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ABSTRACT
Recommendation models are typically trained on observational
user interaction data, but the interactions between latent factors in
users’ decision-making processes lead to complex and entangled
data. Disentangling these latent factors to uncover their underlying
representation can improve the robustness, interpretability, and con-
trollability of recommendation models. This paper introduces the
CausalDisentangledVariationalAuto-Encoder (CaD-VAE), a novel
approach for learning causal disentangled representations from in-
teraction data in recommender systems. The CaD-VAE method
considers the causal relationships between semantically related
factors in real-world recommendation scenarios, rather than en-
forcing independence as in existing disentanglement methods. The
approach utilizes structural causal models to generate causal rep-
resentations that describe the causal relationship between latent
factors. The results demonstrate that CaD-VAE outperforms ex-
isting methods, offering a promising solution for disentangling
complex user behavior data in recommendation systems.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommender Systems, Causal Disentangled Representation, Vari-
ational Autoencoder

1 INTRODUCTION
Recommender systems play a crucial role in providing personalized
recommendations to users based on their behavior. Learning the
representation of user preference from behavior data is a critical
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task in designing a recommender model. Recently, deep neural
networks have demonstrated their effectiveness in representation
learning in recommendation models [17]. However, the existing
methods for learning representation from users’ behavior in rec-
ommender systems face several challenges. One of the key issues is
the inability to disentangle the latent factors that influence users’
behavior. This often leads to a highly entangled representation,
which would disregard the complex interactions between latent
factors driving users’ decision-making.

Disentangled Representation Learning (DRL) has gained increas-
ing attention as a proposed solution to tackle existing challenges [1].
Most research on DRL has been concentrated on computer vi-
sion [2–4, 7, 15], with few studies examining its applications in
recommender systems [12]. Recent works, such as CasualVAE [15]
and DEAR [10] utilize weak supervision to incorporate causal struc-
ture into disentanglement, allowing for the generation of images
with causal semantics.

Implementing DRL in recommendation systems can enable a
more fine-grained analysis of user behavior, leading to more ac-
curate recommendations. One popular DRL method is Variational
Autoencoders (VAE) [3–5, 9], which learns latent representations
capturing the data’s underlying structure. Ma et al. [8] propose
MacridVAE to learn the user’s macro and micro preference on
items for collaborative filtering. Wang et al. [13] extend the Macrid-
VAE by employing visual images and textual descriptions to extract
user interests. However, these works assume that countable, inde-
pendent factors generate real-world observations, which may not
hold in all cases. We argue that latent factors with the semantics of
interest, known as concepts [8, 15], have causal relationships in the
recommender system. For example, in the movie domain, different
directors specialize in different film genres, and different film gen-
res may have a preference for certain actors. As a result, learning
causally disentangled representations reflecting the causal relation-
ships between high-level concepts related to user preference would
be a better solution.

In this work, we propose a novel approach for disentanglement
representation learning in recommender systems by adopting a
structural causal model, named Causal Disentangled Variational
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Auto-Encoder (CaD-VAE). Our approach integrates the causal struc-
ture among high-level concepts that are associated with user pref-
erences (such as film directors and film genres) into DRL. Regu-
larization is applied to ensure each dimension within a high-level
concept captures an independent, fine-grained level factor (such as
action movies and funny movies within the film genre). Specifically,
the input data is first processed by an encoder network, which maps
it to a lower-dimensional latent space, resulting in independent
exogenous factors. The obtained exogenous factors are then passed
through a causal layer to be transformed into causal representations,
where additional information is used to recover the causal structure
between latent factors. Our main contributions are summarized as
follows,

• We introduce the problem of causal disentangled represen-
tation learning for sparse relational user behavior data in
recommender systems.

• We propose a new framework named CaD-VAE, which is
able to describe the SCMs for latent factors in representation
learning for user behavior.

• We conduct extensive experiments on various real-world
datasets, demonstrating the superiority of CaD-VAE over
existing state-of-the-art models.

2 METHODOLOGY
In this section, we propose the Causal Disentangled Variational
Auto-Encoder (CaD-VAE) method for causal disentanglement learn-
ing for the recommender systems. The overview of our proposed
CaD-VAE model structure is in Figure 1.
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Figure 1: Model structure of CaD-VAE. The encoder takes
the observation 𝑥𝑢 as input to generate an independent ex-
ogenous variable 𝜖, which is then transformed into causal
representations 𝑧 by the Causal Layer. The decoder uses 𝑧 as
input to reconstruct the original observation 𝑥𝑢 .

2.1 Problem Formulation
Let 𝑢 ∈ {1, ....,𝑈 } and 𝑖 ∈ {1, ...., 𝐼 } index users and items, respec-
tively. For the recommender system, the datasetD of user behavior
consists of 𝑈 users and 𝐼 items interactions. For a user 𝑢, the his-
torical interactions 𝐷𝑢 = {𝑥𝑢,𝑖 : 𝑥𝑢,𝑖 ∈ {0, 1}} is a multi-hot vector,
where 𝑥𝑢,𝑖 = 0 represents that there is no recorded interaction
between user 𝑢 and item 𝑖 , and 𝑥𝑢,𝑖 = 1 represents an interac-
tion between the user 𝑢 and item 𝑖 , such as click. For notation

brevity, we use x𝑢 denotes all the interactions of the user 𝑢, that is
x𝑢 = {𝑥𝑢,𝑖 : 𝑥𝑢,𝑖 = 1}. Users may have very diverse interests, and
interact with items that belong to many high-level concepts, such as
preferred film directors, actors, genres, and year of production. We
aim to learn disentangled representations from user behavior that
reflect the user preference related to different high-level concepts
and reflect the causal relationship between these concepts.

2.2 Construct Causal Structure via SCMs
Consider 𝑘 high-level concepts in observations to formalize causal
representation. These concepts are thought to have causal rela-
tionships with one another in a manner that can be described by
a Directed Acyclic Graph (DAG), which can be represented as an
adjacency matrix, denoted by 𝐴. To construct this causal structure,
we introduce a causal layer in our framework. This layer is specifi-
cally designed to implement the nonlinear Structural Causal Model
(SCM) as proposed by [16]:

z = 𝑔((I − A⊤)−1𝜖) := 𝐹𝛼 (𝜖), (1)

where 𝐴 is the weighted adjacency matrix among the k elements
of z, 𝜖 is the exogenous variables that 𝜖 ∼ N(0, 𝐼 ), 𝑔 is nonlinear
element-wise transformations. The set of parameters of 𝐴 and 𝑔

are denoted by 𝛼 = (𝐴,𝑔). Additionally, 𝐴𝑖 𝑗 is non-zero if and only
if [𝑧]𝑖 is a parent of [𝑧] 𝑗 , and the corresponding binary adjacency
matrix is denoted by 𝐼𝐴 = 𝐼 (𝐴 ≠ 0), where 𝐼 (·) is an element-
wise indicator function. When 𝑔 is invertible, Equation (2) can be
rephrased as follows:

𝑔−1𝑖 (𝑧𝑖 ) = A⊤
i 𝑔

−1
𝑖 (z) + 𝜖𝑖 , (2)

which implies that after undergoing a nonlinear transformation of
𝑔, the factors z satisfy a linear SCM. To ensure disentanglement, we
use the labels of the concepts to be additional information, denoted
as 𝑐 . The additional information 𝑐 is used to learn the weights of the
non-zero elements in the prior adjacency matrix, which represent
the sign and scale of causal effects.

2.3 Causality-guided Generative Modeling
Ourmodel is built upon the generative framework of the Variational
Autoencoder (VAE) and introduces a causal layer to describe the
SCMs. Let 𝐸 and 𝐷 denote the encoder and decoder, respectively.
We use 𝜃 to denote the set (𝐸, 𝐷, 𝛼, 𝜆) that contains all the train-
able parameters of our model. For a user 𝑢, our generative model
parameterized by 𝜃 assumes that the observed data are generated
from the following distribution:

𝑝𝜃 (x𝑢 ) = E𝑝𝜃 (c)
[∬

𝑝𝜃 (x𝑢 |𝜖, z𝑢 , c)𝑝𝜃 (𝜖, z𝑢 |c)𝑑𝜖𝑑z𝑢
]
, (3)

where
𝑝𝜃 (x𝑢 |𝜖, z, c) =

∏
𝑥𝑢,𝑖 ∈x𝑢

𝑝𝜃 (𝑥𝑢,𝑖 |𝜖, z, c) . (4)

Assuming the encoding process 𝜖 = 𝐸 (x𝑢 , c) + 𝜁 , where 𝜁 is
the vectors of independent noise with probability density 𝑝𝜁 . The
inference models that take into account the causal structure can be
defined as:

𝑞𝜙 (𝜖, z𝑢 |x𝑢 , c) ≡ 𝑞(z𝑢 |𝜖)𝑞𝜁 (𝜖 − 𝐸 (x𝑢 , c)), (5)
2023-04-18 01:00. Page 2 of 1–5.
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where 𝑞𝜙 (𝜖, z𝑢 |x𝑢 , c) is the approximate posterior distribution, pa-
rameterized by𝜙 , that models the distribution of the latent represen-
tation given the user’s behavior data x𝑢 and additional information
c. Since 𝜖 and 𝑧 have a one-to-one correspondence, we can simplify
the variational posterior distribution as follows:

𝑞𝜙 (𝜖, z𝑢 |x𝑢 , c) = 𝑞(𝜖 |x𝑢 , c)𝛿 (z𝑢 = 𝐹𝛼 (𝜖)),
= 𝑞(z|x𝑢 , c)𝛿 (𝜖 = 𝐹−1𝛼 (z𝑢 )),

(6)

where 𝛿 (·) is the Dirac delta function. And we define the joint prior
distribution for latent variables 𝜖 and 𝑧 as:

𝑝𝜃 (𝜖, z𝑢 |c) = 𝑝𝜖 (𝜖)𝑝𝜃 (z𝑢 |c), (7)

where 𝑝𝜖 (𝜖) = N(0, 𝐼 ) and 𝑝𝜃 (z𝑢 |c) is a factorized Gaussian distri-
bution such that:

𝑝𝜃 (z𝑢 |c) =
𝑛∏
𝑖=1

𝑝𝜃 (𝑧
(𝑖)
𝑢 |𝑐𝑖 ), (8)

where 𝑝𝜃 (𝑧
(𝑖)
𝑢 |𝑐𝑖 ) = N(𝜆1 (𝑐𝑖 ), 𝜆22 (𝑐𝑖 )). 𝜆1 and 𝜆2 are arbitrary func-

tions.
Given the representation of a user, denoted by zu, the decoder’s

goal is to predict the item, out of a total of 𝐼 items, that the user
is most likely to click. Let 𝐷 denotes the decoder. We assume the
decoding processes x = 𝐷 (z) + 𝜉 , where 𝜉 is the vectors of in-
dependent noise with probability density 𝑞𝜉 . Then we define the
generative model parameterized by parameters 𝜃 as follows:

𝑝𝜃 (x𝑢 |𝜖, zu, c) = 𝑝𝜃 (x𝑢 |z𝑢 ) ≡ 𝑝𝜉 (x𝑢 − 𝐷 (z𝑢 )) . (9)

2.4 Disentanglement Objective
Our objective is to learn the parameters 𝜙 and 𝜃 that maximize
the evidence lower bound (ELBO) of Σ𝑢 ln𝑝𝜃 (x𝑢 ). The ELBO is
defined as the expectation of the log-likelihood with respect to the
approximate posterior 𝑞𝜙 (𝜖, z𝑢 |x𝑢 , c), where z𝑢 and 𝜖 are the latent
variables:

𝑙𝑛𝑝𝜃 (x𝑢 ) ≥ E𝑝𝜃 (c) [E𝑞𝜙 (𝜖,z𝑢 |x𝑢 ,c) [𝑙𝑛𝑝𝜃 (x𝑢 |𝜖, z𝑢 , c)]
− 𝐷KL (𝑞𝜙 (𝜖, z𝑢 |x𝑢 , c)∥𝑝𝜃 (𝜖, z𝑢 |c))],

(10)

Based on the definitions of the approximate posterior in Equa-
tion (6) and the prior distribution in Equation (7), ELBO defined
in Equation (13) can be expressed in a neat form as follows:

ELBO = E𝑝𝜃 (c) [E𝑞𝜙 (zu |xu,c) [𝑙𝑛𝑝𝜃 (x𝑢 |𝜖, z𝑢 , c)]
− 𝐷KL (𝑞𝜙 (𝜖, |x𝑢 , c)∥𝑝𝜖 (𝜖))
− 𝐷KL (𝑞𝜙 (z𝑢 |x𝑢 , c)∥𝑝𝜃 (z𝑢 |c))]

(11)

Aside from disentangling high-level concepts, we are also inter-
ested in capturing the user’s specific preference for fine-grained
level factors within different concepts, such as action or funny films
in the film genre. Specifically, we aim to enforce statistical indepen-
dence between the dimensions of the latent representation, so that
each dimension describes a single factor, which can be formulated
as forcing the following:

𝑞𝜙 (z
(𝑖)
𝑢 |c) =

𝑑∏
𝑗=1

𝑞𝜙 (𝑧
(𝑖)
𝑢,𝑗

|𝑐𝑖 ) . (12)

Follow the idea in [8] that 𝛽-VAE can be used to encourage inde-
pendence between the dimensions. By varying the value of 𝛽 , the

model can be encouraged to learn more disentangled representa-
tions, where each latent dimension captures a single, independent
underlying factor [3]. As a result, we amplify the regularization
term by a factor of 𝛽 ≫ 1, resulting in the following ELBO:

E𝑝𝜃 (c) [E𝑞𝜙 (zu |xu,c) [𝑙𝑛𝑝𝜃 (x𝑢 |𝜖, z𝑢 , c)]
− 𝐷KL (𝑞𝜙 (𝜖, |x𝑢 , c)∥𝑝𝜖 (𝜖))
− 𝛽𝐷KL (𝑞𝜙 (z𝑢 |x𝑢 , c)∥𝑝𝜃 (z𝑢 |c))]

(13)

To ensure the learning of causal structure and causal representa-
tions, we include a form of supervision during the training process
of the model. The first component of this supervision involves
utilizing the extra information 𝑐 to establish a constraint on the
weighted adjacency matrix 𝐴. This constraint ensures that the ma-
trix accurately reflects the causal relationships between the labels:

𝐿𝑎𝑠𝑢𝑝 = E𝑞X ∥𝑐 − 𝜎 (𝐴⊤𝑐)∥22 ≤ 𝜅1, (14)

where𝜎 (·) is the sigmoid function and𝜅1 is a small positive constant
value. The second component of supervision constructs a constraint
on learning the latent causal representation 𝑧:

𝐿𝑧𝑠𝑢𝑝 = E𝑧∼𝑞𝜙 Σ
𝑛
𝑖=1∥𝑔

−1
𝑖 (𝑧𝑖 ) − A⊤

i 𝑔
−1
𝑖 (z)∥22 ≤ 𝜅2, (15)

where 𝜅2 is a small positive constant value. Therefore, we have the
following training objective:

L = −𝐸𝐿𝐵𝑂 + 𝛾1𝐿𝑎𝑠𝑢𝑝 + 𝛾2𝐿𝑧𝑠𝑢𝑝 , (16)

where 𝛾1 and 𝛾2 are regularization hyperparemeters.

3 EXPERIMENT
3.1 Experiment Setup
Our experiments were conducted on four datasets, which included
a combination of real-world datasets. The largescale Netflix Prize
dataset and three MovieLens datasets of different scales (i.e., ML-
100k, ML-1M, and ML-20M) were used following the same method-
ology as MacridVAE. To binarize these four datasets, we only kept
ratings of four or higher and users who had watched at least five
movies. We choose four causally related concepts: (DIRECTOR →
FILM GENRE), (FILM GENRE→ ACTOR), (PRODUCTION YEAR).
We compare the proposed approach with four existing baselines:

• MacridVAE [8] is a disentangled representation learning
method for the recommendation.

• 𝛽-MultVAE [6] and MultiDAE [6] are VAE based representa-
tion learning method for reommendation.

• DGCF [14] is a disentangled graph-based method for collab-
orative filtering.

• SEM-MacridVAE [13] is the extension of MacridVAE by in-
troducing semantic information.

The evaluation metric used is nDCG and recall, which is the same
as [13].

3.2 Resutls
Overall Comparison. The overall comparison can be found on Ta-
ble 1. We can see that the proposed method generally outperformed
all of the existing works. It demonstrates that the proposed causal
disentanglement representation works better than traditional dis-
entanglement representation.

2023-04-18 01:00. Page 3 of 1–5.
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Table 1: Result comparison of the proposed method with several exciting works. The best results are bold, and the second best
are marked as *. All methods are constrained to have around 2𝑀𝑑 parameters, where 𝑑 = 100.

Dataset Method NDCG@50 NDCG@100 Recall@20 Recall@50
ML-100k MultDAE 0.13226 (±0.02836) 0.24487 (±0.02738) 0.23794 (±0.03605) 0.32279 (±0.04070)

𝛽-MultVAE 0.13422 (±0.02341) 0.27484 (±0.02883) 0.24838 (±0.03294) 0.35270 (±0.03927)
MacridVAE 0.14272 (±0.02877) 0.28895 (±0.02739) 0.30951 (±0.03808)* 0.41309 (±0.04503)

DGCF 0.15215 (±0.03612) 0.28229 (±0.02271) 0.28912 (±0.03012) 0.34233 (±0.02937)
SEM-MacridVAE 0.17322 (±0.02812)* 0.29372 (±0.02371)* 0.27492 (±0.02152) 0.37026 (±0.02914)

Ours 0.19272 (±0.02515) 0.31826 (±0.02018 0.31272 (±0.02612) 0.38162 (±0.03812)*
ML-1M MultDAE 0.29172 (±0.00729) 0.40453 (±0.00799) 0.34382 (±0.00961) 0.46781 (±0.01032)

𝛽-MultVAE 0.30128 (±0.00617) 0.40555 (±0.00809) 0.33960 (±0.00919) 0.45825 (±0.01039)
MacridVAE 0.31622 (±0.00499) 0.42740 (±0.00789) 0.36046 (±0.00947) 0.49039 (±0.01029)

DGCF 0.32111 (±0.01028) 0.43222 (±0.00617) 0.37152 (±0.00891) 0.49285 (±0.09918)
SEM-MacridVAE 0.32817 (±0.00916)* 0.44812 (±0.00689)* 0.38172 (±0.00798)* 0.49871 (±0.01029)*

Ours 0.34716 (±0.00718) 0.45971 (±0.00610) 0.39182 (±0.00571) 0.50127 (±0.00917)
ML-20M MultDAE 0.32822 (±0.00187) 0.41900 (±0.00209) 0.39169 (±0.00271) 0.53054 (±0.00285)

𝛽-MultVAE 0.33812 (±0.00207) 0.41113 (±0.00212) 0.38263 (±0.00273) 0.51975 (±0.00289)
MacridVAE 0.34918 (±0.00271) 0.42496 (±0.00212) 0.39649 (±0.00271) 0.52901 (±0.00284)

DGCF 0.36152 (±0.00281) 0.43172 (±0.00199) 0.40127 (±0.00284) 0.52127 (±0.00229)
SEM-MacridVAE 0.37172 (±0.00187)* 0.44312 (±0.00177)* 0.41272 (±0.00300)* 0.53212 (±0.00198)*

Ours 0.38991 (±0.00201) 0.45126 (±0.00241) 0.42822 (±0.00298) 0.54316 (±0.00189)
Netflix MultDAE 0.24272 (±0.00089) 0.37450 (±0.00095) 0.33982 (±0.00123) 0.43247 (±0.00126)

𝛽-MultVAE 0.24986 (±0.00080) 0.36291 (±0.00094) 0.32792 (±0.00122) 0.41960 (±0.00125)
MacridVAE 0.25717 (±0.00098) 0.37987 (±0.00096) 0.34587 (±0.00124) 0.43478 (±0.00118)

DGCF 0.27128 (±0.00089)* 0.39122 (±0.00078)* 0.36271 (±0.00199)* 0.45019 (±0.00102)*
SEM-MacridVAE 0.26981 (±0.00100) 0.38012 (±0.00099) 0.35712 (±0.00162) 0.44172 (±0.00102)

Ours 0.29172 (±0.00080) 0.40021 (±0.00088) 0.38212 (±0.00062) 0.45918 (±0.00081)

Causal Disentanglement. We also provide a t-SNE [11] visual-
ization of the learned causal disentanglement representation for
high-level concepts on ML-1M. On the representation visualiza-
tion Figure 2a, pink represents the year of the production, green
represents the directors, blue represents the actors and yellow rep-
resents the genres. We can clearly find that the year of production
is disentangled from actors, genres and directors as they are not
causally related.
Fine-grained Level Disentanglement. In Figure 2b, we examine
the relationship between the level of independence at the fine-
grained level and the performance of recommendation by varying
the hyper-parameter 𝛽 . To quantify the level of independence, we
use a set of 𝑑-dimensional representations and calculate the fol-
lowing metric 1 − 2

𝑑 (𝑑−1)
∑
1≤𝑖< 𝑗≤𝑑 |corr𝑖, 𝑗 | [8], where corr𝑖, 𝑗 is

the correlation between dimension 𝑖 and 𝑗 . We observe a posi-
tive correlation between recommendation performance and the
level of independence, where higher independence leads to better
performance. Our method outperforms existing disentanglement
representation learning in the level of independence.

4 CONCLUSION
This work demonstrates the effectiveness of the CaD-VAE model
in learning causal disentangled representations from user behav-
ior. Our approach incorporates a causal layer implementing SCMs,
allowing for the successful disentanglement of causally related con-
cepts. Experimental results on four real-world datasets demonstrate

(a) (b)

Figure 2: Disentanglement experiments. (a) is the visualiza-
tion learned causal disentanglement representation; (b) re-
flects the impact of the fine-grained level disentanglement
and the recommendation performance

that the proposed CaD-VAE model outperforms existing state-of-
the-art methods for learning disentangled representations. In terms
of future research, there is potential to investigate novel applica-
tions that can take advantage of the explainability and controllabil-
ity offered by disentangled representations.
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