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ABSTRACT
Federated learning (FL) is a popular way of edge computing that
doesn’t compromise users’ privacy. Current FL paradigms assume
that data only resides on the edge, while cloud servers only perform
model averaging. However, in real-life situations such as recom-
mender systems, the cloud server has the ability to store historical
and interactive features. In this paper, our proposed Edge-Cloud
Collaborative Knowledge Transfer Framework (ECCT) bridges the
gap between the edge and cloud, enabling bi-directional knowledge
transfer between both, sharing feature embeddings and prediction
logits. ECCT consolidates various benefits, including enhancing
personalization, enabling model heterogeneity, tolerating training
asynchronization, and relieving communication burdens. Extensive
experiments on public and industrial datasets demonstrate ECCT’s
effectiveness and potential for use in academia and industry.

CCS CONCEPTS
•Computingmethodologies→Machine learning; • Informa-
tion systems→ Data mining.
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1 INTRODUCTION
In the conventional centralized training paradigm, data is collected
from multi-sourced edge devices, based on which a large model
is trained at a cloud server [16, 21]. Recently, due to user privacy
and communication efficiency concerns, federated learning (FL)
has been proposed as an alternative to the centralized training
paradigm [13–15, 18, 24]. FL assumes all the training data is kept
locally at the edge devices, and a global model can be obtained
by iterative edge training and cloud-side model averaging. It has
shown feasibility and applicability in privacy-preserving scenarios.
For example, keyboard inputs are sensitive information of cellphone
users, and Google has used FL to improve next-word prediction
while preserving users’ privacy [4].

However, the current FL frameworks ignore the existence of
cloud-side data, and it does not directly incorporate cloud training.
In industrial applications, the cloud server usually has rich com-
putation resources to train a big model with rich historical and
non-private features. Taking the recommender system (RS) as an
example, privacy-sensitive features, including one user’s gender,
age, and other real-time features such as the user’s timely inter-
actions with the items are generally inaccessible to the cloud and
are stored locally in the devices. We denote these features as "fed-
erated features". On the other hand, the centralized historical
features (with fewer privacy concerns), including the user’s histori-
cal interactions with items, item categories, item flags, item-to-item
embeddings, etc., are stored on the cloud server. We name these
features as "centralized features". We find that the existing FL
frameworks do not fully utilize these two sets of features. The main
reason is that the federated and centralized features have different
feature spaces, dimensions, and accessibility, and it is therefore
challenging to utilize the federated features to improve the global
model’s performance. Also, it is impractical to move the centralized
features to the edge since such features are large in size and the
edge devices have limited storage and computation resources.

The conventional centralized learning paradigm and the current
FL paradigm only utilize one-sided cloud training or edge training.
However, we reckon the edge-cloud collaboration is quite impor-
tant in practice to have both better-generalized representations
and more personalized user services [9, 20, 27]. Thus, in this pa-
per, we propose a Edge-Cloud Collaborative Knowledge Transfer
Framework (ECCT). In this framework, we train a big model on
the server and a light weighted model on each edge device. The

ar
X

iv
:2

30
4.

05
87

1v
1 

 [
cs

.L
G

] 
 1

2 
A

pr
 2

02
3

https://doi.org/10.1145/3539618.3591976
https://doi.org/10.1145/3539618.3591976
https://doi.org/10.1145/3539618.3591976


SIGIR ’23, July 23–27, 2023, Taipei, Taiwan. Li and Li, et al.

feature embeddings and prediction logits are shared between the
edge and cloud to support knowledge transfer and collaboration.
The edge and cloud models then adopt an alternating minimization
(AM) approach [2, 3, 10] to utilize the transferred knowledge via
embedding fusion and knowledge distillation.

ECCT offers several advantages over conventional FL frame-
works. Firstly, it allows for boosting local personalization by trans-
ferring knowledge from centralized features to on-device models.
This improves personalization compared to FL methods. Secondly,
ECCT enables model heterogeneity, allowing edge models to differ
in architecture while still being compatible. Thirdly, ECCT natu-
rally supports asynchronous training and is more robust when a
partial selection of training devices exists. Finally, ECCT relieves
communication burdens because transferred knowledge has a much
smaller size than model parameters.

Our contributions are as follows.

• We develop the ECCT framework that jointly utilizes the cloud’s
centralized features and the edge’s federated features. To the best
of our knowledge, this is the first paper to use the two kinds of
features to realize edge-cloud collaboration, and it has promising
industrial applications.

• In ECCT, we implement bi-directional knowledge transfers be-
tween the edge and cloud by embedding fusion and knowledge
distillation.

• Extensive experiments under both public and industrial datasets
demonstrate the effectiveness of ECCT and show its broad and
practical prospects in the industry.

2 RELATEDWORKS
Edge-cloud collaborative federated learning. FedGKT [10] in-
corporates split learning in FL to realize edge-cloud collaboration.
It trains a larger CNNmodel on the server based on the embeddings
and logits from the devices. However, it does not utilize centralized
data, and the knowledge from the cloud to the edge is weak by just
transferring logits. There are works that take the cloud-side data
as a public dataset to aid edge training via knowledge distillation
[7, 19, 28]. We reckon it is not realistic to store such a public dataset
at the edge devices, which hinders their applications in the industry.
Edge-cloud collaborative recommender systems. In [27], Mo-
MoDistill is proposed to finetune the meta patches of the cloud
RS model at the edge, and it can realize user personalization. In
[26], a causal meta controller is trained to manage the tradeoff
between the on-device and the cloud-based recommendations. We
note that [26, 27] assume the centralized data is the whole sum of
the federated data. But in realistic scenarios, the centralized and
federated data have different features due to privacy and real-time
issues. There are methods solving the inference problems in edge
recommendation in terms of re-ranking [9] and item request [20].

3 METHODOLOGY
In Section 3.1, we give the main formulation of the proposed frame-
work, while in Section 3.2, we provide several practical add-ons
that can be applied with the framework to further strengthen per-
formance or privacy guarantees.

3.1 Main Formulation
Problem Setup. There are 𝐾 edge devices in the network. Specifi-
cally, the learning task is supervised learning for classification with
𝐶 categories in the entire dataset, which consists of two parts of
features, geographically located at the server (centralized features,
D) and the devices (federated features, D̂). The 𝑘-th device has its

own dataset of private and real-time features D̂𝑘 B
{(
X̂𝑘
𝑖
, 𝑦𝑘
𝑖

)}𝑁𝑘

𝑖=1
,

where X̂𝑖 is the 𝑖-th training sample, 𝑦𝑖 is the corresponding label
of X̂𝑖 , 𝑦𝑘𝑖 ∈ {1, 2, . . .𝐶}, and 𝑁𝑘 is the sample size of dataset �̂�𝑘

(also 𝐷𝑘 ). Thus, we have D̂ = {D̂1, D̂2, . . . , D̂𝐾 }, 𝑁 =
∑𝐾
𝑘=1 𝑁

𝑘 .
The server has all non-private and historical features of all devices

as D𝑘 B
{(
X𝑘
𝑖
, 𝑦𝑘
𝑖

)}𝑁𝑘

𝑖=1
, D = {D1,D2, . . . ,D𝐾 }.

Learning Objectives. For edge device 𝑘 , we deploy a small feature
encoder (extractor) E𝑘

𝑑
and a small classifier C𝑘

𝑑
, while for the cloud

server, we deploy a large encoder E𝑠 and a large-scale downstream
model C𝑠 (including the classifier). Let W𝑘

𝑑
= {E𝑘

𝑑
, C𝑘
𝑑
} and W𝑠 =

{E𝑠 , C𝑠 }. Due to the separated features at the cloud and edge, we
reformulate a single global model optimization into a non-convex
optimization problem that requires us to train the server modelW𝑠

and the device model W𝑘
𝑑
simultaneously. The learning objectives

of the server and device 𝑘 with respective loss functions of ℓ𝑠 and
ℓ𝑘
𝑑
are as follows

argmin
W𝑠

𝐹𝑠 (W𝑠 ) = argmin
W𝑠

𝐾∑︁
𝑘=1

𝑁𝑘∑︁
𝑖=1

ℓ𝑠

(
C𝑠 (ℎ𝑘𝑑,𝑖 ⊕ ℎ

𝑘
𝑠,𝑖 ), 𝑦

𝑘
𝑖

)
, (1)

argmin
W𝑘

𝑑

𝐹𝑘
𝑑
(W𝑘

𝑑
) = argmin

W𝑘
𝑑

𝑁𝑘∑︁
𝑖=1

ℓ𝑘
𝑑

(
C𝑘
𝑑
(ℎ𝑘
𝑑,𝑖

⊕ ℎ𝑘𝑠,𝑖 ), 𝑦
𝑘
𝑖

)
, (2)

where ℎ𝑘
𝑑,𝑖

= E𝑘
𝑑
(X̂𝑘𝑖 ), ℎ

𝑘
𝑠,𝑖 = E𝑠 (X𝑘𝑖 ) . (3)

In Eqs. 1 and 2, ℎ𝑘
𝑑,𝑖

(ℎ𝑘
𝑠,𝑖
) refers to the extracted feature embed-

ding of a sample X̂𝑘
𝑖
(X𝑘
𝑖
) using the device’s (server’s) encoder E𝑘

𝑑
(E𝑠 ) and ⊕ denotes the concatenation operation that concatenates
two embeddings into one. We optimize the above objectives via
alternating minimization (AM) approach [2, 3, 10]. For the server’s
optimization, we fix the devices’ embeddings ℎ𝑘

𝑑,𝑖
, and for device

𝑘’s optimization, we fix the server’s embedding ℎ𝑘
𝑠,𝑖
.

Apart from the embeddings, we also transfer the prediction
logits and adopt knowledge distillation (KD) [11, 17] to strengthen
knowledge learning. The shared embeddings and logits realize a
bi-directional knowledge transfer in the edge-cloud collaborative
training, and we adopt the loss functions for the server and edge
device 𝑘 respectively as follows

ℓ𝑠 = ℓ𝐶𝐸 + 𝛼𝑠
𝐾∑︁
𝑘=1

ℓ𝐾𝐷

(
𝑧𝑘
𝑑
, 𝑧𝑘𝑠

)
, (4)

ℓ𝑘
𝑑
= ℓ𝑘𝐶𝐸 + 𝛼𝑑 ℓ𝑘𝐾𝐷

(
𝑧𝑘𝑠 , 𝑧

𝑘
𝑑

)
, (5)

where ℓ𝐶𝐸 is the cross-entropy loss between the predicted values
and the ground truth labels, ℓ𝐾𝐷 is the Kullback Leibler Divergence
function for knowledge distillation, and 𝑧𝑘𝑠 and 𝑧𝑘

𝑑
are prediction

logits. Besides, 𝛼𝑠 and 𝛼𝑑 are the hyper-parameters to control the
strengths of knowledge distillation.
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Figure 1: The proposed edge-cloud collaborative knowledge
transfer framework.

Training Workflow. The demonstration of the proposed frame-
work is shown in Figure 1. There are mainly three iterative steps
in our edge-cloud collaborative learning framework: edge training,
cloud training, and edge-cloud collaboration. (1) Cloud training.
The cloud server conducts cloud training as that of Eq. 4 for 𝐸𝑠
epochs. (2) Edge training. The edge device 𝑘 conducts edge training
as that of Eq. 5 for 𝐸𝑘

𝑑
epochs. (3) Edge-cloud communication. The

edge device (cloud server) infers the embeddings via the encoder
and the logits via the classifier on its local features and sends the
embeddings and logits to the cloud server (edge devices).

Steps 1 and 2 can be conducted at the cloud and edge in parallel,
and the AM-based method makes our framework more tolerant to
asynchronous updates and communications. In practice, the device
model accumulates its embeddings in a buffer, and when the buffer
is full, it communicates with the server for transfer, and we name
it buffered knowledge transfer. Each slice of buffered knowledge
does not have to be generated from the same edge model. It relaxes
the FL’s synchronization requirements that the devices need to
have the same model version (i.e. same edge-cloud communication
frequency) and the same local epochs (∀𝑖, 𝑗 ∈ [𝐾], 𝐸𝑖

𝑑
= 𝐸

𝑗

𝑑
= 𝐸𝑑 ).

Moreover, due to the powerful computation resource in the cloud,
we can have a larger number of cloud training epochs (𝐸𝑠 ≫ 𝐸𝑑 ),
and it can generate more knowledge-representative embeddings
from enriched on-cloud features to aid the devices’ models for fast
training and better personalization.
Inference Strategy. During inference, there are two choices of
strategies, i.e., the cloud-based and the edge-based ones. The cloud
(edge) models use the transferred embeddings from the edge (cloud)
and their own features to infer prediction for a given sample. Gen-
erally, the edge-based inference is more real-time and personalized
while the cloud-based one is more generalized and robust. The
inference strategies can be flexibly chosen according to the specific
application scenarios.

3.2 Practical Add-ons
Two-stage strategy. We notice that in the early training phase
when the models are less generalized, the knowledge of the logits
is poor in representational power. As a result, the knowledge dis-
tillation may cause distortion in training. Thus, we only transfer
the embeddings and use CE loss (i.e. 𝛼𝑠 = 𝛼𝑑 = 0) in the first few

training epochs, and additionally transfer the logits and use both
KD and CE losses in later training phases.
Filtered Knowledge Transfer. We find that if a model predicts
for some samples with wrong labels, the model is hardly generalized
on these samples; therefore, taking the logits of these samples as
knowledge will degrade performance in distillation [7]. Thus, we
adopt filtered knowledge transfer that only uses the right logits for
knowledge distillation.
Privacy Guarantee. The transfer of embeddings bears less privacy
risk than directly transferring the device’s raw private features [5, 8].
In our framework, the privacy guarantee can be further strength-
ened by applying differential privacy methods on the embeddings
from the devices [1, 25].

4 EXPERIMENTS
In the experiments, we evaluate our framework on three datasets:
CIFAR10, Avazu, and IndustryData. We introduce experimental set-
tings in Section 4.1, present the results on CIFAR10 with synthetic
feature split in Section 4.2, and illustrate the results on RS datasets
(Avazu and IndustryData) in Section 4.3.

4.1 Experimental Settings
For fair comparisons, we consider three feature settings: "F" uses
only federated features, "C2F" moves centralized features to the
edge as federated features, and "C&F" combines centralized fea-
tures at the cloud and federated features at the edge. We note that
"C2F" is not practical in real-world scenarios due to storage limi-
tations and communication overhead. However, we include it for
comprehensive evaluation. Our experiments evaluate personaliza-
tion results on local test sets of edge devices, using three datasets.
For the first 50 rounds of training, 𝛼𝑠 and 𝛼𝑑 are both set to 0, and
then set to 1 for the latter 50 rounds. The transferred embeddings
have a size of 128, and we employ an MLP with two layers as the
downstream classifier.
Datasets. CIFAR10 [12] is an image dataset for classification, and
we conduct synthetic feature split to generate federated and cen-
tralized features. Specifically, given a 32×32 image, we split it into a
10×32 image at the edge and a 22×32 image at the cloud. We deploy
ResNet-8 at the edge and ResNet-56 at the cloud as the encoders.
The number of devices is 20. Avazu [23] is a public dataset for
click-through rate (CTR) prediction in real-world RS. We randomly
sample 200,000 data samples and assign them to each device by
device_ip, and there are 1769 devices. We set the sparse features,
which are mostly about the item details (e.g. app_category), as the
cloud-side centralized features and assume the dense features as the
federated features. We use AutoInt [22] as the backbone encoders.
IndustryData is a real-world industrial dataset for RS, extracted
from system logs from Alipay APP. We randomly sample 500,000
data samples and assign them to 2000 devices. We allocate the user’s
sensitive features at the edge, like u_gender and u_occupation, and
the historical interactive features as the centralized features at the
cloud. AutoInt is used as the encoder, and we conduct experiments
on both CTR and conversion rate (CVR) prediction tasks.
Baselines. We compare our framework with FL baselines, mainly
FedAvg [18] (the general FL framework) and FedGKT [10] (the
SOTA edge-cloud collaborative FL framework). For the experiments
with CIFAR10, since the split features have the same feature spaces,
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Table 1: Top-1 test accuracy (%) results on CIFAR10 under
different device data heterogeneity and 𝐸𝑑 . "homo"/"hetero":
device model homogeneity/heterogeneity.

Data heterogeneity IID NonIID

Feature Method/𝐸𝑑 1 3 1 3

F
FedAvg 57.36 59.75 52.36 56.96

FedGKT (homo) 66.78 67.90 38.88 44.59
FedGKT (hetero) 51.57 54.34 23.36 26.20

C2F
FedAvg 61.81 66.32 57.09 62.69

FedGKT (homo) 78.44 79.05 30.91 57.70
FedGKT (hetero) 66.09 66.04 30.38 49.30

C&F

FedDF 31.9 49.14 28.86 41.36
FedBE 38.28 51.55 31.73 43.09

ECCT (homo) 81.89 82.46 63.06 62.61
ECCT (hetero) 77.31 77.18 60.86 64.06

Table 2: Top-1 test accuracy (%) results on CIFAR10 under
asynchronization.

Method FedAvg ECCT

Select ratio 1.0 0.5 1.0 0.5

Syn. 62.69 55.78 67.81 69.28
- 11.0% ↓ - 2.1% ↑

Asyn. version 60.51 53.29 67.56 64.42
3.5% ↓ 15.0% ↓ 0.4% ↓ 5.3% ↓

Asyn. epoch 59.55 50.93 66.92 64.65
5.0% ↓ 18.8% ↓ 1.3% ↓ 4.9% ↓

Asyn. both 58.47 51.49 67.31 64.81
6.7% ↓ 17.9% ↓ 0.7% ↓ 4.6% ↓

we also test distillation-based FL methods (FedDF [17] and FedBE
[6]) that can utilize the centralized features via distillation.

4.2 Synthetic Feature Split
In this section, experiments are conducted on CIFAR10 with syn-
thetic feature split. Table 1 shows the results under different device
data heterogeneity and numbers of edge training epochs (𝐸𝑑 ) using
Dirichlet sampling [17] to assign devices with NonIID samples. Our
method outperforms the baselines in both IID and NonIID settings.
Moreover, our method shows a smaller decrease in performance
compared with FedGKT when device model heterogeneity exists.
Distillation (FedDF and FedBE) on the centralized features results in
worse model performance, indicating that conventional FL methods
cannot effectively utilize centralized features.

Table 2 presents the results under asynchronous settings. The
degradation in performance is stronger in FedAvg than in ECCT,
especially when combined with uniformly random partial device
selection in each epoch of training.

Table 3 showcases the performance of different methods with
various device numbers and selection ratios. Our ECCT outperforms
FedAvg and FedGKT under all settings and is more tolerant with
different participation of edge devices.

4.3 Recommender Systems
In this section, we implement the methods in RS, and both public
(Avazu) and industrial datasets (IndustryData) are used.

Table 3: Top-1 test accuracy (%) results on CIFAR10 under
different device numbers and device selection ratios.

Device Num. 50 100

Select ratio 0.6 0.3 0.1 0.6 0.3 0.1

FedAvg 47.64 33.99 14.12 44.04 31.55 16.19
FedGKT 31.06 44.84 45.16 59.68 57.82 52.53

ECCT 68.43 68.68 45.33 78.36 75.91 67.01

Table 4: CTR prediction for Avazu.

Feature F C2F C&F

Method FedAvg FedGKT FedAvg FedGKT ECCT

AUC 0.5783 0.5293 0.6595 0.5246 0.6694
MSE 0.1370 0.1488 0.1320 0.1559 0.1373

Table 5: CTR and CVR predictions for IndustryData.

Task CTR CVR

Method/Metric AUC MSE AUC MSE

FedAvg 0.6829 0.0879 0.8145 0.0199
FedGKT 0.5409 0.1023 0.6068 0.0262

ECCT 0.6885 0.0875 0.8754 0.0184

Firstly, we conduct experiments on Avazu for CTR prediction
tasks and demonstrate the results in Table 4. Our method is superior
to FedAvg and FedGKT in terms of AUC, even moving all the cen-
tralized features to the edge ("C2F"). Secondly, we test the methods
on IndustryData for CTR and CVR prediction tasks. The results
in Table 5 illustrate that our edge-cloud collaborative framework
performs better than the FL methods, especially in the CVR task.
It shows that the framework has large potential in the industry,
especially for online recommendations.

We notice that FedGKT has poor results in RS, and we find it
reasonable. In FedGKT, the knowledge from the cloud to the edge
is solely based on the logits. For binary classification tasks like
predicting CTR and CVR, the logits contain no more information
than the labels, so FedGKT fails to make an effective transfer from
the cloud to the edge. However, our framework incorporates more
knowledge in the transferred embeddings.

5 CONCLUSION
In this paper, we proposed an edge-cloud collaborative knowledge
transfer framework to jointly utilize the centralized and federated
features. The proposed method has several advantages over the
previous federated learningmethods: boosting edge personalization,
enabling model heterogeneity, tolerating asynchronization, and
relieving communication burdens between edge and cloud.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and Devel-
opment Project of China (2021ZD0110400), the National Natural
Science Foundation of China (U19B2042), the Program of Zhejiang
Province Science and Technology (2022C01044), The University
Synergy Innovation Program of Anhui Province (GXXT-2021-004),
Academy Of Social Governance Zhejiang University, Fundamental
Research Funds for the Central Universities (226-2022-00064).



Edge-cloud Collaborative Learning with Federated and Centralized Features SIGIR ’23, July 23–27, 2023, Taipei, Taiwan.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. 2010. Prox-
imal alternating minimization and projection methods for nonconvex problems:
An approach based on the Kurdyka-Łojasiewicz inequality. Mathematics of
operations research 35, 2 (2010), 438–457.

[3] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. 2014. Proximal alternating
linearized minimization for nonconvex and nonsmooth problems. Mathematical
Programming 146, 1 (2014), 459–494.

[4] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
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