still capable for the region without
enough historical check-in activities. Please note all other experi-
ments are based on transformative generated reference datasets.

4.7 Hyperparameter Sensitivity
In this section, we illustrate the effect of four hyperparameters on
the performance of MAC. Specifically, we evaluate the sample size
in performance-triggered sampling 𝛼 on the accuracy and training
time of MAC-P, the sample size in similarity-based sampling 𝛽 on

Table 5: Effect of reference dataset sources on recommenda-
tion accuracy (HR@10 is demonstrated).

Foursquare Weeplace
MAC-P MAC-S MAC-P MAC-S

Original 0.4357 0.4232 0.4901 0.4698
Transformative 0.4319 0.4257 0.4843 0.4734
Probabilistic 0.4173 0.4129 0.4715 0.4581

the accuracy and training time of MAC-S, the weight 𝛾 that controls
the knowledge from neighbors on the accuracy of MAC-P andMAC-
S, and the trade-off 𝜇 between geographical and semantic neighbors
for communication on the accuracy of MAC-P and MAC-S. The
results are shown in Figure 2.

Impact of 𝛼 .We experiment on a series of 𝛼 ∈ {1, 5, 10, 20, 40}.
In general, a larger 𝛼 harms the performance of MAC-P on both
datasets, as low-quality neighbors are included, but it requires less
training time with lower communication frequencies. In the ex-
treme case of communicating with all predefined neighbors (dotted
line), we record the lowest accuracy, which proves the effectiveness
of performance-triggered sampling.

Impact of 𝛽 .We study the impact of 𝛽 ∈ {1, 5, 10, 20, 40}. As 𝛽
increases from 1 to 10, there is a generally upward trend in MAC-
S’s accuracy with more valuable knowledge. However, it starts to
decrease when 𝛽 exceeds 10 as low-quality neighbors are included.
Meanwhile, the training time keeps rising since more neighbors
are processed. Compared with the extreme case (dotted line), MAC-
S achieves higher accuracy with less training time, showing the
effectiveness of similarity-based sampling.

Impact of 𝛾 . 𝛾 is evaluated in {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}. Appar-
ently, the lowest accuracy is obtained if users fail to share knowl-
edge with neighbors (𝛾 = 0), showing the significance of the collab-
orative learning framework. However, the performance will decline
if knowledge from neighbors has an excessive proportion (𝛾 > 0.5).

Impact of 𝜇. 𝜇 is examined in {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}. The best
performance is observed when 𝜇 = 0.7 in most cases, showing more
importance of geographical factors compared to semantic factors.

5 RELATEDWORK
This section reviews recent literature on related areas including
centralized models for POI recommendation, on-device frameworks
for POI recommendation, and distributed knowledge distillation.

5.1 Next POI Recommendation
To help people discover attractive places by analyzing user-POI in-
teractions, early models mainly focused on matrix factorization [26]
and Markov chains [10, 48]. Recently, models based on recurrent
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Figure 2: Hyperparameter sensitivity. The horizontal lines indicate MAC variants without any sampling strategy.

neural networks (RNN) have been proven effective in capturing
spatiotemporal dependencies among POI sequences [5, 6, 20, 42, 44].
Meanwhile, SGRec [23] constructs graph-augmented POI sequences
to fully capture the collaborative signals from semantically corre-
lated POIs and mine sequential properties, which achieves better
accuracy than RNN-based models. In addition, attentive neural net-
works [4, 29, 40, 43] utilize self-attention layers to capture relative
spatiotemporal information of all check-in activities along the se-
quence. It is worth noting that all the above models are cloud-based,
leading to undeniable problems of privacy issues and high demand
for powerful cloud. Instead, MAC lies in the distributed learning
paradigm to provide secure and stable services.

5.2 On-device POI Recommendation
On-device frameworks have been proven effective in addressing
most shortcomings of cloud-based learning for POI recommenda-
tions. Intuitively, Wang et al. [33] deployed compressed models
on mobile devices for secure and stable POI recommendations. To
maintain the robustness of the whole on-device framework, local
compressed models inherit the knowledge from the teacher model
which is trained with public data. Then, Guo et al. [16] proposed
a federated learning framework for POI recommendations, allow-
ing edge servers to collect and aggregate locally trained models,
and send the aggregated model back to all users. Apparently, the
above models are still highly dependent on the cloud server. On
this basis, Jing et al. [28] proposed a semi-decentralized learning
paradigmwith device collaboration that allows user devices to learn
and combine knowledge from two types of neighbors. However, all
aforementioned collaborative learning-based POI recommenders
hold a strong assumption that all on-device models must share
an identical design, allowing user-specific knowledge sharing via
parameters/gradients aggregation. In contrast, MAC supports het-
erogeneity in model structures.

5.3 Distributed Knowledge Distillation
Knowledge distillation was initially proposed in model compression
[31], aimed at extracting knowledge from a powerful teacher model
trained with mass data, to improve the performance of the light
student model. The information is transferred by minimizing the

disagreement between teacher and student models on an unlabeled
reference dataset. However, such a way of knowledge transmission
is not restricted to the teacher-student pattern, where [15] and [47]
have proven the effectiveness of exploiting knowledge distillation to
jointly train student models without any teacher model. This is also
applicable in knowledge sharing between heterogeneous device
networks where user devices are allowed to have different model
architectures [2, 41]. Our work is the first one to exploit knowledge
distillation for knowledge sharing between heterogeneous POI
recommendation models.

6 CONCLUSION
To support heterogeneous architecture in decentralized POI recom-
mendations where users are allowed to have a customized structure
to meet the specific device capacity, we incorporate mutual in-
formation maximization into knowledge distillation to exchange
information between similarity-based groups decided by physical
distances, category distributions, and social networks. To remove
low-quality neighbors, during the training process, we design two
strategies to further sample neighbors according to their perfor-
mance or similarity to the target user, reducing training time and
obtaining optimal recommenders. Apart from this, we propose two
novel approaches to build more practical reference datasets while
providing strong privacy protection. Experimental results have rig-
orously demonstrated the efficacy of MAC, revealing its ability to
provide excellent services in decentralized POI recommendations.
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