
Seq-HGNN: Learning Sequential Node Representation
on Heterogeneous Graph

Chenguang Du
duchenguang@buaa.edu.com

SKLSDE, School of Computer Science,
Beihang University

Beijing, China

Kaichun Yao
yaokaichun@outlook.com

Institute of Software
Chinese Academy of Sciences

Beijing, China

Hengshu Zhu∗
zhuhengshu@gmail.com

Career Science Lab,
BOSS Zhipin
Beijing, China

Deqing Wang∗
dqwang@buaa.edu.com

SKLSDE, School of Computer Science,
Beihang University

Beijing, China

Fuzhen Zhuang
zhuangfuzhen@buaa.edu.com

Institute of Artificial Intelligence &
SKLSDE, School of Computer Science

Beihang University
Beijing, China

Hui Xiong
xionghui@ust.hk

Artificial Intelligence Thrust,
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

ABSTRACT
Recent years have witnessed the rapid development of heteroge-
neous graph neural networks (HGNNs) in information retrieval (IR)
applications. Many existing HGNNs design a variety of tailor-made
graph convolutions to capture structural and semantic informa-
tion in heterogeneous graphs. However, existing HGNNs usually
represent each node as a single vector in the multi-layer graph
convolution calculation, which makes the high-level graph convo-
lution layer fail to distinguish information from different relations
and different orders, resulting in the information loss in the mes-
sage passing. To this end, we propose a novel heterogeneous graph
neural network with sequential node representation, namely Seq-
HGNN. To avoid the information loss caused by the single vector
node representation, we first design a sequential node representa-
tion learning mechanism to represent each node as a sequence of
meta-path representations during the node message passing. Then
we propose a heterogeneous representation fusion module, empow-
ering Seq-HGNN to identify important meta-paths and aggregate
their representations into a compact one. We conduct extensive ex-
periments on four widely used datasets from Heterogeneous Graph
Benchmark (HGB) and Open Graph Benchmark (OGB). Experimen-
tal results show that our proposed method outperforms state-of-
the-art baselines in both accuracy and efficiency. The source code
is available at https://github.com/nobrowning/SEQ_HGNN.
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1 INTRODUCTION
Heterogeneous graph-structured data widely exists in the real
world, such as social networks, academic networks, user interac-
tion networks, etc. In order to take advantage of the rich structural
and semantic information in heterogeneous graphs, heterogeneous
graph neural networks (HGNNs) have been increasingly used in
information retrieval (IR) applications, ranging from search en-
gines [2, 6, 28] and recommendation systems [1, 14, 17] to question
answering systems [3, 5].

HGNNs can integrate structural and semantic information in
heterogeneous graphs into node representations to meet down-
stream tasks. Existing HGNNs [10, 15, 31] usually deploy multiple
layers of graph convolution (i.e., message passing) to capture the
neighborhood information of low-order and high-order neighbors
in a graph. For a particular node, each layer of convolutions repre-
sents it as one single vector, which is the input of the next higher
layer. Consequently, the single vector incorporates mixed neigh-
bor information from different relationships and distinct orders.
That is, higher-level convolutions are incapable of distinguishing
messages from various sources by a single vector which leads to
structural information loss and difficulty in refining message pass-
ing strategy. Here we take a classic graph learning for instance,
as shown in Figure 1, a sampled sub-graph contains target node 𝑡 ,
two source nodes (𝑠1 and 𝑠2) and two 2-hop source nodes (𝑠𝑠1 and
𝑠𝑠2). The 𝑠𝑠1 and 𝑠𝑠2 are the source node of (𝑠1 and 𝑠2), respectively.
Existing methods [10, 15, 31] usually conduct graph convolution
operations twice to learn the node representation. Through the
first layer of graph convolution, the target node 𝑡 and its neighbors
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Figure 1: The comparison of node representation updates. The shapes of the nodes represent different node types.

(source nodes) are represented as H(1) [𝑡], H(1) [𝑠1], and H(1) [𝑠2],
respectively, which are used as the input of the next layer of graph
convolution computation. The information in 𝑠1 and 𝑠𝑠1 is mixed in
H(1) [𝑠1] and information of 𝑠2 and 𝑠𝑠2 is mixed in H(1) [𝑠2]. Based
on the H(1) [𝑡], H(1) [𝑠1], and H(1) [𝑠2], the second layer of graph
convolution cannot distinguish the information from 𝑠𝑠1 and 𝑠1 and
the information from 𝑠𝑠2 and 𝑠2.

Intuitively, the semantics learned from each layer and each rela-
tion can reflect different-grained features, which strongly correlate
to the different tasks, while the mixtures of all information may
lead to sub-optimal results for the downstream tasks.

Along this line, we propose a novel heterogeneous graph neural
network with sequential node representation (Seq-HGNN), which
learns representations of meta-paths and fuses them into high-
quality node representations. Specifically, we first propose a se-
quential node representation learning mechanism that performs
message passing over all meta-paths within fixed hops and rep-
resents each node as a sequence of meta-path representation. As
Figure 1 illustrates, after the calculation of two Seq-HGNN lay-
ers, Seq-HGNN can automatically capture the information of all
meta-paths and their combinations within 2 hops, which are re-
spectively stored in multiple independent vectors. These vectors
then form a sequence as the representation of target 𝑡 (i.e. H(2) [𝑡]).
The sequential representation enables higher Seq-HGNN layers
to naturally distinguish messages from different meta-paths. Sec-
ondly, we design a heterogeneous representation fusion module to
transform the sequence-based node representations into a compact
representation, which can be used in various downstream tasks.
Also, Seq-HGNN can benefit the discovery of effective entities and
relations by estimating the importance of different meta-paths. Fi-
nally, we conduct extensive experiments on real-world datasets.
The experimental results show that Seq-HGNN achieves the best
performance compared with several state-of-the-art baselines.

Our contributions can be summarized as follows:

• We propose a novel heterogeneous graph representation
learning model with sequential node representation, namely
Seq-HGNN. To the best of our knowledge, the Seq-HGNN is
the first work to represent nodes as sequences, which can
provide better representations by recording messages pass-
ing along multiple meta-paths intact.

• We conduct extensive experiments on fourwidely used datasets
fromHeterogeneousGraph Benchmark (HGB) [13] andOpen
Graph Benchmark (OGB) [9] to demonstrate the advantage
of our model over state-of-the-art baselines.

• Our model performs good interpretability by analyzing the
attention weight of meta-paths in heterogeneous graphs.

2 RELATEDWORK
In this section, we introduce the related work on heterogeneous
graph neural networks and the applications of heterogeneous graph
neural networks in the field of information retrieval.

2.1 Heterogeneous graph neural networks
Heterogeneous graph neural networks (HGNNs) are proposed to
deal with heterogeneous graph data. Some HGNNs apply graph
convolution directly on original heterogeneous graphs. RGCN [15]
is a widely-used HGNN, which sets different transfer matrices for
different relations in heterogeneous graphs. R-HGNN [31] learned
different node representations under each relation and fuses repre-
sentations from different relations into a comprehensive representa-
tion. Other HGNNs used meta-paths to adopt homogeneous-graph-
based methods on the heterogeneous graph. For instance, HAN [22]
utilized GAT [21] to calculate node-level and semantic-level at-
tention on meta-path-based sub-graphs. MAGNN [4] introduced
intra-meta-path aggregation and inter-meta-path aggregation to
capture information on the heterogeneous graph. HeCo [23] se-
lected positive sample nodes based on meta-path on heterogeneous
graph comparative learning. The meta-path-based methods require
manual-designed meaningful meta-paths and can not be applied
in large-scale heterogeneous graphs limited by the computational
complexity [31]. To overcome the disadvantages of meta-path, Het-
SANN [7] aggregated multi-relational information of projected
nodes by attention-based averaging. GTN [33] and ie-HGCN [27]
were designed to discover effective meta-paths for the target nodes.
HGT [10] introduced the dot product attention mechanism [20]
into heterogeneous graph learning, which can learn the implicit
meta-paths. These methods represented each node as one single
vector, which means confounding messages from different relations
and orders, resulting in the loss of structural information.
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In more recent years, in light of learning comprehensive node
representations, some researchers adopted Simplified Graph Con-
volutional Network (SGC) [24]-based methods for heterogeneous
graph processing [26, 30, 35]. The core points of them focused on
subgraph division and preprocessing. To be specific, these methods
first divided a heterogeneous graph into several relation-driven
subgraphs based and then conducted simple message passing and
pre-computation in the preprocessing stage. However, there are two
main drawbacks with this design making them unsuitable for appli-
cation scenarios: Firstly, multiple downstream tasks are needed to
meet the requirements of different messaging passing. For instance,
in link prediction tasks, models need to mask some links in the
graph, while using SGC-based methods means performing multiple
separate preprocessing pipelines, resulting in high computational
consumption for various downstream tasks. Secondly, SGC-based
methods necessitate learning a distinct set of model parameters for
each class of nodes in a heterogeneous graph, with no correlation
between parameters of different node types. Such approaches lack
the capacity for transfer learning across diverse node types. Specif-
ically, the training and optimization of a particular node type in a
heterogeneous graph using SGC-based methods do not contribute
to performance enhancement in predicting other node types.

Unlike previous works, our model implements sequential node
representation, which records messages from all meta-paths within
a fixed step and achieves better performance and interpretability.
Moreover, our model possesses end-to-end learning capabilities,
enabling it to handle various downstream tasks with a more general
and simplified workflow.

2.2 HGNNs applications in IR
In recent years, heterogeneous graph neural networks (HGNNs)
have emerged as a powerful tool for extracting rich structural and
semantic information from heterogeneous graphs, and have conse-
quently found numerous applications in information retrieval (IR)
domains.

In the realm of search engines and matching, Chen et al. [2] pro-
posed a cross-modal retrieval method using heterogeneous graph
embeddings to preserve abundant cross-modal information, ad-
dressing the limitations of conventional methods that often lose
modality-specific information in the process. Guan et al. [6] tackled
the problem of fashion compatibility modeling by incorporating
user preferences and attribute entities in their meta-path-guided
heterogeneous graph learning approach. Yuan et al. [32] introduced
the Spatio-Temporal Dual Graph Attention Network (STDGAT) for
intelligent query-Point of Interest (POI) matching in location-based
services, leveraging semantic representation, dual graph attention,
and spatiotemporal factors to improve matching accuracy even
with partial query keywords. Yao et al. [29] proposed a knowledge-
enhanced person-job fit approach based on heterogeneous graph
neural networks, which can use structural information to improve
the matching accuracy of resumes and positions.

Recommendation systems have also benefited from HGNNs. Cai
et al. [1] presented an inductive heterogeneous graph neural net-
work (IHGNN) model to address the sparsity of user attributes in
cold-start recommendation systems. Pang et al. [14] proposed a

personalized session-based recommendation method using hetero-
geneous global graph neural networks (HG-GNN) to capture user
preferences from current and historical sessions. Additionally, Song
et al. [17] developed a self-supervised, calorie-aware heterogeneous
graph network (SCHGN) for food recommendation, incorporating
user preferences and ingredient relationships to enhance recom-
mendations.

HGNNs have also garnered attention from scholars in the field of
question-answering systems. For example, Feng et al. [3] proposed
a document-entity heterogeneous graph network (DEHG) to inte-
grate structured and unstructured information sources, enabling
multi-hop reasoning for open-domain question answering. Gao
et al. [5] introduced HeteroQA, which uses a question-aware het-
erogeneous graph transformer to incorporate multiple information
sources from user communities.

3 PRELIMINARIES
Heterogeneous Graph: Heterogeneous graph is defined as a di-
rected graph 𝐺 = (𝑉 , 𝐸), with node type mapping 𝜏 : 𝑉 → 𝐴 and
edge type mapping 𝜙 : 𝐸 → 𝑅, where 𝑉 is the node set, 𝐸 is the
edge set, 𝐴 and 𝑅 represent the set of node types and edge types
respectively, and |𝐴| + |𝑅 | > 2.

Relation: For an edge 𝑒 = (𝑠, 𝑡) linked from source node 𝑠 to
target node 𝑡 , the corresponding relation is 𝑟 =< 𝜏 (𝑠), 𝜙 (𝑒), 𝜏 (𝑡) >.
A heterogeneous graph can be considered a collection of triples
consisting of source nodes 𝑠 linked to the target nodes 𝑡 through
edges 𝑒 .

Relational Bipartite Graph: Given a heterogeneous graph
𝐺 and a relation 𝑟 , the bipartite graph 𝐺𝑟 is defined as a graph
composed of all the edges of the corresponding type of the relation
𝑟 . In other words, 𝐺𝑟 contains all triples < 𝑠, 𝑒, 𝑡 >, where the
relation 𝜙 (𝑒) = 𝑟 .

Meta-path: Meta-path 𝑃 is defined as a path with the following
form: 𝐴1

𝑟1−−→ 𝐴2
𝑟2−−→ · · · 𝑟𝑙−1−−−→ 𝐴𝑙 (abbreviated as 𝐴1𝐴2 · · ·𝐴𝑙 ),

where 𝐴𝑖 ∈ 𝐴, 𝑟𝑖 ∈ 𝑅. The meta-path describes a composite relation
between node types 𝐴1 and 𝐴𝑙 , which expresses specific semantics.

Graph Representation Learning: Given a graph𝐺 = (𝑉 , 𝐸),
graph representation learning aims to learn a function𝑉 → R𝑑 , 𝑑 ≪
|𝑉 | to map the nodes in the graph to a low-dimensional vector space
while preserving both the node features and the topological struc-
ture information of the graph. These node representation vectors
can be used for a variety of downstream tasks, such as node classi-
fication and link prediction.

4 METHODOLOGY
The overview of the proposed Seq-HGNN is shown in Figure 2. The
Seq-HGNN is composed of multiple Seq-HGNN Layers and aHet-
erogeneousRepresentation Fusionmodule. The Seq-HGNNLay-
ers aggregate the information provided by the source node 𝑠 , and
update the representation of the target node 𝑡 . We denote the output
representation of the 𝑙-th layer asH(𝑙 ) , which is also the input of the
(𝑙 + 1)-th layer (1 ≤ 𝑙 ≤ 𝐿). By stacking 𝐿 Seq-HGNN Layers, each
target node 𝑡 can receive higher-order neighbor information. The
Seq-HGNN Layer consists of three modules: Sequential Node Repre-
sentation, Transformer-based Message Passing and Sequential Node
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Figure 2: The overview of our proposed Seq-HGNN. Given a heterogeneous sub-graph containing a target node M and six
source nodes, Seq-HGNN first learns a sequential node representation ofM (i.e. H(𝐿) [M]), and then fuses the representation
H(𝐿) [M] for multiple downstream tasks. In the sub-graph, M, K, A, and D represent node types Movie, Keyword, Actor, Director,
respectively.

Representation Update. Among them, the Sequential Node Represen-
tation transforms each node into a set of representation vectors. The
Transformer-based Message Passing generates neighbor messages
for the target node by aggregating the information of neighbors
(source nodes). The Sequential Node Representation Update com-
putes a new representation for 𝑡 based on the representation from
the previous layer and the received neighbor messages. Finally, the
Heterogeneous Representation Fusion module estimates the impor-
tance of meta-paths and fuses the representations of meta-paths
to a single vector as node representation, which can be utilized in
downstream tasks.

4.1 Sequential Node Representation
In heterogeneous graphs, the nodes often have multiple attributes
and receive messages from multiple types of nodes. For example,
in a heterogeneous graph from a movie review website, a Movie
node usually contains multiple description attributes such as Sto-
ryline, Taglines, Release date, etc. Existing methods only support
representing each node as a single vector, which implies that the
multiple properties of each node are confused into one vector. This
causes information loss of node representation.

Different from the above-mentioned graph representation learn-
ing methods [10, 15, 31], we represent each node as one sequence of
vectors, which can record multiple properties of node and messages
from multiple meta-paths intact. Concretely, given a node 𝑖 , we first
design a type-specific transform matrix𝑊 𝜏 (𝑖 ) to convert features
𝑥𝑖 of node 𝑖 to the same space:

𝐻
(0)
𝑓

[𝑖] =𝑊 𝜏 (𝑖 )
𝑓

· 𝑥𝑖
𝑓
+ 𝑏𝜏 (𝑖 )

𝑓
, (1)

where 𝜏 (𝑖) is the node type of node 𝑖; 1 ≤ 𝑓 ≤ 𝐹
(0)
𝜏 (𝑖 ) ; 𝐹

(0)
𝜏 (𝑖 ) is

the number of 𝑖’s features; 𝑥𝑖
𝑓
is the 𝑓 -th initialized feature in the

feature sequence of 𝑖; 𝐻 (0)
𝑓

[𝑖] ∈ R𝑑 is the node features after the

transform; 𝑏𝜏 (𝑖 )
𝑓

is the bias; 𝑑 is the dimension of features.

Next, we concatenate the 𝐹 (0)
𝜏 (𝑖 ) transformed representations of

node 𝑖 to get an input sequence H(0) [𝑖] for the Seq-HGNN model:

H(0) [𝑖] =
wwww𝐹

(0)
𝜏 (𝑖 )

𝑓

𝐻
(0)
𝑓

[𝑖] , (2)

where
wwww is the concatenation operation and H(0) [𝑖] ∈ R𝐹

(0)
𝜏 (𝑖 )×𝑑 is

a sequence with the length of 𝐹 (0)
𝜏 (𝑖 ) .

It is worth noting that our proposed sequential node represen-
tation is independent of time series. During the message passing,
our model always represents each node as one sequence of vectors.
Each vector in the sequence can represent either the meta-path
information or a specific feature attribute of the node. For a detailed
description, please refer to Section 4.2 and 4.3.

4.2 Transformer-based Message Passing
The message-passing module aggregates the information of neigh-
bors (source nodes) on each relational bipartite graph to generate
neighbor messages for the target node.

4.2.1 Neighbor Importance Estimation. Before the neighbor mes-
sage generation, we first estimate the importance of these neighbors.
We utilize the mutual attention [10, 20] to calculate the importance
of source nodes to the target node. Specifically, we first project the
representations of the target node 𝑡 and its neighbors (source nodes
𝑠) to multiple Query vectors Q and Key vectors K, respectively.

Q(𝑙 ) [𝑡] =
wwww𝐹

(𝑙−1)
𝜏 (𝑡 )

𝑓

WQuery(𝑙 )
𝜏 (𝑡 ) 𝐻

(𝑙−1)
𝑓

[𝑡] + 𝑏Query
(𝑙 )

𝜏 (𝑡 ) , (3)
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K(𝑙 ) [𝑠] =
wwww𝐹

(𝑙−1)
𝜏 (𝑠 )

𝑓

WKey(𝑙 )
𝜏 (𝑠 ) 𝐻

(𝑙−1)
𝑓

[𝑠] + 𝑏Key
(𝑙 )

𝜏 (𝑠 ) , (4)

where WQuery(𝑙 )
𝜏 (𝑡 ) ∈ R𝑑×𝑑 and WKey(𝑙 )

𝜏 (𝑠 ) ∈ R𝑑×𝑑 are type-specific
trainable transformation matrices for source node 𝑠 and target node
𝑡 ; 𝑏Query

(𝑙 )

𝜏 (𝑡 ) and 𝑏Key
(𝑙 )

𝜏 (𝑠 ) are bias vectors. The shapes of Q(𝑙 ) [𝑡] and

K(𝑙 ) [𝑠] are 𝐹 (𝑙−1)
𝜏 (𝑡 ) ×𝑑 and 𝐹 (𝑙−1)

𝜏 (𝑠 ) ×𝑑 , respectively. 𝐹 (𝑙−1)
𝜏 (𝑡 ) and 𝐹 (𝑙−1)

𝜏 (𝑠 )
represent the length of sequence representations of 𝑡 and 𝑠 in the
(𝑙 − 1) layer, respectively.

We regard the attention weights of the source node 𝑠 to the
target node 𝑡 as the importance of 𝑠 to 𝑡 . Since the nodes would
play different roles in different relations, we calculate the attention
weights on each bipartite graph separately. More specifically, we
denote the set of source nodes connected by the target node 𝑡 in
the bipartite graph 𝐺𝑟 as 𝑁𝑟 (𝑡), where 𝑟 ∈ R. Then, the attention
weights can be formulated as:

Attn(𝑙 )
𝑟 [𝑠, 𝑡] = Softmax

∀𝑠∈𝑁𝑟 (𝑡 )

(
K(𝑙 ) [𝑠]𝑊 ATT(𝑙 )

𝑟 Q(𝑙 ) [𝑡]⊤
)
· 1
√
𝑑
, (5)

whereAttn(𝑙 )
𝑟 [𝑠, 𝑡] is the importance estimation of the source node

𝑠 to the target node 𝑡 on relation 𝑟 , and𝑊 ATT(𝑙 )
𝑟 ∈ R𝑑×𝑑 is the

transform matrix for relation 𝑟 .
Unlike the existing attention-based approaches [10, 21, 31], the

attention weight Attn(𝑙 )
𝑟 [𝑠, 𝑡] is a matrix with the shape 𝐹 (𝑙−1)

𝜏 (𝑠 ) ×

𝐹
(𝑙−1)
𝜏 (𝑡 ) rather than a scalar. Each element inAttn(𝑙 )

𝑟 [𝑠, 𝑡] represents
the attention weight of an item in the representation sequence of 𝑠
to an item in the representation sequence of 𝑡 .

4.2.2 Neighbor Message Generation. According to the importance
of neighbors, the Seq-HGNN aggregates the neighbor information
and treats it as the neighbor messages for 𝑡 .

First, Seq-HGNN extracts features of the source node 𝑠 in each
bipartite graph 𝐺𝑟 separately as follows:

Ext(𝑙 )𝑟 [𝑠] =
wwww𝐹

(𝑙−1)
𝜏 (𝑠 )

𝑓

𝑊 EXT(𝑙 )
𝑟

(
WValue(𝑙 )

𝜏 (𝑠 ) 𝐻
(𝑙−1)
𝑓

[𝑠] + 𝑏Value
(𝑙 )

𝜏 (𝑠 )

)
, (6)

where Ext(𝑙 )𝑟 [𝑠] ∈ R𝐹
(𝑙−1)
𝜏 (𝑠 ) ×𝑑 is the extracted message from the

source node 𝑠 under the relation 𝑟 ;WValue(𝑙 )
𝜏 (𝑠 ) ∈ R𝑑×𝑑 is the trans-

formation matrix for for the node type 𝜏 (𝑠); 𝑏Value(𝑙 ) is the bias;
𝑊 EXT(𝑙 )

𝑟 is the transform matrix for the relation 𝑟 .
Then, we can obtain the neighbor messages for 𝑡 under relation

𝑟 as follows:

Msg(𝑙 )𝑟 [𝑡] =
∑︁

∀𝑠∈𝑁𝑟 (𝑡 )

(
Attn(𝑙 )

𝑟 [𝑠, 𝑡]
⊤
Ext(𝑙 )𝑟 [𝑠]

)
, (7)

whereMsg(𝑙 )𝑟 [𝑡] ∈ R𝐹
(𝑙−1)
𝜏 (𝑡 ) ×𝑑 is a sequence with the same shape as

the node representationH(𝑙−1) [𝑡], and𝑁𝑟 (𝑡) is the set of neighbors
(source nodes) of the target node 𝑡 in the bipartite graph 𝐺𝑟 .

4.3 Sequential Node Representation Update
After the message passing process, the target node 𝑡 receives mes-
sages Msg(𝑙 )𝑟 [𝑡] from multiple relations 𝑟 ∈ 𝑅. Based on the re-
ceived messages and the representations from the previous layer
H(𝑙−1) [𝑡], we get the updated node representation of 𝑡 .

First, we concatenate the message sequences from different rela-
tion types with relation-aware encoding as follows:

H̃(𝑙 ) [𝑡] = ∥
∀𝑟 ∈𝑅 (𝑡 )

M̃sg(𝑙 )𝑟 [𝑡], (8)

M̃sg(𝑙 )𝑟 [𝑡] = Msg(𝑙 )𝑟 [𝑡] ⊕𝑊 Enc
𝑟 , (9)

where 𝑅(𝑡) is the set of relation types whose target node type is
𝜏 (𝑡);𝑊 Enc

𝑟 ∈ R𝑑 is the relation encoding for relation 𝑟 , which is
a learnable vector to distinguish messages from different relation
types; ⊕ represents that the relation encoding is added to each
vector in the sequence.

Then, we concatenate the representations of the target node from
the last layer and encoded messages to obtain a new representation
of the target node 𝑡 :

H(𝑙 ) [𝑡] = H(𝑙−1) [𝑡] ∥ WAdopt(𝑙 )
𝜏 (𝑡 ) H̃(𝑙 ) [𝑡] , (10)

where H(𝑙 ) [𝑡] ∈ R𝐹
(𝑙 )
𝜏 (𝑡 )×𝑑 is the updated representations of target

node 𝑡 ;WAdopt(𝑙 )
𝜏 (𝑡 ) ∈ R𝑑×𝑑 is a transformation matrix corresponding

to the 𝜏 (𝑡).
We denote that the number of relation types connected to the

target node 𝑡 is len(𝑅(𝑡)), then the length of the sequential repre-
sentations for target node 𝑡 grows according to the following:

𝐹
(𝑙 )
𝜏 (𝑡 ) = 𝐹

(𝑙−1)
𝜏 (𝑡 ) × (len(𝑅(𝑡)) + 1) , (11)

where 𝐹 (𝑙−1)
𝜏 (𝑡 ) and 𝐹 (𝑙 )

𝜏 (𝑡 ) represent the length of the sequential rep-
resentation for node 𝑡 in the (𝑙 − 1)-th and 𝑙-th layers, respectively.
Referring to Equation 10 and Equation 11, we can summarize that in
sequential node representation, information from a node itself and
low-order neighbors is located at the beginning of the sequence, fol-
lowed by high-order information. As deeper Seq-HGNN Layers are
performed, information from higher-order neighbors is appended
to the sequence.

4.4 Heterogeneous Representation Fusion
After the 𝐿-layer Seq-HGNN computation, each target node 𝑡 is
represented by a sequence with length 𝐹 (𝐿)

𝜏 (𝑡 ) , which are the repre-
sentations of the 𝑡 from multiple meta-paths. We utilize the self
attention [20] mechanism to fuse the sequential representations
of the target node 𝑡 into a single vector. During the representa-
tion fusion, Seq-HGNN can identify the effective meta-paths for
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downstream tasks.

𝑄 fus [𝑡] = mean
(
H(0) [𝑡]𝑊 FQ

)
,

𝐾 fus [𝑡] = H(𝐿) [𝑡]𝑊 FK,

𝑉 fus [𝑡] = H(𝐿) [𝑡]𝑊 FV,

𝐴fus [𝑡] = Softmax

(
𝑄 fus [𝑡]𝐾 fus [𝑡]⊤

√
𝑑

)
,

H [𝑡] = 𝐴fus [𝑡]𝑉 fus [𝑡], (12)

where H [𝑡] ∈ R𝑑 is the final representation of the target node 𝑡 ;
𝑊 FQ,𝑊 FK and𝑊 FV are all learnable matrices of dimension 𝑑 × 𝑑 ;
𝑄 fus [𝑡] is generated by original features of target node 𝑡 ; 𝐴fus [𝑡] ∈
R
𝐹
(𝑙 )
𝜏 (𝑖 ) stands for the importance of each representation for node 𝑡 ,

which is also the importance of meta-paths.
Referring to [10, 21, 31], we adopt the multi-head attention

mechanism during the message passing and representation fusion.
The output of the multi-head attention is concatenated into a 𝑑-
dimensional representation to enhance the stability of the model. In
addition, we randomly drop out some fragments of the sequential
representation of each node in training loops, which can help the
Seq-HGNN model learn more meaningful node representations.

5 EXPERIMENTS
In this section, we evaluate the performance of Seq-HGNN by
conducting experiments on multiple datasets.

5.1 Datasets
We conduct extensive experiments on four widely used datasets
from Heterogeneous Graph Benchmark (HGB) [13]1 and Open
Graph Benchmark (OGB) [9]2. Specifically, three medium-scale
datasets, DBLP, IMDB and ACM, are from HGB. A large-scale
dataset MAG comes from OGB. Their statistics are shown in Table 1.

• DBLP is a bibliography website of computer science3. This
dataset contains four types of nodes: Author, Paper, Term and
Venue. In this data set, models need to predict the research
fields of authors.

• IMDB is extracted from the InternetMovie Database (IMDb)4.
It contains four types of nodes:Movie, Director, Keyword and
Actor. Models need to divide the movie into 5 categories:
“Romance”, “Thriller”, “Comedy”, “Action, Drama”.

• ACM is also a citation network. It contains four types of
nodes: Paper, Author, Subject (Conference) and Term. The
Paper nodes are divided into 3 categories: ”database“, ”wire-
less communication“ and “data mining”. The model needs to
predict the category the paper belongs to.

• MAG is a heterogeneous academic network extracted from
the Microsoft Academic Graph5, consisting of Paper, Author,
Field and Institution. Papers are published in 349 different
venues. Each paper is associated with a Word2Vec feature.
The model needs to predict the category the paper belongs to.

1https://github.com/THUDM/HGB
2https://ogb.stanford.edu/
3https://www.dblp.org/
4https://www.imdb.com/
5https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

Table 1: Statistics of datasets.

name #Nodes #Node
Types #Edges #Edge

Types Target #Classes

DBLP 26,128 4 239,566 6 author 4
IMDB 21,420 4 86,642 6 movie 5
ACM 10,942 4 547,872 8 paper 3
MAG 1,939,743 4 21,111,007 4 paper 349

The model needs to predict the venues in which the papers
are published.

5.2 Results Analysis
5.2.1 Results on HGB Benchmark. Table 3 shows the results of
Seq-HGNN on the three datasets compared to the baselines in
the HGB benchmark. Baselines are divided into two categories:
meta-path-based methods and meta-path-free methods. Meta-path
based methods include RGCN [15], HetGNN [34], HAN [22] and
MAGNN [4]. The meta-path-free methods are RSHN [36], Het-
SANN [8], HGT [10], HGB [13] and SeHGNN [26]. The results of
the baselines are from HGB and their original papers. As shown in
Table 3, our proposed method achieves the best performance on
ACM and DBLP datasets. In detail, Seq-HGNN gains improvement
beyond the best baseline on macro-f1 by (1.2%, 0.4%) and on mirco-
f1 by (0.5%, 0.4%), respectively. On the IMDB dataset, our method
achieves the best micro f1 scores and the second-best macro f1
scores. The performance difference between IMDB and the other
two datasets may be due to the following two reasons: (1) Domain
difference: DBLP and ACM are datasets in the academic domain
while IMDB comes from the film domain. (2) Task difference: IMDB
is a multiple-label classification task, but ACM and DBLP are not.

5.2.2 Results on OGB-MAG. Since some types of nodes in theMAG
dataset have no initial features, existing methods usually utilize
unsupervised representation methods to generate node embeddings
(abbreviated as emb) as initial features. For a fair comparison, we
also use the unsupervised representation learning method (Com-
plEx [19]) to generate node embeddings. In addition, some baseline
methods on the list also adopt multi-stage learning [11, 18, 25]
(abbreviated as ms) tricks to improve the generalization ability of
the model. Therefore, we also explored the performance of Seq-
HGNN under the multi-stage training.

As shown in Table 3, Seq-HGNN achieves the best performance
compared to the baseline on the ogb leaderboard 6. It shows that our
method can not only mine information in heterogeneous graphs
more effectively, but also reflect good scalability to be applied to
large-scale graphs.

5.3 Ablation Study
One of the core contributing components in Seq-HGNN is to explore
how to effectively exploit the structural information in heteroge-
neous graphs. So we design three variants of our model to verify
their effects, namely Seq-HGNN w/o seq, Seq-HGNN w/o fus,
and Seq-HGNN w/o rel. The performance of these variants on the

6https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-mag

https://github.com/THUDM/HGB
https://ogb.stanford.edu/
https://www.dblp.org/
https://www.imdb.com/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-mag
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DBLP IMDB ACM
macro-f1 micro-f1 macro-f1 micro-f1 macro-f1 micro-f1

Metapath-based
methods

RGCN 91.52±0.50 92.07±0.50 58.85±0.26 62.05±0.15 91.55±0.74 91.41±0.75
HetGNN 91.76±0.43 92.33±0.41 48.25±0.67 51.16±0.65 85.91±0.25 86.05±0.25
HAN 91.67±0.49 92.05±0.62 57.74±0.96 64.63±0.58 90.89±0.43 90.79±0.43

MAGNN 93.28±0.51 93.76±0.45 56.49±3.20 64.67±1.67 90.88±0.64 90.77±0.65

Metapath-free
methods

RSHN 93.34±0.58 93.81±0.55 59.85±3.21 64.22±1.03 90.50±1.51 90.32±1.54
HetSANN 78.55±2.42 80.56±1.50 49.47±1.21 57.68±0.44 90.02±0.35 89.91±0.37

HGT 93.01±0.23 93.49±0.25 63.00±1.19 67.20±0.57 91.12±0.76 91.00±0.76
HGB 94.01±0.24 94.46±0.22 63.53±1.36 67.36±0.57 93.42±0.44 93.35±0.45

SeHGNN 95.06±0.17 95.42±0.17 67.11±0.25 69.17±0.43 94.05±0.35 93.98±0.36

Ours

Seq-HGNN 96.27±0.24 95.96±0.31 66.77±0.24 69.31±0.27 94.41±0.26 94.33±0.31
-w/o seq 93.79±0.34 93.51±0.38 64.32±0.56 67.04±0.62 92.44±0.67 92.17±0.72
-w/o fus 95.59±0.14 95.92±0.13 65.01±0.37 67.43±0.32 93.21±0.48 93.20±0.50
-w/o rel 95.49±0.23 95.64±0.18 64.78±0.41 69.09±0.39 93.76 ±0.43 93.67±0.46

Table 2: Experiment results on the three datasets from the HGB benchmark. The best results are in bold, and the second-best
results are underlined.

Methods Validation accuracy Test accuracy
RGCN 48.35±0.36 47.37±0.48
HGT 49.89±0.47 49.27±0.61
NARS 51.85±0.08 50.88±0.12
SAGN 52.25±0.30 51.17±0.32
GAMLP 53.23±0.23 51.63±0.22
HGT+emb 51.24±0.46 49.82±0.13
NARS+emb 53.72±0.09 52.40±0.16
GAMLP+emb 55.48±0.08 53.96±0.18
SAGN+emb+ms 55.91±0.17 54.40±0.15
GAMLP+emb+ms 57.02±0.41 55.90±0.27
SeHGNN+emb 56.56±0.07 54.78±0.17
SeHGNN+emb+ms 59.17±0.09 57.19±0.12
Seq-HGNN+emb 56.93±0.11 55.27±0.34
Seq-HGNN+emb+ms 59.21±0.08 57.76±0.26

Table 3: Experiment results on the large-scale dataset MAG,
where “emb” means using extra embeddings and “ms” means
using multi-stage training. The best results are in bold, and
the second-best results are underlined.

HGB dataset is shown in Table 2. The details of these variants are
as follows:

• Seq-HGNN w/o seq. It does not use the sequential node
representation. After each layer of graph convolution, mul-
tiple node representations from different relationships are
aggregated into a vector representation by the mean oper-
ation. Finally, the Seq-HGNN w/o seq concatenates the
output of each graph convolutional layer as the final output
for the downstream tasks. Comparing Seq-HGNN w/o seq
and Seq-HGNN, it can be found that after introducing se-
quential node representation, the performance of the model
can be significantly improved. It proves that sequential node
representations indeed retain richer and more effective node
information.

• Seq-HGNN w/o fus. It works on the final representation
of the node, in which it drops the heterogeneous represen-
tation fusion module, instead using the average representa-
tion sequence output sent by the last layer of Seq-HGNN.
Comparing Seq-HGNN w/o fus and Seq-HGNN, it can be
found that the performance decreases after removing the
heterogeneous fusion module. It illustrates the importance
of recognizing the most contributing meta-path.

• Seq-HGNN w/o rel. It does not add relationship-aware
encoding when updating the node representation, which is
introduced in equation 9, section 4.3. As shown in Table 3,
Seq-HGNN performs better than Seq-HGNN w/o rel on
all datasets. It verifies the relation-distinguishing ability of
Seq-HGNN.

5.4 Experiment Setup Detail
We use the PyTorch Geometric framework 2.0 7 to implement the
Seq-HGNN. The source code is available at https://github.com/
nobrowning/SEQ_HGNN. We set the node embedding dimension
𝑑 = 512, and the number of attention heads to 8. The number of
layers 𝐿 is set to 2 on the DBLP, IMDB and MAG datasets and
to 3 on the ACM dataset. During the training process, we set the
dropout rate to 0.5, and the maximum epoch to 150. We use the
AdamW optimizer [12] with a maximum learning rate of 0.0005
and tune the learning rate using the OneCycleLR strategy [16]. For
DBLP, ACM, and IMDB datasets, we use full batch training. For
the large-scale dataset MAG, we use the HGTLoader8 subgraph
sampling strategy [10], setting the batch size to 256, sampling depth
to 3, sample number to 1800. We iterate 250 batches in each epoch.

The results of the baselines in Table 2 and Table 3 mainly come
from previous works [13, 26]. All experiments can be conducted on
a Linux machine with Intel(R) Core(R) i7 8700 CPU, 32G RAM, and
a single NVIDIA GeForce RTX 3090 GPU.

7https://www.pyg.org/
8https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html

https://github.com/nobrowning/SEQ_HGNN
https://github.com/nobrowning/SEQ_HGNN
https://www.pyg.org/
https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html
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Figure 3: The comparison of training efficiency.

Figure 4: Parameter Sensitivity of Seq-HGNN.

5.5 Training Efficiency
In Seq-HGNN, sequential node representations are computed in
parallel. Therefore, Seq-HGNN achieves decent computational effi-
ciency. To further investigate the computational efficiency of Seq-
HGNN, we conduct experiments to compare the training time of
Seq-HGNN with a state-of-the-art baseline, i.e., SeHGNN.

To achieve a fair comparison, we subject all models to the same
accuracy performance validation — making a test on the test set
every one train epoch. The variation of test accuracy of the models
with training time is shown in Figure 3.

As shown in Figure 3, Seq-HGNN performs the highest accuracy
within the least training time. It verifies that Seq-HGNN has good
computational efficiency when dealing with heterogeneous graphs.
As a comparison, the baseline (SeHGNN) outputs nothing within
42 seconds of starting training. The reason is that SeHGNN cannot
directly learn node representations on heterogeneous graphs. It
requires a message-passing step before node representation gener-
ation. In the message passing step, SeHGNN collects the features
of neighbor nodes of the target on all meta-paths. Therefore, the
messaging step shows a high time-consuming.

5.6 Parameter Sensitivity Analysis
We study the sensitivity analysis of parameters in Seq-HGNN.
Specifically, we conduct experiments on the large-scale dataset
OGB-MAG to explore the influence of the number of layers, the
dropout rate, and the dimension of node representation. Since the
model needs to conduct a sub-graph sampling on the large-scale
dataset, we also explore the influence of sampling node numbers.
To simplify the evaluation process, we opted not to employ a multi-
stage training strategy in the parameter sensitivity experiment.
The results are shown in Figure 4, where each subfigure shows the
accuracy of classification on the y-axis and hyperparameters on
the x-axis.

5.6.1 Number of node samples. Since Seq-HGNN uses HGT-Loader
for sampling sub-graphs in the node classification task, we explore
the effect of node sampling number on the performance of Seq-
HGNN. As shown in Figure 4 (a), Seq-HGNN achieves the best
performance when the number of samples is set as 1800.

5.6.2 Dimension of node representation. We report the experimen-
tal result varied with the dimension of node representation in Fig-
ure 4 (b). It can be seen that as the dimension increases, the perfor-
mance of Seq-HGNN gradually increases. After the dimension is
higher than 256, the performance improvement slows down.

5.6.3 Dropout rate. We adjust the dropout rate during the model
training and report the results in Figure 4 (c). We can observe that
Seq-HGNN performs best when the dropout rate is 0.5. A high
dropout rate would lead to underfitting and poor performance,
while a low dropout rate may lead to overfitting.

5.6.4 Number of layers. We explore the performance of our model
while stacking from 1 to 3 Seq-HGNN Layers. The experimental re-
sults are shown in Figure 4 (d). It can be seen that Seq-HGNNachieves
the best performance when it is stacked with 2 layers. On this basis,
the performance of Seq-HGNN becomes worse when more layers
are stacked. This may be caused by over-smoothing issues.

5.7 Visualization of Effective Meta-Paths
As mentioned in Section 4.4, 𝐴fus in the Heterogeneous Represen-
tation Fusion module indicates the importance of different repre-
sentations of a node, i.e., the importance of a node on different
meta-paths. To visualize how the heterogeneous fusion module of
Seq-HGNN identifies the most contributing meta-paths, we present
the effective meta-paths in node representation learning on DBLP,
IMDB, ACM and MAG datasets, respectively. The most important
meta-paths for these target node representations are shown in Fig-
ure 5. It is noteworthy that our model can individually identify the
significant metapaths characterizing each node. In order to simplify
the visualization, we aggregate the propagation path weights of
nodes by node type in Figure 5. Due to the large number of meta-
paths, here, we only show the top five important paths in each
sub-figure.

Comparing the four sub-figure in Figure 5, we can find that the
important paths for distinct nodes are obviously different. It verifies
that the Seq-HGNN can estimate the path importance separately
for different nodes, rather than treat them equally.
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Figure 5: Visualization of the significant meta-paths for representing the target nodes (Author, Movie, Paper, Paper) in respective
datasets (DBLP, IMDB, ACM, MAG). In the figures, the nodes with superscripts 1 and 2 represent the direct neighbors and the
second-order neighbors of the target node, respectively.

In sub-figure (a), we can observe that the self-loop of the target
node (Author) has a high weight (72.37%). It reveals that in the ACM
dataset, the representation of the Author node mainly depends on
its own attributes rather than the structural information in the
graph. In contrast, the information of the target node (Movie) in
sub-figure (b) mainly comes from its neighbor nodes. The target
node types in sub-figure (c) and sub-figure (d) are both Paper. How-
ever, there is a significant difference between sub-figure (c) and
sub-figure (d): the most important meta-path in sub-figure (c) is
“Paper-Conference”, while the information of the target node in sub-
figure (d) mostly comes from the meta-paths related to Paper, such
as “Paper-Field-Paper”, “Paper-Paper-Paper”, “Paper-Author-Paper”,
etc. The difference between sub-figure (c) and sub-figure (d) may
be mainly caused by their downstream tasks. Specifically, the task
of sub-figure (c) is to predict the field of the paper while the task of
sub-figure (d) is to predict the journal where the paper is published.
This indicates that our model can utilize different aspects of graphs
according to different downstream task demands. By mining impor-
tant propagation paths, the model can provide deep insights and
interpretability into the real-world application scenarios.

6 CONCLUSION
In this paper, we proposed a novel heterogeneous graph neural net-
work with sequential node representation, namely Seq-HGNN. To
avoid the information loss caused by the single vector node repre-
sentation, we first design a sequential node representation learning
mechanism to represent each node as a sequence of meta-path
representations during the node message passing. Then we pro-
pose a heterogeneous representation fusion module, empowering
Seq-HGNN to identify important meta-paths and aggregate their
representations into a compact one. Third, we conducted extensive
experiments on four widely-used datasets from open benchmarks
and clearly validated the effectiveness of our model. Finally, we visu-
alized and analyzed effective meta-path paths in different datasets,
and verified that Seq-HGNN can provide deep insights into the
heterogeneous graphs.
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