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ABSTRACT
We integrate ir_datasets, ir_measures, and PyTerrier with TIRA
in the Information Retrieval Experiment Platform (TIREx) to pro-
mote more standardized, reproducible, scalable, and, if desired, even
blinded retrieval experiments. Standardization is achieved when a
retrieval approach implements PyTerrier’s interfaces and the input
and output of an experiment are compatible with ir_datasets and
ir_measures. However, none of this is a must for reproducibility
and scalability, as TIRA can run any dockerized software locally or
remotely in a cloud-native execution environment. Version control
and caching ensure efficient (re)execution. TIRA allows for blind
evaluation when an experiment runs on a remote server / cloud not
under the control of the experimenter. The test data and ground
truth are then hidden from public access, and the retrieval software
has to process them in a sandbox that prevents data leaks.

We currently host an instance of TIREx with 15 corpora (1.9 bil-
lion documents) on which 32 shared retrieval tasks are based, and
with Docker images of 50 standard retrieval approaches on a mid-
size cluster (1,620 CPU cores and 24 GPUs) on which automati-
cally running and evaluating all approaches on all tasks (50 · 32 =
1,600 runs) takes less than a week. This instance of TIREx is open
for submissions and will be integrated with the IR Anthology.

CCS CONCEPTS
• Information systems→Retrieval models and ranking; Eval-
uation of retrieval results.
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1 INTRODUCTION
Research and development in information retrieval (IR) has been
predominantly experimental. In its early days in the 1960s, the
IR community saw the need to develop and validate experimental
procedures, giving rise to the Cranfield paradigm [27], which be-
came the de facto standard for shared tasks hosted at TREC [85] and
many spin-off evaluations. Organizers of typical shared IR tasks
provide a task description, a document corpus, and topics. Partic-
ipants implement retrieval approaches for the task and run them
on each topic to produce document rankings (a so-called “run”).
The rankings are then usually submitted as files to the organizers
who pool all runs, gather (reusable) relevance judgments for the
pools, and calculate the evaluation scores [84]. Finally, participants
describe their methodology and findings in a published “notebook”
paper. This division of labor allowed the community to scale up
collaborative laboratory experiments, especially at a time of limited
bandwidths for data exchange, since run files occupy only a few
kilobytes. With many research labs working independently on the
same task, the community descends on a “wisdom of the crowd”,
while ensuring a rigorous comparative evaluation.

Despite the lasting success, this way of organizing shared tasks
also has shortcomings. First, as with many other disciplines in
computer science and beyond, the retrieval approach of a run de-
scribed in a notebook paper might not be reproducible. There are
well-documented cases where reproductions failed, despite putting
much effort into it, even for approaches with diligently archived
code repositories [1, 60]. Second, run submissions require that par-
ticipants have access to the test topics, which has severe implica-
tions [43], such as informing (biasing) the research hypothesis or
retrieval approach, unless researchers make a point of not looking
at the topics, ever, during development. Third, it cannot be ruled
out that current or future large language models have been trained,
by mistake or deliberately, on publicly available test data, or that
a usage warning stating not to use the data for training would go
unnoticed.1 In any case, the current best practices for shared tasks
do not enforce “blinded experimentation”2 with sufficient rigor,
compared to other empirical disciplines.

To address all of these shortcomings, we have developed the
IR Experiment Platform (TIREx; cf. Figure 1 for an overview). Avail-
able as open source,3 a key feature of TIREx is the full integration
1Some form of leakage from MS MARCO [67] to the Flan-T5 prompting model [19]
has already been observed: twitter.com/UnderdogGeek/status/1630983277363228672,
twitter.com/macavaney/status/1649779164625481733.
2en.wikipedia.org/wiki/Blinded𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
3github.com/tira-io/ir-experiment-platform
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Figure 1: Overview of typical shared task-like IR experiments and how the tools in TIREx support them.

of tools for working with IR data (ir_datasets [63]), for executing
retrieval pipelines (PyTerrier [64]), and for evaluating IR systems
(ir_measures [61]) with TIRA [41], a continuous integration plat-
form for reproducible shared tasks and experiments. TIREx is de-
signed to improve reproducibility via software submissions while
keeping an experimenter’s or task organizer’s workload at a degree
comparable to run file submissions.

On our Betaweb and Gammaweb clusters,4 we have deployed
an instance of TIREx that is open for software submissions and
experiments. As a proof of concept, we have conducted a large-
scale evaluation of 50 “standard” retrieval approaches on 32 shared
retrieval tasks (based on 15 document corpora with a total of 1.9 bil-
lion documents). This 1,600-runs experiment was started by just
clicking a button and finished unattended in less than a week—a
substantial efficiency boost comes from having GPU cores as part
of the platform to speed up neural IR approaches.

2 BACKGROUND AND RELATEDWORK
We review ad hoc retrieval experiments in evaluation campaigns,
common problems and pitfalls in IR research, best practices for
leaderboards, existing reproducibility initiatives, and tools to sup-
port reproducibility. Insights from all these domains have influenced
our implementation decisions for TIREx.

Ad hoc Retrieval Experiments in Evaluation Campaigns. Today’s
shared task-style experiments for ad hoc retrieval evolved from
the Cranfield experiments [85]. In the 1960s, the Cranfield experi-
ments [27, 28] were conducted on a corpus of 1,400 documents with
complete relevance judgments for 225 topics. Since corpus sizes
grew substantially, complete judgments became infeasible almost
immediately thereafter [85]. The current practice at shared tasks
in IR thus is to only assess the relevance of per-topic pools of the
submitted systems’ top-ranked documents [85]. Subsequent eval-
uations on the same corpus usually are based on the assumption
that the pools are “essentially complete”, i.e., unjudged documents
4https://webis.de/facilities.html#hardware

that were not in the pool are non-relevant [85]. Although this com-
pleteness assumption is reasonable for tasks with a diverse set of
submitted runs and that were pooled at high depth [90], recent
observations suggest that scenarios with many relevant documents
per query (e.g., corpora with many duplicates [87]) or with topics
representing broad information needs [79] are rather problematic.
Especially for shared tasks that do not attract diverse submissions,
TIREx can help to produce a more diverse judgment pool, as a wide
range of baseline retrieval systems is directly available and can be
applied to any imported retrieval task.

Common Problems and Pitfalls in IR Research. Even though the
current discussion about how to conduct IR experiments [42, 76, 97]
includes some controversial points (e.g., whether MRR should be
abandoned [42] or not [66, 76]), there is still a wide consensus in
the IR community on many characteristics of “bad” or “good” exper-
iments. For instance, it is rather undisputed that retrieval studies
should be internally valid (conclusions must be supported by the
data) and externally valid (repeating an experiment on different but
similar data should yield similar observations) [44]. Still, external
validity of IR experiments remains an open problem [43]. TIREx can
help to further improve both: the internal validity via archiving
all experiments and results on some corpus (e.g., to accurately cor-
rect for multiple hypothesis tests), and the external validity via
simplifying to run a submitted software on different data.

Thakur et al. [79] attempted to address the external validity prob-
lem by combining diverse retrieval corpora in the BEIR benchmark
for en masse evaluation. However, in practice, running an approach
on all corpora in BEIR requires some effort, so that many studies
still only report results for a selected subset (e.g., [11, 40, 45])—often
even without clearly justifying the selection. In contrast, a software
in TIREx can rather easily be evaluated against many / all corpora
so that analyzing improvements and limitations of an approach on
diverse data is not much effort.

An often criticized practice is that many IR studies compare a
new approach against weak / “wrong” baselines (i.e., not the best or
most reasonable previous approaches). Any improvements claimed

https://webis.de/facilities.html#hardware
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in such studies are not really meaningful [3, 57]. One reason for
choosing a wrong baseline could be that neither the researchers nor
the reviewers are actually aware of what previous approaches exist
for a specific corpus since results are often scattered across multiple
publications [57]. Centralized leaderboards that directly show the
effectiveness of diverse approaches for a wide range of tasks would
address this problem, but multiple efforts have failed so far [57].
In TIREx, we include many popular corpora and standard retrieval
approaches right from the start so that the TIREx leaderboards can
initially gain traction. The more shared tasks (but also researchers)
then later employ TIREx for software submissions, the broader
TIREx’ coverage will get over time.

Maintaining Ongoing Leaderboards. Inspired by the observation
that many IR studies do not compare a new approach against reason-
able baselines (e.g., the most effective TREC runs) [3], Armstrong
et al. [2] released EvaluateIR, a public leaderboard accepting run
file submissions. Although the concept was highly valuable for
the community in helping researchers and reviewers alike to se-
lect appropriate baselines, “EvaluateIR never gained traction, and a
number of similar efforts following it have also floundered” [57].

While there is still no centralized general leaderboard for IR, cer-
tain task-specific leaderboards are quite popular. For instance, the
leaderboard of the recent MIRACL Challenge [96] received 25 sub-
missions within one week, and the MS MARCO leaderboard [58]
has been popular for years. Maintaining such long-running leader-
boards comes with some caveats, as they are conceptually turn-
based games where every leaderboard submission might leak infor-
mation from the test set [58]. Lin et al. [58] propose best practices,
inspired by previous problems of the Netflix prize.5 Most impor-
tantly, they note that, while submissions to the leaderboard are
open, the retrieval results should not be public, nor should system
descriptions or implementations, as this would potentially leak in-
formation from the test set and foster “uninteresting” approaches
like ensembles of all the top submissions. With TIREx and its blind
evaluation, organizers can choose to blind all submissions as long
as they need to, with the ability to unblind approaches and sub-
missions as they see fit, so that TIREx supports the best practices
recommended by Lin et al. [58].

Reproducibility Initiatives in IR. Reproducibility is a major chal-
lenge in research. For instance, a survey among 1,576 researchers
revealed that more than 50 % failed at least once to reproduce their
own experiments [5]. The IR community makes substantial efforts
to foster reproducibility. There are, for instance, dedicated repro-
ducibility tracks at conferences6 and dedicated reproducibility ini-
tiatives like OSIRRC [1, 20] or CENTRE [38, 39, 77, 78]. OSIRRC aims
to produce archived versions of retrieval systems that are replicable,
while CENTRE runs replicability and reproducibility challenges
across IR evaluation campaigns. Lin and Zhang [60] looked at all the
artifacts produced in the OSIRRC 2015 challenge [1] to verify which
results are still replicable four years after their creation. Out of the
seven systems that participated in the challenge, only the results
of Terrier [69] were fully reproducible out of the box, while other
systems could still be fixed by manual adjustments to the code. The
5http://www.netflixprize.com/
6Examples at ECIR 2023 and SIGIR 2023: ecir2023.org/calls/reproducibility.html and
sigir.org/sigir2023/submit/call-for-reproducibility-track-papers/.

main reasons for failure were that external dependencies could not
be loaded anymore, or that platform dependencies changed (operat-
ing system with its packages). To mitigate the problem of changing
platform dependencies, the follow-up iteration of OSIRRC [20] fo-
cused on Docker images that had to implement a strict specification
(enforced by the companion tool “jig”) that triggered the indexing
and subsequent retrieval via Docker hooks. Even though 17 systems
have been dockerized to follow the jig specification, the concept
has not gained traction. By centering TIREx around shared tasks
at the beginning, we hope that we can kick off and maintain the
attention of the community. Furthermore, we believe that there
are many retrieval scenarios that can not be encapsulated into the
two-step index-then-retrieve pipeline that jig imposes (e.g., explicit
relevance feedback). We thus reduce the TIREx requirements to a
minimum: just Docker images in which commands are executed
without Internet access on read-only mounted data.

Tooling for Reproducibility. Many tools have been developed to
support shared tasks by reducing the workload of organizers and
participants while increasing the reproducibility [17, 41, 51, 53, 80,
81, 93]. For instance, as documenting the metadata of experiments
improves reproducibility [56], ir_metadata [16] simplifies the docu-
mentation of IR experiments according to the PRIMAD model [37]
(platform, research goal, implementation, method, actor, data).
There are also platforms that support organizing and running
shared tasks, among which four are still active: CodaLab, EvalAI,
STELLA, and TIRA.7 They implement the so-called evaluation-as-a-
service paradigm in the form of cloud-based web services for eval-
uations [52]. Of these four systems, STELLA and TIRA are hosted
within universities, while CodaLab and EvalAI use Microsoft Azure
and Amazon S3, respectively. We use TIRA for TIREx as it allows
blinded evaluation and as it is based on (private) git repositories
hosted in GitLab / GitHub to versionize shared tasks and to dis-
tribute the workloads via runners connected to the corresponding
repositories. The computation can thus be done in the cloud but
also on private machines or clusters. We substantially redevelop
large parts of TIRA as part of TIREx so that it supports the current
IR workflows like chaining multiple retrieval stages.

3 THE IR EXPERIMENT PLATFORM
We describe howwe integrate ir_datasets, ir_measures, and PyTer-
rier into TIRA to create the IR Experiment Platform (TIREx) to foster
shared-task-style IR experiments with software submissions. We
expect that the central components of this platform, TIRA, and
ir_datasets, will be available and maintained over the coming
years (TIRA has been maintained and developed since 2012 [46],
and ir_datasets gained much traction by the community in the
last 2 years). Although running shared-task-style IR experiments
in TIRA was possible before, it required substantial effort from task
organizers and participants due to idiosyncrasies of how IR exper-
iments are conducted (as compared to typical ML or NLP experi-
ments). Specifically, IR experiments involve intermediate artifacts,
such as built indexes, and retrieval systems often involve multi-
stage “telescoping” pipelines. We solve these problems by treating
multi-stage pipelines as first-class citizens of the platform and by
7https://codalab.org, https://eval.ai, https://stella-project.org, https://tira.io
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incorporating popular IR tools for data access, indexing, retrieval,
and evaluation. The following section describes how shared-task-
style IR experiments are organized in our new platform, explaining
the integrated tools’ interaction and providing examples for imple-
menting prominent retrieval approaches. Finally, we showcase how
TIREx enables post-hoc replicability and reproducibility studies
with declarative PyTerrier pipelines.

3.1 Experiments in the IR Experiment Platform
TIREx covers all steps to organize retrieval experiments, as exempli-
fied in Figure 1, and is open for registration. Organizers import their
data, with all previously submitted retrieval software as potential
baselines. Participants subsequently submit approaches, either as
software submission, or, if enabled, as run submission. All submis-
sions may be documented with descriptions and metadata, and run
submissions may be grouped to indicate when the same approach
created run files for multiple retrieval tasks. After gathering all sub-
missions, organizers upload the relevance judgments to evaluate
all runs. Finally, organizers export the complete experiment repos-
itory with all (meta) data and submitted software, which enables
subsequent replication and reproduction experiments.

To import data into TIREx, experiment organizers add their cor-
pus and topics to ir_datasets. Integrating the organizer’s data into
ir_datasets can be in a non-public branch if the data is confidential.
The submission system TIRA imports the dataset via a Docker im-
age with the corresponding ir_datasets installation. Participants
make software submissions as Docker images, and TIRA uses sand-
boxing (removing the internet connection from the running soft-
ware) to improve reproducibility (i.e., ensuring the software is fully
installed). The software can use additional data as input that partic-
ipants uploaded via run uploads, which documents dependencies to
possibly non-reproducible parts of submissions (e.g., manual query
reformulations). Participants may use the existing starters for 4 fre-
quently used IR research frameworks as the basis for development.
The simplest starter implements BM25 retrieval using a few lines
of declarative PyTerrier code in a Jupyter notebook.8 The software
submissions are executed on demand using a cloud-native execution
environment with GitLab/GitHub CI/CD pipelines so organizers
can add runners as needed. TIRA organizes and versions all aspects
of the retrieval experiment in a dedicated git repository that can
be exported and published. Those experiment archives are fully
self-contained, allowing the stand-alone re-execution of archived
approaches on the same or different data in PyTerrier pipelines for
reproducibility. Altogether, this substantially enriches the assets re-
sulting from experiments, allowing “always-on reproducible shared
tasks” for the IR community.

3.2 Reproducible Shared Tasks with TIRA
TIRA is used since 2012 to organize shared tasks with software sub-
missions, with PAN9 and Touché10 being two long-running tasks in
TIRA hosted at CLEF [46, 71]. The first version of TIRA facilitated
software submissions during shared tasks by providing participants
access to virtual machines. We found that this did not scale and was
8https://github.com/tira-io/ir-experiment-platform#starter-for-pyterrier-in-jupyter
9https://pan.webis.de/
10https://touche.webis.de/

prone to errors, making it very difficult for external researchers to
re-execute software submitted to a shared task. Hence, TIRA was
completely redeveloped based on industry-standard continuous in-
tegration and deployment (CI/CD) pipelines using Git, Docker, and
Kubernetes [41]. In the new version of TIRA, participants upload
their software, implemented in Docker images, to a private Docker
registry (12.4 PB HDD storage) dedicated to their team, ensuring
that different teams do not influence each other while the task is
running, as their approaches remain private until after the task
completed. For the on-demand execution, TIRA runs the software
in a Kubernetes cluster (1,620 CPU cores, 25.4 TB RAM, 24 GeForce
GTX 1080 GPUs) in sandbox mode. This new version of TIRA was
first used in two large-scale NLP tasks hosted at SemEval 2023 that
together had 170 registered teams, out of which 71 teams submitted
results, yielding 647 runs produced by software submissions (cover-
ing the usual participation for shared tasks in IR). However, during
the setup of the next iteration of the retrieval-oriented Touché task
for CLEF 2023 [8], we recognized that TIRA still had severe short-
comings for IR tasks, substantially limiting its adoption. TIRA had
no unified data access, and typical IR workflows were only realiz-
able inefficiently or via workarounds (such as adding the index into
the image, harming reusability and reproducibility). TIRA had no
separation in full-rank or re-rank software, and it was impossible
to modularize software into separate components with caching. For
instance, full-rank retrieval would require any software to build
the index from scratch, wasting many resources. Similarly, re-rank
approaches would have to create their initial ranking, making the
software more complex and prone to error while wasting computa-
tional resources and hindering reusability. For instance, task 2 of
Touché retrieves against the ClueWeb22, which is made available in
TIRA through ChatNoir [7], but retrieving the top-1000 results for
50 Touché [8–10] topics against ChatNoir took, for 5 repetitions,
between 54 and 134 minutes (top-1000 searches often fail so that
a client has to retry the requests). Blocking a GPU that re-rankers
often require for such a long time would be wasting resources
(more complex re-ranking software that employs parallelism is not
an option as this is prone to error). To solve all these problems,
we substantially expanded TIRA and redeveloped major parts to
integrate ir_datasets, ir_measures, and PyTerrier.

3.3 Standardized Access with ir_datasets
The ir_datasets toolkit provides unified access to a wide range of
corpora frequently used in IR experiments [63]. Processing topics
and documents is possible via a single line of Python code. Further,
it already serves as a common data layer in numerous IR research
frameworks and tools (e.g., PyTerrier [64], Capreolus [95], Open-
NIR [62], FlexNeuART [13], Patapsco [31], Experimaestro-IR [70]),
and can be easily ingested by most others (e.g., Anserini [94],
PISA [65]). The tool provides a standard interface to access over
200 distinct document corpora and over 500 topic sets, and is kept
up-to-date (e.g., it includes most of the TREC 2022 tracks). We inte-
grate ir_datasets into TIRA so that retrieval software may leverage
all structured information, but also can just use default texts for
documents and queries, enabling retrieval software to be applied to
different data without adaptation. We integrate ir_datasets into
TIRA via Docker images that can import complete corpora into

https://github.com/tira-io/ir-experiment-platform#starter-for-pyterrier-in-jupyter
https://pan.webis.de/
https://touche.webis.de/


The Information Retrieval Experiment Platform SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

TIRA (for full-rank approaches), but also can create re-ranking
files for any given run file (for re-ranking approaches). Within
the configuration of an IR experiment in TIRA, organizers choose
the ir_datasets Docker image and its configuration. We provide
standard Docker images that organizers can use if their dataset
is already available in ir_datasets. Naturally, task organizers can
also provide an image with data sourced from elsewhere, e.g., if the
organizers want to keep their data private to avoid leaking data.
In the following, we first describe how we implement the “default
text” feature that allows to easily re-use retrieval software in differ-
ent retrieval tasks, and how we integrate ir_datasets into Docker
images that run on-demand, ensuring the interchangeability and
compatibility of arbitrary retrieval software in retrieval pipelines.

Re-Usable Retrieval-Methods with Default Texts. While some cor-
pora provide only a single freeform text field for each document,
others provide rich structural information and other metadata. For
instance, the MS MARCO passage ranking corpus [35, 36, 67] pro-
vides a single text field, while Args.me [9, 10] contains structured
premises, aspects, and other metadata. Similarly, some retrieval
tasks include a single freeform text field for topics, while others
provide multiple versions of the query and/or metadata for each
topic. For instance, Antique [47] has a single text query field, while
TREC Precision Medicine [74, 75] provides multiple fields.

For corpora and retrieval tasks that provide rich structure, we
identify two use cases. The first is when a system is built-for-
purpose, making use of the available task-specific structure. For
instance, an argument retrieval system on the Args.me corpus may
make special use of the premises of a document during retrieval, or
a Precision Medicine system may choose to use the structure of the
query to modify the relevance criteria. Providing all the available
fields in the input data facilitates the construction of this style of
specialized retrieval systems.

The second use case is when a system seeks to provide the
capacity for general search, i.e., an algorithm that can be applied
across a variety of search applications, rather than targeting one
specific case. To facilitate this use case, we introduce a “default
text” field for each topic and document into ir_datasets, enabling
systems to represent each query and document as a single string,
regardless of the retrieval task. Often there is a natural choice
for a query or document’s “default text”. For instance, MEDLINE
documents contain both a title and abstract; in this case, the default
text is the concatenation of the two fields. Many retrieval tasks
contain title, description, and narrative versions for topics. Since
the “title” usually refers to the style of query that users would enter
into search engines, we use the title as the default text in the cases
where it is intended as the to-be-submitted query (after a manual
review). Other cases are not as clear cut. In these cases, we make our
best effort to faithfully represent the most important content of the
document or topic, being open to pull requests by the community.
We incorporate the default text fields into the ir_datasets package
and flow the data through to TIREx. This allows for a clear and
documented provenance of the fields from the source material.

Ensuring the Compatibility of Modularized Retrieval Stages. TIREx
aims to support modularized retrieval pipelines where different
stages can be exchanged without adopting the retrieval software.
Therefore, TIRA allows two different types of retrieval software:

(1) full-rank approaches with the complete corpus and the to-be-
retrieved topics as input, and (2) re-rankers with a specific re-rank
file as input that was automatically created by ir_datasets from
any run file. This way, re-rankers can run on arbitrary previous
stages, as their input always has the same structure. TIRA runs
the configured ir_datasets image on-demand to create those re-
rank files. Corpora that can not be downloaded from the Web (e.g.,
the ClueWeb or the Gov corpora) are mounted into the container.
Some corpora available in TIREx (e.g., the ClueWeb or Gov corpora)
require license agreements. As we have valid license agreements
for those corpora, by default we let participants execute their soft-
ware on those corpora but only return effectiveness scores of their
approaches (the outputs are blinded by default).

Table 1 overviews the data format that the ir_datasets integra-
tion makes available to retrieval software. For full-rank software,
the ir_datasets integration creates a documents.jsonl.gz file that
contains the document identifier, the default text of the document,
and all structured fields of the document and a file topics.jsonl.gz
with the topics, both in JSON Lines format. For re-rankers, the
ir_datasets integration creates, given an arbitrary run file obtained
from the previous stage, a file re-rank.jsonl.gz where each entry
contains to-be-re-ranked query-document pairs with the score and
rank assigned by the previous stage. Re-rankers should then re-
rank all documents into their output run file. Any reranker added
to TIRA can re-rank the results of any other retrieval software
that creates a run file, in which case the ir_datasets integration
is executed before the re-ranker and the re-ranker only gets the
re-rank.jsonl.gz file as input. Furthermore, the ir_datasets inte-
gration makes the qrels.txt available (only if the dataset already
contains relevance judgments) to the evaluator specified by the
organizer to automatically evaluate submitted retrieval approaches.

3.4 Evaluation with ir_measures
TIRA automatically evaluates all runs created by software submis-
sions or uploads. We provide an ir_measures evaluator suitable for
IR experiments. If no relevance judgments are available, this evalu-
ator checks that the run file can be parsed and warns of potential
pitfalls (e.g., score ties, NaN scores, empty result sets, unknown
queries, scores contradicting the ranks, etc). With relevance judg-
ments, the evaluator scores all specified measures as average over
all queries and per query (suitable for significance tests).

3.5 Reproducible IR Pipelines with TIRA
Tomake frequent IR workflows efficient first-class citizens in TIREx,
we redevelop and extend TIRA’s ability to define and run modu-
larized software that spans multiple, potentially different Docker
images, and implement a separation of retrieval systems into full-
and re-rank approaches. All software in TIRA is immutable. Hence,
outputs of software components shared across different retrieval
software (e.g., index creation) can be cached, making full-rank and
re-rank software more efficient.

Modularized Software from Multiple Components. Retrieval soft-
ware in TIRA can be composed of multiple software components
forming a directed acyclic graph. Each component (full-rank or re-
rank) is defined by its preceding components (none, one, or many),
its Docker image, and the command that is executed within the
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Table 1: Overview of what data TIRA makes available to full-rank and re-rank approaches. The ‘Access’ columns indicate the
default accessibility to participants (P), organizers (O; can make data accessible as indicated by †), and unregistered users (U).

Type Resource Fields Access Example Entry

P O U

Full-Rank documents.jsonl.gz docno, text, original_document ✓ ✓ ✗† {"docno": "8182161", "text": "Goldfish can grow up to 18 inches . . . ",
"original_document": {. . . }}

topics.jsonl.gz qid, query, original_topic ✓ ✓ ✗† {"qid": "156493", "query": "do goldfish grow", "original_query": {. . . }}

Re-Rank re-rank.jsonl.gz
qid, query, original_topic, docno, {"qid": "156493", "query": "do goldfish grow", "original_query": {. . . },

"docno": 8182161, "text": "Goldfish can grow up to 18 inches . . . ",
"original_document": {. . . }, "rank": 1, "score": 31.16}

text, original_document ✓ ✓ ✗†

score, rank

Both qrels.txt topic, iteration, docno, relevance ✗† ✓ ✗† 156493 Q0 8182161 2

Table 2: Overview of variables available for software in TIRA.
The $inputDataset and $outputDir variables are always avail-
able, while $inputRun is only available for multi-component
software depending on previous stages.

Variable Availability Description
$inputDataset Always Directory containing the input data.
$outputDir Always Directory with expected output data.
$inputRun Multi-Comp. Output(s) of previous stage(s).

Docker image. TIRA passes the input and output directories to
each software via three variables explained in Table 2. The variable
$inputDataset points to the directory that contains the input passed
to the software (e.g., documents.jsonl.gz and topics.jsonl.gz for
full-rank and re-rank.jsonl.gz for re-rank software). The variable
$inputRun is only available for software composed of multiple com-
ponents, pointing to a directory with all outputs of preceding com-
ponents. The variable $outputDir specifies the location where TIRA
expects all outputs. All three variables $inputDataset, $inputRun,
and $outputDir can be used in the to-be-executed command but are
also made available as environment variables.

Manual Input Components. Retrieval runs might depend on in-
puts not available in the data created by humans. In TREC-style
evaluation campaigns, such runs are called manual submissions.
For instance, user query variants, as employed on the ClueWebs [4]
or Common Core [6], are examples for manual submissions: re-
searchers read the topic description and narrative and formulate
(multiple) queries they would submit against a search engine that
then serves as additional input to some retrieval algorithm. TIREx
supports this use case via run uploads. The uploaded files can be
grouped and documented and can be configured as a preceding
component in any software, identical to software components. Con-
sequently, TIREx supports manual runs, but isolates the manual
steps as much as possible to keep the overall software replicable.

Examples for Frequent Retrieval Pipelines. Figure 2 provides a
conceptual overview of the data flow between subsequent software
components in two frequent approaches. The upper software de-
scribed in Figure 2 shows how full-rank approaches might first
create an index of the corpus from which the second component
retrieves. Therefore, the first component “Index Corpus” creates an
index, denoted by file-01 and file-02, that it stores in $outputDir.
TIRA then makes the output of the first component available to

$outputDir/
    file-01
    file-02

$inputRun/
    file-01
    file-02

Job: Index Corpus Job: BM25 Retrieval

$inputRun/
    run-1/run.txt
    run-2/features

Job: LTR

$outputDir/run.txt

Job: Retrieve BM25

Upload: Query Features

features

Figure 2: Data flow of two retrieval pipelines in TIRA. The up-
per retrieval pipeline creates an index so that the second stage
retrieves from the index with BM25. The bottom retrieval
pipeline uses a BM25 ranking and a manually uploaded file
with query features as input for an LTR algorithm.

the subsequent software “BM25 Retrieval” inside $inputRun. This
way, many different software components may depend on the same
component, and we cache outputs to make pipelines more efficient.
The lower software described in Figure 2 shows an example of a
learning-to-ranking component that depends on a BM25 retrieval
and a manual upload that provides query features. If a software
component has more than one input, TIRA makes them available in
the order in which they were defined. Figure 3 shows how retrieval
software with multiple components can be defined within TIRA.
All preceding software components and run uploads must exist so
that the new software can add them as preceding components, as
shown in Figure 3 that defines a software that first creates a PyTer-
rier index and then applies BM25 retrieval on this index. TIRA
decouples the to-be-executed command from the Docker image
to explicate that the same image can be used to produce different
retrieval software (e.g., by switching parameters). In combination
with multi-stage pipelines, this allows the efficient execution of a
wide range of prominent retrieval pipelines (i.e., different retrieval
models implemented in the same docker image) through caching.

Caching of Results. The fact that any retrieval software in TIRA
is immutable allows us to build efficient pipelines by caching the
outputs of software components. Although each component can be
executed multiple times on the same dataset, subsequent stages get
only the outputs of the first execution as input, and an output that



The Information Retrieval Experiment Platform SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Figure 3: The definition of a full-rank retrieval software in
TIRA that consists of two modularized components.

pipeline = tira.pt.retriever(
'<task -name >/<user -name >/ software ',
dataset='<dataset >'

)
advanced_pipeline = pipeline >> advanced_reranker

Listing 1: Full-rank retrieval from a complete corpus.

was used by some other component as input can not be deleted.
Cleaning up is possible by first deleting runs that are not used as
inputs. Programming errors in some components have to be fixed
by adding a new software (the old software can be deleted when all
runs are deleted), as all software is immutable. Altogether, retrieval
pipelines in TIRA provide freedom for participants and allow to
efficiently re-use shared components as they are only executed once
and subsequently are served from the cache. The overall retrieval
pipelines remain replicable, as the steps to produce a final run are
fully tracked and versioned by TIRA in the experiment repository.

3.6 Reproducibility Pipelines with PyTerrier
After the experiment repository is exported and published by the
organizers, the submitted retrieval approaches and the produced
datasets, and run files can be re-used and applied to replicability and
reproducibility studies. By default, TIRA keeps the test data private,
publishing only the software submissions and run files, uploading
the images to Dockerhub. After archival, the shared task repository
and all possible follow-up studies are independent of TIRA and
work stand-alone, as the archived repository is fully self-contained.
In the following, we show the integration of archived TIRA reposi-
tories with PyTerrier for post-hoc experiments that can run after
an experiment was completed and the data was published.11

Listing 1 shows how a full-rank approach submitted to TIRA can
be reproduced with a declarative PyTerrier pipeline. The software
submission is identified by <task-name>/<user-name>/software, i.e.,
it points to the software software submitted by team <user-name> to
the shared task <task-name> and is applied to the specified dataset.
Internally, this command downloads the required Docker images
and runs them in their required order to obtain the results. This
full-rank software can subsequently be re-ranked by any PyTerrier
re-ranker, allowing for experiments that try to improve upon an
original submission. The passed dataset can be one of the original
experiments or any other dataset available in ir_datasets. Similar,
Listing 2 shows how re-rankers can be used in post-hoc experiments
by first retrieving results with BM25 which are then re-ranked with
an approach submitted to some experiment in the platform.
11Examples available at: github.com/tira-io/ir-experiment-platform#reproducibility

bm25 = pt.BatchRetrieve(index , wmodel="BM25")
reranker = bm25 >> tira.pt.reranker(

'<task -name >/<user -name >/<software >'
)

Listing 2: Run a re-ranker submitted as software to a task.

first_stage = tira.pt.from_submission(
'<task -name >/<user -name >/<software >',
dataset='<dataset >'

)
advanced_pipeline = first_stage >> advanced_reranker

Listing 3: Re-rank a run created by a software submission.

Listing 3 shows how run files resulting from some (software) sub-
mission can be loaded into PyTerrier. This from_submissionmethod
allows building upon submitted systems without having to re-run
them (e.g., for re-rankers), also allowing organizers to build the
judgment pools. Altogether, the PyTerrier integration allows easy
replicability (if the dataset is the same as in the original experiment)
and reproducibility experiments (if the dataset was not used in the
original experiments) for full-rank and re-rank approaches.

4 EVALUATION AND PREDICTED IMPACT
We show the scalability and the potential impact of TIREx by
importing 50 different retrieval approaches (covering all major
paradigms) and 32 different retrieval tasks from 15 corpora with
overall 1.9 billion documents. We run every retrieval software on all
32 tasks, yielding 1,600 runs. The submission to all those tasks and
the resulting leaderboards are open.12 We provide a case study an-
alyzing what observations transfer between selected tasks with
repro_eval [15]. Finally, we report on our experiences in host-
ing two large-scale NLP tasks with software submissions at Se-
mEval 2023, concluding with a discussion on the predicted impact
of the platform.

4.1 Initial Retrieval Experiments
Table 3 overviews the 15 corpora, each with 1 to 4 retrieval tasks
and 1,400 to 1 billion documents, that we import into TIREx. All
tasks come with dense judgments, typically created in a TREC-style
shared task, covering diverse retrieval tasks.

Table 4 overviews the 50 different retrieval approaches that we
imported into TIREx. We derived all retrieval approaches from
4 retrieval frameworks: BEIR [79], ChatNoir [7], PyGaggle [59],
PyTerrier [64], and two PyTerrier plugins for duoT5 [72] and Col-
BERT [55]. From BEIR, we obtain 17 dense retrieval approaches
(e.g., ANCE [92], DPR [54], TAS-B [50], etc.) by using different
SBERT [73] models available in BEIR. ChatNoir is an Elasticsearch-
based BM25F search engine hosting all three ClueWebs. ChatNoir
can be accessed from within TIRA to realize retrieval approaches
on huge corpora (we keep its REST-API consistent to ensure re-
producibility). Out of PyGaggle, we include overall 8 variants of
monoBERT [68] and monoT5 [72], including the monoT5 SOTA
12https://github.com/tira-io/ir-experiment-platform#submission

https://github.com/tira-io/ir-experiment-platform#reproducibility
https://github.com/tira-io/ir-experiment-platform#submission


SIGIR ’23, July 23–27, 2023, Taipei, Taiwan M. Fröbe, J. H. Reimer, S. MacAvaney, N. Deckers, S. Reich, J. Bevendorff, B. Stein, M. Hagen, and M. Potthast

Table 3: The 15 corpora and the associated 32 retrieval tasks
currently available in TIREx (submission possible).

Corpus Associated Retrieval Tasks
Name Docs. Size Details #
Args.me 0.4m 8.3 GB Touché 2020–2021 [9, 10] 2
Antique 0.4m 90.0MB QA Benchmark [47] 1
ClueWeb09 1.0 b 4.0 TB Web tracks 2009–2012 [22–25] 4
ClueWeb12 731.7m 4.5 TB Web tracks [29, 30], Touché [9, 10] 4
ClueWeb22B 200.0m 6.8 TB Touché 2023 [8] (ongoing) 1
CORD-19 0.2m 7.1 GB TREC-COVID [86, 91] 1
Cranfield 1,400 0.5MB Fully Judged Corpus [27, 28] 1
Disks4+5 0.5m 602.5 GB TREC-7/8 [88, 89], Robust04 [82, 83] 3
GOV 1.2m 4.6 GB Web tracks 2002–2004 [32–34] 3
GOV2 25.2m 87.1 GB TREC TB 2004–2006 [18, 21, 26] 3
MEDLINE 3.7m 5.1 GB TREC Genomics [48, 49], PM [74, 75] 4
MS MARCO 8.8m 2.9GB Deep Learning 2019–2020 [35, 36] 2
NFCorpus 3,633 30.0MB Medical LTR Benchmark [12] 1
Vaswani 11,429 2.1MB Scientific Abstracts 1
WaPo 0.6m 1.6 GB TREC Core 2018 1∑

= 15 corpora 1.9 b 15.3 TB 32

Table 4: Overview of the retrieval frameworks and the 50 re-
trieval approaches imported into TIREx.

Framework Type Description Approaches

BEIR [79] Bi-encoder Dense retrieval 17
ChatNoir [7] BM25F Elasticsearch cluster 1
ColBERT@PT [55] Late interaction PyTerrier plugin 1
DuoT5@PT [72] Cross-encoder Pairwise transformer 3
PyGaggle [59] Cross-encoder Pointwise transformer 8
PyTerrier [64] Lexical Traditional baselines 20

with 3 billion parameters. Additionally, we include 20 lexical re-
trieval models, e.g., BM25, PL2, etc., from PyTerrier, and for the
duoT5 plugin of PyTerrier, we obtain 3 variants by using different
duoT5 models, again, including the SOTA with 3 billion parameters.
For all retrieval approaches, we keep all parameters at their defaults.
ChatNoir makes heavy use of the different fields of the ClueWeb
documents during retrieval and serves only as full-rank software,
while all other pieces of software use the “default text” that we
implemented in ir_datasets. The lexical approaches in PyTerrier
and the dense approaches in BEIR can work as full-rank or re-rank
software (we do not count “duplicates”, the full-rank variants are
always realized from a first component building the index and a
second component retrieving from the index). All duoT5 and Py-
Gaggle variants only work as re-rankers. For ColBERT, we only
add the re-rank variant, as ColBERT indices become very large.

We execute all 50 retrieval models on all 32 tasks in TIRA. To
increase the comparability of the results, we run each software as
re-rankers, where the 50 retrieval approaches re-rank the Chat-
Noir ranking for the ClueWebs, and the full-rank results of PyTer-
rier BM25. We executed the Lexical approaches using 1 CPU and
10 GB of RAM, and all other models had additional access to
1 GeForce GTX 1080 GPU with 8 GB. Some models failed on this
GPU because 8 GB was insufficient (ColBERT and 2 SBERT models
failed on a few tasks, monoT5 and duoT5 with 3 billion param-
eters failed on all tasks). To handle those cases, we temporarily
connected two additional runners with access to an A100 GPU with
40 GB to TIRA. All previously failed models were successful on the
A100 GPU. TIRA manages metadata about the resources used to
produce a run, making differences transparent.

Table 5 shows the aggregated results of running and evaluating
all 50 retrieval models on all 31 tasks (we leave out the results on
the ClueWeb22 as the Touché 2023 task is still ongoing). We report
the effectiveness as nDCG@10, reporting the macro average in case
a corpus is associated with multiple tasks. We report the scores of
BM25, ColBERT, TAS-B, all three duoT5 variants, and monoT5 (in
its default configuration with its default model). Since we have over-
all 20 lexical, 17 bi-encoder, and 8 PyGaggle approaches, we show
for each of those groups the best, median, and worst score. All deep
learning models were trained on MS MARCO, while lexical models
ran at their default parameters. Consequently, all deep learning
models substantially outperform lexical models on MS MARCO.
However, this is not necessarily true on other corpora, where the
deep learning models act in a zero-shot style. Lexical retrieval mod-
els achieve the highest effectiveness on three of the tasks (Args.me,
ClueWeb09, and MEDLINE). Our results further show that switch-
ing the lexical baseline can have a substantial impact, as BM25
is not always the best choice. For instance, the best lexical model
achieves on Args.me an nDCG@10 of 0.57 while BM25 achieves 0.43.
The effectiveness gap between the best and the worst model of a
group can be substantial, even for lexical models (e.g., the best
model on Args.me achieves an nDCG@10 of 0.57 while the worst
achieves 0.14). The model choice is negligible on other corpora, e.g.,
for lexical models on NFCorpus. The leaderboards aggregated in
Table 5 enable the selection of competitive baselines for many tasks
that were impossible before.

4.2 Case Study: Reproducibility Analysis
As an example of a post-hoc analysis enabled by TIREx, we analyze
to which degree parts of the system ranking can be reproduced on
different tasks with repro_eval. On TREC Deep Learning 2019 with
nDCG@10 as measure, we observe all system preferences between
all pairs of the 50 retrieval models. For each system preference on
the TREC Deep Learning track 2019 (e.g., monoT5 with 0.71 being
more effective than BM25 with 0.48 is a system preference observed
on TREC DL 2019), we analyze their reproducibility on the other
tasks with repro_eval.

For a given system preference, we use the system with the lower
nDCG@10 score on TREC Deep Learning 2019 as the baseline, and
the system with the higher score as the advanced system. With
repro_eval, we study the reproduction of those system preferences
on a different task for two dimensions [14]: (1) the effect ratio of
the reproduction, and (2) the delta of the relative improvement
of the reproduction. The effect ratio measures to which degree
the effect of the improvement of the advanced run against the
baseline run can be reproduced on the new task (1 indicates a
perfect reproduction, values between 0 and 1 indicate reproductions
with diminished improvements on the new task, and 0 indicates
failed reproductions). The delta relative improvement compares
the relative effect of the improvement of the advanced run against
the baseline run (0 indicates perfect reproductions, values below
0 indicate an increased relative improvement of the advanced run
on the new task, values between 0 and below 1 indicate a smaller
relative improvement, and 1 indicates a failed reproduction).
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Table 5: Effectiveness scores (nDCG@10) on 14 corpora (31 tasks; ClueWeb22B excluded as no judgments yet) for selected
approaches and the best, median, and worst of each group (scores macro-averaged for corpora with multiple associated tasks).

Corpus ChatNoir Lexical Late Int. Bi-Encoder duoT5 PyGaggle
BM25 Best Median Worst ColBERT TAS-B Best Median Worst Base Large 3b MonoT5 Best Median Worst

Antique — 0.51 0.53 0.51 0.36 0.47 0.40 0.49 0.44 0.30 0.54 0.46 0.52 0.51 0.54 0.51 0.45
Args.me — 0.43 0.57 0.43 0.14 0.26 0.17 0.33 0.24 0.13 0.33 0.29 0.29 0.30 0.39 0.34 0.27
CORD-19 — 0.28 0.64 0.55 0.21 0.58 0.50 0.70 0.60 0.50 0.66 0.61 0.66 0.69 0.69 0.63 0.55
ClueWeb09 0.16 0.18 0.24 0.18 0.12 0.17 0.16 0.20 0.17 0.13 0.15 0.15 0.18 0.17 0.19 0.17 0.12
ClueWeb12 0.36 0.24 0.27 0.25 0.14 0.23 0.25 0.28 0.26 0.23 0.33 0.30 0.35 0.26 0.28 0.26 0.23
Cranfield — 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Disks4+5 — 0.44 0.46 0.44 0.37 0.46 0.39 0.49 0.43 0.37 0.45 0.38 0.44 0.53 0.57 0.53 0.43
GOV — 0.22 0.24 0.22 0.15 0.23 0.22 0.27 0.24 0.21 0.19 0.15 0.22 0.26 0.29 0.26 0.22
GOV2 — 0.47 0.49 0.44 0.25 0.45 0.34 0.46 0.42 0.34 0.47 0.43 0.48 0.48 0.51 0.48 0.41
MS MARCO — 0.49 0.50 0.48 0.37 0.69 0.64 0.71 0.66 0.64 0.64 0.57 0.63 0.71 0.74 0.71 0.63
MEDLINE — 0.34 0.42 0.27 0.18 0.25 0.14 0.26 0.21 0.14 0.34 0.32 0.36 0.25 0.35 0.27 0.24
NFCorpus — 0.27 0.28 0.27 0.26 0.27 0.25 0.29 0.26 0.24 0.28 0.24 0.29 0.30 0.31 0.30 0.28
Vaswani — 0.45 0.46 0.45 0.30 0.43 0.34 0.44 0.38 0.22 0.41 0.34 0.46 0.31 0.48 0.41 0.08
WaPo — 0.38 0.39 0.37 0.24 0.43 0.34 0.43 0.37 0.33 0.40 0.28 0.40 0.45 0.49 0.45 0.40
Avg. — 0.34 0.39 0.35 0.22 0.35 0.30 0.38 0.33 0.27 0.37 0.32 0.38 0.37 0.42 0.38 0.31

Table 6: Reproducibility of system preferences from TREC
DL 2019 on selected tasks. We report the success rate in per-
cent (effect ratio > 0) and the 25%, 50%, and 75% quantiles
for the effect ratio and delta relative improvement.

Benchmark Rank Succ. Effect Ratio Delta Rel. Impr.
25 % 50% 75% 25% 50% 75%

TREC DL 2020 1 88.1 0.68 0.90 1.11 -0.03 0.02 0.08
Touché 2020 (Task 2) 2 77.1 0.12 0.38 0.73 -0.09 0.04 0.17
Web Track 2004 3 75.5 0.01 0.29 0.89 -0.07 0.10 0.31
TREC-7 4 73.9 -0.03 0.31 1.11 -0.02 0.12 0.34
Core 2018 5 70.2 -0.05 0.24 0.90 -0.03 0.13 0.35
NFCorpus 10 66.4 -0.06 0.06 0.32 0.02 0.23 0.42
Web track 2003 15 57.8 -0.14 0.04 0.23 -0.08 0.15 0.36
Web track 2009 20 44.1 -0.40 -0.04 0.26 0.00 0.30 0.52
Web track 2010 25 36.3 -0.49 -0.14 0.18 0.03 0.32 0.59
Web track 2013 30 31.0 -0.43 -0.21 0.13 0.06 0.30 0.63

Table 6 shows the results of our reproducibility analysis with
repro_eval. We report the ratio of system preferences with a suc-
cessful reproduction of the effect ratio and the 25 %, 50 %, and 75 %
quantile for the effect ratio and the relative delta improvement.
We sort the tasks by the percentage of successful reproductions,
showing the first five tasks with the highest success rate, and then
continue with a step size of 5. Not surprisingly, the reproductions
to the TREC Deep Learning Track of 2020 are excellent: 88.1 % of
preferences have an effect ratio above 0. This ratio declines fast,
as the task on rank 15 had only a success rate of 57.8 %. Analyzing
the results for the quantiles yields similar observations (e.g., 50 %
of the system preferences have an almost perfect effect ratio of
0.90 or higher for TREC DL 2020 while this declines fast, as already
the task on rank 15 as a median effect ration of 0.04). Hence, our
reproduction analysis indicates that out of the many tasks available
in TIREx, a smaller subset might suffice for prototyping, as tasks
that reproduce previously analyzed tasks might be skipped.

4.3 Predicted Impact of the Platform
TIREx can have a substantial conceptual impact as there might be no
alternative to blinded evaluations in the future (given the practice
of training LLMs on basically all available tasks [19]). Additionally,
the platform eases the organization of IR experiments. Shared task

organizers can simply provide the well-documented open-source
baselines from TIRA as starting points for the participants and
can also use them to ensure some variety in the pooling process,
especially for tasks that attract few participants. For shared tasks
that run multiple years, organizers can automatically re-run all ap-
proaches submitted to previous editions, allowing for a transparent
tracking of progress. The platform combines leaderboards with im-
mutable, dockerized software, enabling researchers and reviewers
to use and execute good baselines in a few lines of code.

The submission platform TIRA proved robust after its complete
redevelopment [41]: two large-scale NLP tasks with software sub-
missions used TIRA at SemEval 2023 (171 registered teams, 71 teams
submitted results, 647 runs produced by software submissions). Our
initial experiments with TIREx produced 1,600 runs, showing the
platform to be robust and to have the potential of changing how
we conduct IR experiments in the future.

5 CONCLUSION
With TIREx—the IR Experiment Platform—we aim to substantially
ease conducting (blinded) IR experiments and organizing “always-
on” reproducible shared tasks with software submissions. Our
new platform integrates ir_datasets, ir_measures, and PyTerrier
with TIRA. Retrieval workflows can be executed on-demand via
cloud-native orchestration, reducing the efforts for reproducing
IR experiments as all approaches submitted to TIREx as software
can be re-executed in post-hoc experiments. The platform has no
lock-in effect, as archived experiments are fully self-contained and
work stand-alone. With keeping test data private, TIREx also ad-
dresses a potential further “professionalization” of IR experiments
similar to fields like medicine, where blinded experiments are the
norm. TIREx is open to the IR community and ready to incorporate
more collections and retrieval approaches.
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