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ABSTRACT

Lookalike models are based on the assumption that user similar-
ity plays an important role towards product selling and enhanc-
ing the existing advertising campaigns from a very large user base.
Challenges associated to these models reside on the heterogene-
ity of the user base and its sparsity. In this work, we propose a
novel framework that unifies the customers’ different behaviors
or features such as demographics, buying behaviors on different
platforms, customer loyalty behaviors and build a lookalike model
to improve customer targeting for Rakuten Group, Inc. Extensive
experiments on real e-commerce and travel datasets demonstrate
the effectiveness of our proposed lookalike model for user target-
ing task.
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1 INTRODUCTION

E-commerce and online businesses require efficient lookalike mod-
els to recommend the right products/services to the right customer.
Tech companies e.g., Facebook, Google [8], LinkedIn [11] provide
several marketing campaign platforms. Advertisers and marketers
often seek to target users similar to the users who already showed
interest on their products to maximize the likelihood of positive
responses to their user targeting. Audience expansion, also called
look-alike modeling, is the task of finding users who are similar to
a given set of seed users and likely to achieve the business goal of
the target product/campaign. The seed users can be, for example,
purchasers of a product, web subscribers, or loyal customers.

Any lookalike model suffers from several challenges e.g., fea-
tures selection or depending on only demographic or buying be-
haviors; limited seed users which may lead to overfitting; each tar-
get prospecting task is different and can cover almost all the major
topics. To address those challenges, we propose Embedding based
Customer Lookalike Modeling (E-CLM), which utilizes a customer
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360-degree view. E-CLM relies on the customer personality, buying
behavior, cross service data and loyalty information.

Rakuten has one of the largest e-commerce platforms in the
world known as Rakuten Ichiba. In addition to e-commerce ser-
vice, Rakuten provides more than 90 different online services and
Rakuten Travel is one of them.We observed that a significant num-
ber of customers are active in our Ichiba (e-commerce) servicewhile
inactive in Rakuten travel service and vice versa. In this work, we
combine Rakuten Ichiba and Rakuten Travel service to predict the
lookalike customers. We believe that a lookalike model should not
only focus on customers’ preference but also other factors like af-
fordability, and lifestyle. As an example, one customer can be very
active on our travel service and regularly browsing/booking lux-
urious hotels but never active on our Ichiba service. There is a
chance, that the customer can afford expensive cosmetics items
but has never been targeted while lookalike model was using only
one service related data. To address such issues, we include users’
cross service behaviors, loyalty, personal and family views in our
proposed model.

RakutenAIris Target Prospecting (AIris TP) is a frameworkwhich
finds prospective customers for Rakuten’s businesses and its clients.
This framework has been deployed in Rakuten for customer target-
ing since 2018. Therefore, we present the best performing models
on the AIris TP framework in this work. In E-CLM, we propose
five different views of customers: demography, loyalty, ichiba (e-
commerce), travel and family view, and we learn a user represen-
tation from each of them. We apply E-CLM to the AIris TP Frame-
work and evaluate the effectiveness. We also discuss another exten-
sion of E-CLM (E-CLM++) to improve its current performance. The
main contributions of our work can be stated as (a) To the best of
our knowledge, we present the first lookalike model which defines
the different views of customers explicitly and combine them to
better learn user representation which leads to effective lookalike
modeling, and (b) Comprehensive experiments to demonstrate our
approach’s effectiveness as it achieves a significant accuracy com-
parable to the baselines set for the AIris TP.

2 RELATED WORK

In this section, we introduce the related work from various as-
pects. Some work uses similarity-based methods [13] or clustering
[3, 7, 21, 22, 26], meta-task learning [4, 10, 23, 27] , matrix factor-
ization [8] , classification-based methods [1] and rule-based meth-
ods [17] . Knowledge graphs embedding models [2, 14, 18, 24]and
GNNs [5, 6, 9, 12, 16, 19, 20, 25] based models also can be used in
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recommender systems to address lookalike modeling. There has
also been some work that extracts rules/feature vectors for scor-
ing. Similarity-based methods expand a given seed-list via calcu-
lating the similarity of all pairs between seed users and candidate
users. Rule-based methods match similar users with specific demo-
graphic features or interests or personas that are targeted by mar-
keters. LinkedIn researchers proposed a campaign-agnostic and
campaign-aware lookalike expansion approach to expand user pro-
files to mitigate the coverage problem and showed that while ad-
vertisers cannot cover all relevant demographic attributes related
to the desired product or service on such cases their model can
achieve high accuracy [11]. However, none of related works use
cross service data and explicitly encounter all customer perspec-
tives.

3 EMBEDDING BASED CUSTOMER
LOOKALIKE MODELING

3.1 Problem Statement and Preliminary

In a lookalike setting, a list of< seed users (D = (D1, D2, . . . , D<)

is given to the model and the task is to find = similar users to the
seed list (D where = ≫<.

We have constructed two different knowledge graphs: one is
based on e-commerce(Ichiba) service and another is based on travel
service. For notations, we denote a triplet by (D8, A , D 9 ). Demogra-
phy and loyalty attributes are denoted as 03 and 0; respectively.
We use bold lowercase letters to represent embeddings and bold
uppercase letters for matrices.

3.2 Demography View (D. view)

We observed that user demography is very important features for
lookalike modeling. In our datasets, all the demography informa-
tion are stored in literal/numeric format (age, reg_date, area_code).
We represent the user demography information in triplet format
(D3 , A3 , 03 ) where A3 is the demography relation for user D3 . We
employ the basic TransE [2] for attributes and literals embedding
and we interpret relation A3 as a translation from the head entity
D to the literal ; .

Since the literals values can be in different formats. For exam-
ple, user, D3 is 55.5 years old, the area code she lives in is 14, the
registration date to the e-commerce service is ’2005-12-04’. There-
fore, to encode the literal value, we use a compositional function
q (03 ) where 03 is a sequence of the characters of the demography
attribute value ; = 21, 22, 23, . . . , 2: , where 21, 22 , . . .2: are the char-
acter embeddings of the demography attribute value and define the
relationship of each element in literal triple as D3 +A3 ≈ q (03 ). We
employ an N-gram-based compositional function in our proposed
E-CLM model. We use the summation of n-gram combination of

the attribute value. The equation is:q (03 ) =
∑#
==1

(

∑:
8=1

∑=
9=8 2 9/(: − 8 − 1)

)

.

where # indicates the maximum value of n used in the ngram
combinations and : is the length of the attribute value.

To learn the demography view embeddings, we minimize the
following objective function !� :

!� =

∑

(D3 ,A3 ,03 ) ∈)03

∑

(D′
3
,A3 ,0

′
3
) ∈) ′

03

<0G (0,W + U ( 53 (D3 , A3 , 03 )

− 53 (D
′
3
, A ′
3
, 0′

3
))) (1)

Here, )03 is the set of valid demography attribute triples from the

training dataset, while )
′

03 is the set of negative demography at-
tribute triples. Here, 5; (D3 , 03 ) is the plausibility score based on
the embedding of the head entityD3 , the embedding of the relation-
ship A3 , and the vector representation of the demography attribute
value that computed using the compositional function q (03 ).

3.3 Loyalty View (L. view)

On our website, items are displayed under different shops or mer-
chants. Users show strong preference to specific shops/merchants,
genres, hotels or brands. It is obvious that users browse multiple e-
commerce websites to compare product prices/services and each
e-commerce company provides a different set of coupons or dis-
counts for the product. So, we are interested to know about our
customer/user loyalty information when they buy from our web-
sites. To identify the loyalty embeddings we focus on users shop,
genre, hotel and targeted brand loyalty attribute. If a user buys
an item from a shop more than five times, we include that shop
name under user shop loyalty attributes. That means one user can
be loyal to multiple shops, genres and so on. To capture the loy-
alty embeddings, we utilize a simple convolutional neural network
(CNN) to extract features from the loyalty attributes. We repre-
sent the loyalty attribute and its value in a matrix form 〈A; ; E; 〉 ∈

R
(2×3) , where A; is loyalty attribute and 0; is the value and feed

it to a CNN to obtain the vector representation [25]. The score
function would be 5; (D; , A; , E; ) = −‖D; − �## (〈A; ; E; 〉)‖ and min-
imize the following objective function, !! =

∑

(D; ,A; ,0; ) ∈! log(1 +

exp(−5; (D; , A; , E; ))). Here, ! denotes the set of real loyalty attribute
triples and D; is the user’s loyalty view embedding.

3.4 Structure Embedding (SE)

Structure embeddings encode the user-user, user-item and item-
item interactions by using knowledge graph embedding models.
As we mentioned earlier in this study, we have built two knowl-
edge graphs from the e-commerce (Ichiba) and travel service data.
In our e-commerce KG, we have 4 entity types (user, shop, item,
genre) and 12 types of edges (bought, clicked,sold_by,item_under_-
leaf_genre, spouse, parent, child and 5 types of genre hierarchy
based relations). Travel graph consists of 4 types of entities/nodes:
user, hotel_id, month (visiting month) and reservation_type, reser-
vation_partner (clients can book using different travel agency or
apps) and booked, visiting_month, reserved_under_partner_id, user_-
reservation_type (there are 6 reservation types). Here we compute
three different views: (1) Ichiba view, (2) travel view and (3) users’
family members view. For this three views, SE has been used. In
this work, we employ a translation-based KGE model and we can
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formalize the loss function as follows:

!KGE =

∑

(ℎ,A,C) ∈E

∑

(ℎ′,A ,C′) ∈E−1

[

W + 5 (ℎ, A, C) − 5 (ℎ′, A ′, C ′)
]

+
, (2)

where (ℎ, A, C) is positive triples, which actually exist in the KG,
(ℎ′, A , C ′) is broken triples, W is the margin, 5 (ℎ, A, C) is the score
function, and [·]+ = <0G (0, ·). Here the score function is defined
as 5 (ℎ, A, C) = ‖uℎ + uA − uC ‖1, where uℎ , uA and uC , are the embed-
dings of head entities, relations and tail entities, respectively. We
employ the simple KGE model in our structure embedding for E-
CLM because we have not seen any significant change while using
ComplEX or Graph Sage.

3.4.1 Ichiba View (I. view). Ichiba view (e-commerce) aggregate
users’ user -item and item -item interactions from our e-commerce
KG by applying KGE (using the Eq. (2) ) and obtain embedding for
Ichiba view D4 .

3.4.2 Travel View (T. view). Travel graph captures the users’ travel
enthusiasms and interactions with travel products. In this graph,
users’ hotel/resort preference, reservation type etc. (please refer to
Sect. 3.4 ) are interconnected. Here, we compute users’ travel view,
DCE using KGE.

3.4.3 Users’ Family Members View (FM. view). Family and social
life have an immense impact on customers’ buying behaviors (Rakuten
social graph contains different relationships among it’s customers).
They also reflect users’ preferences to different products and ser-
vices. Here, we only consider users’ family members buying inter-
actions only and exclude actual seed and non-seed users’ interac-
tions. In Ichiba view we only learn user-related interactions but
here we extract all the users’ family member interactions. Users’
family member view denoted as D5 .

3.5 Finding Lookalike Customers

We calculate five different views of each customer and combine the
views of each user by defining a weight to each view. To empha-
size on important views, we assign weights to view-specific entity
embeddings [12]. Let D5 8=0; denotes the combined embedding for
D . Without loss of generality, let V be the number of views, and we
have: D5 8=0; =

∑+
8=1F8D

(8) , whereF8 is the weight ofD (8) , and can

be calculated by:F8 = 2>B (D (8), D”)/
∑+

9=1 2>B (D
( 9) , D”), whereD” is

the average of user embeddings ofD , i.e.,D” =
1

+

∑+
8=1F8D

(8) . If the
embedding from one view is far away from its average embedding,
it would have a lower weight. We use these embeddings in two
ways: (1) use a similarity threshold) to filter the closest customers
of each seed customer and generate the new list as target prospect-
ing (E-CLM); (2) use the user embeddings as pre-trained features
for the current baseline model, which we will call E-CLM++.

Table 1: Datasets statistics (A∼E represent the top 5 brands

from Rakuten Ichiba).

A B C D E Resort R Hotel H Tencent
# Seeds 76254 96952 70670 1669 37413 467 6147 421961
# Training 305017 387805 282677 6673 149649 1506 17391 1812791
# Validation 42157 53093 38261 853 20033 203 2353 226598
# Testing 44985 50113 36233 4401 37513 433 5704 226600

4 EXPERIMENTS

4.1 Experimental Settings

4.1.1 Datasets.

• Rakuten Ichiba and Travel datasets: Ichiba dataset contains
top 5 brands (by revenue generation) sold in Rakuten. For anonymity
purpose code names have been used. Brand A and Brand E are
very popular brands for health-related products e.g., vitamins,
mineral, stress relievers etc. Brand B and C sell beauty products
and toiletries. Brand D is a famous beverage brand. In Rakuten
Travel dataset , Resort R is a very famous luxury resort chain in
Japan, which has resorts in four different locations. Hotel H is a
standard hotel in Tokyo.

• Tencent dataset It is a public dataset1 which was proposed for
Tencent Ads competitions in 2018. This dataset contains hun-
dred of different seed sets (total 421,961 seed users). In this dataset,
each user has 14 features including user demography and in-
sterests. Each advertisment task in this dataset has 6 categori-
cal features: ad category, advertiser ID, campaign ID, product ID,
product type, creative size. We can understand that this dataset
has no cross domain information and features are quite differ-
ent from Rakuten Ichiba and Travel datasets. For the Tencent
dataset, we have prepared two views for our proposed E-CLM
models. Demography and Interest view: This view has been cal-
culated using demography and interest features of this dataset in
a similar way, as described in Sect. 3.2; Tencent structured view:
Similar to Ichiba view, we aggregate user to product and capture
the connections with product to other categorical features in a
KG format, and obtain Tencent KG view.

The details of the datasets are shown in Table 1. Please note, for
Rakuten top clients we run the campaigns in monthly/bi-monthly
basis. For the all datasets, the ratio of seed and non-seed users is
1:3. Each dataset contains a seed-list and a non-seed list for training
and validation, and a set of expanded customers for testing.

4.1.2 Baselines.

• BaselineTarget Prospecting (TP): The current baseline model
for AIris TP is based on XGBoost model. This model uses four
different features for Rakuten datsets: (i) Demographic Features:
Demographic features such as age, gender, region. (i) Points Sum-

mary: Rakuten users can gain pointswhile buying different prod-
ucts/services. This feature exhibits point status such as current
available points. (iii) Point Features: Transaction of points such
as acquired/used points from online/offline shops/ merchants.
(iv) Genre level Purchase History: Like other E-commerce compa-
nies, Rakuten Group maintains "genre" hierarchy. In this feature
we capture shopping trends in popular genres. For the Tencent
dataset all features are directly fed to a XGBoost model.

• LogisticRegression-basedLookalikeModel (LR): In thismodel
[15], for a given user D8 who has a feature vector E8 , a logistic re-
gression model gets trained and model the probability of being
lookalike users to seed users.

• TP+TransE, TP+ComplEX, TP+Graph Sage: In TP+TransE,
TransE [2] generated vectors (from the structure embedding us-
ing e-commerce KG) have been exploited as pre-trained features

1https://pan.baidu.com/s/1tzBTQqA0Q9qexFr32hFrzg (password: ujmf)
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Table 2: Model Performance (Precision and PR-AUC) on Rakuten Ichiba, Rakuten Travel and public dataset

Models
A B C D E Resort R Hotel H Tencent

Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc
Baseline TP 0.536 0.705 0.549 0.716 0.571 0.747 0.638 0.751 0.565 0.738 0.414 0.437 0.306 0.379 0.289 0.581
LR 0.511 0.656 0.547 0.699 0.545 0.710 0.617 0.723 0.551 0.723 0.397 0.413 0.286 0.413 0.272 0.570
TP+TransE 0.543 0.724 0.552 0.724 0.585 0.767 0.657 0.776 0.568 0.749 0.456 0.447 0.341 0.418 0.290 0.612
TP+ComplEX 0.548 0.726 0.552 0.722 0.590 0.765 0.662 0.780 0.571 0.755 0.460 0.450 0.345 0.420 0.298 0.621
TP+Graph Sage 0.552 0.724 0.558 0.728 0.598 0.760 0.665 0.778 0.575 0.758 0.463 0.452 0.350 0.419 0.302 0.642
MetaHeac 0.549 0.724 0.554 0.724 0.593 0.766 0.661 0.780 0.570 0.752 0.421 0.441 0.314 0.385 0.314 0.735

E-CLM 0.552 0.729 0.561 0.727 0.601 0.771 0.670 0.784 0.579 0.761 0.461 0.482 0.348 0.421 0.316 0.735

E-CLM++ 0.557 0.732 0.564 0.733 0.605 0.774 0.679 0.791 0.586 0.766 0.466 0.483 0.382 0.423 0.314 0.734

Table 3: Model Performance (Accuracy) on all the datasets.

Models A B C D E Resort R Hotel H Tencent

Baseline TP 0.764 0.776 0.797 0.804 0.761 0.696 0.538 0.670
LR 0.755 0.740 0.758 0.722 0.717 0.692 0.527 0.654
TP+TransE 0.776 0.782 0.832 0.837 0.790 0.746 0.698 0.725
TP+ComplEX 0.780 0.782 0.825 0.833 0.784 0.749 0.705 0.727
TP+Graph Sage 0.778 0.779 0.748 0.842 0.790 0.752 0.703 0.729
MetaHeac 0.776 0.785 0.831 0.841 0.796 0.749 0.543 0.741
E-CLM 0.775 0.788 0.834 0.841 0.788 0.777 0.721 0.740
E-CLM++ 0.783 0.806 0.835 0.850 0.807 0.780 0.716 0.738

to Baseline TP for user expansion as baseline. In the same way
as "TP+TransE" we prepared two other baselines for our E-CLM
model using ComplEX [18] and graph sage [5] .

• MetaHeac: It is a state-of-the-art lookalike model and has been
deployed in WeChat [27].

4.1.3 Model Se�ings. The models run on a single GPU ’NVIDIA
Tesla V100’. We use grid search to find the best hyperparameters
for themodels.We choose the embeddings dimensionality3 among
{50, 75, 100}, the learning rate among {0.001, 0.01, 0.1}, and the mar-
gin W among {1, 5, 10}. We train the models with a batch size of
10000 and a maximum of 500 epochs. The activation function for
the CNN was C0=ℎ(·).

4.2 Empirical Results

We evaluate the performance of the models using Precision, PR-
AUC and Accuracy. Table 2 and Table 3 show the performance of
our proposed E-CLM and E-CLM++ models with the baselines. Re-
sults in bold font are the best obtained results. The goal of this
work is to evaluate the models behind the Rakuten AIris TP.

From Tables 2 and 3, we have the following findings: (1) E-CLM
and E-CLM++ outperformed all other methods, using the experi-
mental Ichiba, Travel and Tencent datasets on all metrics. E-CLM
achieved 3.2% and 10.7% avg. improvement in PR-AUC metric on
Ichiba and Travel datasets respectively over the Baseline TP. On
the other hand, E-CLM++ achieved 3.8% and 11.1% avg. improve-
ment in PR-AUC on Ichiba and Travel datasets, respectively. For
precision and accuracy, E-CLM models also achieved the best per-
formance. E-CLM++ worked well on Rakuten datasets; (2) Among
TP+TransE, TP+ComplEX and TP+Graph Sage, though TP+Graph
sage achieved better performance, but its performance is very close
to TP+TransE which is surprising. We think TransE can work well
when the data is very rich. However, complicated models might
suffer from bias or overfitting problems; (3) The avg. performance

of Rakuten Travel datasets are muchhigher than theRakuten Ichiba
datasets. MetaHeac [27] developed by WeChat achieved competi-
tive results on Rakuten amd public datasets; (4) Though E-CLM is
customized for Rakuten AIris TP, but it shows competitive perfor-
mance for the public dataset as well.

4.3 Ablation Study

We have introduced five different views for Rakuten Ichiba and
Rakuten Travel related to target prospecting. Here, we present an
ablation study to test the effectiveness of each view in E-CLMmod-
els. First, we show the results considering each view separately.
Second, we show the combination of different views (please note
total number of views are 5 so we included the most significant
combination to give the readers a clear understanding). Please re-
fer to Table 4 for the detail results. Major findings are: (1) Consider-
ing the performance of single views, Demography view and Ichiba
view showmore effectiveness than other views. (2) Familymember
view seems more effective for Rakuten travel than Rakuten Ichiba.
(3) In the Travel dataset using Ichiba view can improve overall PR-
AUC by 2.7%. However, for Ichiba datasets, Travel view contributes
6.2% improvement.

5 CONCLUSION

This work introduces a novel lookalike algorithm that leverages a
360-degree view of customers along with the power of KG embed-
ding. E-CLM models demonstrated the superior effectiveness in
the experiments compared to the other state-of-the-art approaches.
Here, we only showed the results of two different services of Rakuten.
We believe that these results will inspire researchers to use cross
service data for understanding users’ different perspectives while
building a lookalike model.

COMPANY PORTRAIT

RakutenGroup, Inc. is a leading global company that contributes
to society by creating value through innovation and entrepreneur-
ship. It operates in e-commerce, travel, digital content, communica-
tions, and Fintech sectors. Rakuten connects millions of customers
to more than 90 different services with a wide range of options and
felxibilities. Rakuten aims to build a fair society where individuals
and companies are empowered to be successful in business and
life.
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Table 4: Ablation (Precision and PR-AUC) on Rakuten Ichiba and Travel dataset.

Models
A B C D E Resort R Hotel H

Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc Prec. Pr-auc
D-view 0.347 0.557 0.351 0.521 0.399 0.510 0.445 0.562 0.362 0.587 0.273 0.321 0.201 0.274
L-view 0.221 0.401 0.270 0.399 0.211 0.398 0.312 0.411 0.286 0.403 0.171 0.222 0.153 0.278
I-View 0.345 0.550 0.352 0.519 0.390 0.501 0.450 0.570 0.359 0.582 0.230 0.301 0.199 0.203
T-view 0.232 0.433 0.310 0.435 0.275 0.448 0.383 0.460 0.298 0.433 0.361 0.392 0.250 0.312
FM-view 0.212 0.398 0.261 0.373 0.208 0.388 0.314 0.419 0.286 0.403 0.225 0.274 0.222 0.316
D+L 0.412 0.587 0.415 0.590 0.459 0.599 0.513 0.622 0.423 0.648 0.344 0.424 0.285 0.342
I+T+FM 0.432 0.611 0.416 0.594 0.455 0.586 0.518 0.631 0.432 0.663 0.366 0.421 0.300 0.365
D+L+I 0.492 0.689 0.497 0.671 0.541 0.701 0.611 0.721 0.500 0.699 0.356 0.425 0.297 0.362
D+L+T 0.400 0.599 0.427 0.595 0.513 0.600 0.523 0.641 0.413 0.651 0.360 0.433 0.302 0.391
D+L+I+T 0.540 0.718 0.552 0.721 0.594 0.760 0.661 0.771 0.568 0.745 0.447 0.445 0.322 0.401
E-CLM (all views) 0.552 0.729 0.561 0.727 0.601 0.771 0.670 0.784 0.579 0.761 0.461 0.482 0.348 0.421
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