
Friend Ranking in Online Games via Pre-training Edge
Transformers

Liang Yao, Jiazhen Peng, Shenggong Ji, Qiang Liu, Hongyun Cai, Feng He, Xu Cheng
{dryao,brucejzpeng,shenggongji,pobliu,laineycai,fenghe,alexcheng}@tencent.com

Tencent Inc.
Shenzhen, China

ABSTRACT
Friend recall is an important way to improve Daily Active Users
(DAU) in online games. The problem is to generate a proper lost
friend ranking list essentially. Traditional friend recall methods
focus on rules like friend intimacy or training a classifier for pre-
dicting lost players’ return probability, but ignore feature informa-
tion of (active) players and historical friend recall events. In this
work, we treat friend recall as a link prediction problem and explore
several link prediction methods which can use features of both ac-
tive and lost players, as well as historical events. Furthermore, we
propose a novel Edge Transformer model and pre-train the model
via masked auto-encoders. Our method achieves state-of-the-art
results in the offline experiments and online A/B Tests of three
Tencent games.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems→ Social networks.

KEYWORDS
Friend Ranking, Link Prediction, Transformer, Pre-training

ACM Reference Format:
Liang Yao, Jiazhen Peng, Shenggong Ji, Qiang Liu, Hongyun Cai, Feng
He, Xu Cheng. 2023. Friend Ranking in Online Games via Pre-training
Edge Transformers. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’23),
July 23–27, 2023, Taipei, Taiwan, China. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
Online gaming is one of the largest industries on the Internet,
generating tens of billions of dollars in revenues annually. Tencent
is China’s largest Internet company and the largest game service
provider. It has more than 800 million gaming users1. The payment
revenue from games accounts for 31% of Tencent’s overall revenue2.

1https://www.tencent.com/en-us/articles/2200928.html
2https://www.statista.com/statistics/527280/tencent-annual-online-games-revenue/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR’23, July 23–27, 2023, Taipei, Taiwan, China.
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9408-6/23/07. . . $15.00
https://doi.org/10.1145/XXXXXX.XXXXXX

In online games, one critical problem is how to design strategies
to keep players playing. Friend recall is an essential way for the
purpose. It means letting active players in the game invite their lost
friends back. An illustration of friend recall is in Figure 1. An active
player X in the game can see a number of events. In some events, the
player can earn awards (e.g., coins, hero skins) by inviting his/her
lost friend. X can click a photo of his friend Y in the recommendation
list, then X will send an instant message to the clicked friend. The
friend Y may return to the game after seeing the message. If Y is
back, X will earn more rewards.

The friend recall problem is to generate a proper lost friend list
essentially. There are two main traditional methods in our practice.
One is to sort the lost friends by intimacy scores. A lost friend Y
with a higher intimacy score will be listed before another friend Z
with a lower intimacy score. The intimacy score between player
X and Y is calculated by summing the interaction activities in the
game (e.g., giving a gift, or playing in the same room). The basic
idea is that intimate friends are more likely to be invited, and an
invited friend is more likely to be back. The second is training a
classifier for predicting lost players’ return probability. The method
collects features of lost players and uses natural return activities as
labels. If a lost player logs in the game without invitation, the label
is positive, otherwise, negative. A lost player with a higher natural
return probability will be given a higher rank. The idea is to give
players who are more likely to be back more chances to be invited.

The above two methods have some major limitations: 1). The
intimacy scores neglect both features of active and lost players, an
active player may not be willing to invite, and a lost friend may
not be willing to return. 2). The natural return classifier only uses
features of lost players, but the features of active players are ignored.
3). Bothmethods could not utilize information from historical friend
recall events. Historical events indicate which active players (with
features before the event) invited their friends, and which lost
players are invited and then returned.

In this work, we overcome the above limitations by treating
friend recall as a link prediction problem. The problem is to predict
the edge existing probability in a bipartite graph. The bipartite
graph contains two kinds of nodes: active players and lost players.
The edge is labeled as positive if an active player successfully invites
a lost player back in a game event. We explore several popular link
prediction and friend ranking models for the task. Furthermore, we
propose a novel Edge Transformer model and pre-train the model
via Masked Auto-Encoders (MAE). The proposed method outper-
forms existing models and the two traditional methods in both
offline and online evaluation. The implementation of our proposed
method is available at: https://github.com/yao8839836/edge_mae.
To summarize, our contributions are as follows:

ar
X

iv
:2

30
2.

10
04

3v
4

 [
cs

.A
I]

 2
6

A
pr

 2
02

3

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX
https://github.com/yao8839836/edge_mae

SIGIR’23, July 23–27, 2023, Taipei, Taiwan, China. Yao, et al.

Active Players: Friend List Exposure

Invite Invite Invite Invite Invite

Reward 1 Reward 2 Reward 3

Friend List

Redeem Redeem Redeem

…

Massage Sending

Typing...

Let’s play together, like
the old days!

Sure! It’s been a while. I
miss that...

CLICK TO
START GAME

LoginInvite

Lost Players Return

Game App Instant Massage APP Game App

Figure 1: Illustrations of friend recall in online games. On the left, when an active player (say X) logs in the Game A, X can see
a list of friends (in the bottom rectangle) who have been inactive in the game recently. X can click and invite them to return
to the game and play with X together. In the middle, X invited a friend (say Y) in the friend list and sent Y a link to the game.
On the right, Y saw the invitation and clicked the link, Y then returned to the game. The above process is a successful story, X
may not invite any friend, and Y may not accept the invitation.

Table 1: Data Statistics.

Dataset Game A Game B

labeled edges 6,396,834 11,982,659
train edges 5,117,125 9,591,653
val edges 1,279,709 2,391,006

unlabeled edges 24,946,624 3,422,556,670
active players features dim 80 25
lost players features dim 80 26

edge features dim 4 1

• To the best of our knowledge, this is the first study to sys-
tematically investigate the real-world friend recall problem.

• We propose a new Edge Transformer model and improve
it by pre-training with masked auto-encoders and massive
unlabeled edges. The model outperforms state-of-the-art link
prediction models in our task.

2 DATA
We built our datasets from past events of Game A and Game B. The
real game names are hidden for privacy reasons. In past events,
an active player X who clicked at least one of his/her lost friends
and X’s lost friends are collected as labeled edges and added to the
training and validation dataset. If X clicked a lost friend Y, and Y
was back, the edge is labeled as positive. If Y is not back, the edge is
labeled as negative. All edges in the training and validation dataset
without an invitation are also labeled as negative. For pre-training,
we use massive unlabeled edges. All active players who did not
invite any friends together with their lost friends are collected as
unlabeled edges for pre-training. We construct node features, i.e.,
gaming activities and payment information, for two kinds of players
and take intimacy scores as edge features. The statistics of the two
datasets are listed in Table 1.

Transformer Encoder

POS0 POS1 POS2 POS3

H0
[CLS] H0

h H0
r H0

t

[CLS] Eh Er Et

MLPh MLPr MLPt

Xh Xr Xt

+ + + +

HL
[CLS]

Edge Label y ∈ {0, 1}

HL
h HL

r TL
t

Figure 2: The proposed Edge Transformer model. For an
edge, we linearly embed the head node feature 𝑋ℎ , edge fea-
ture 𝑋𝑟 , and tail node feature 𝑋𝑡 to the same dimension via
three MLPs, then add position embeddings and feed the re-
sulting vectors to a standard Transformer encoder. An extra
learnable “classification token” is added to the first of the
sequence to perform classification.

3 METHOD
Inspired by the Transformer [13] scaling successes in natural lan-
guage processing (NLP) [3, 5] and computer vision (CV) [6], we
experiment with applying a standard Transformer directly to edges,
with the fewest possible modifications, as the scalable NLP and CV
Transformer architectures and their implementations can be reused.
We treat node and edge features as word tokens in NLP, and image
patches in CV. We take the sequence of linear embeddings of these
features as an input to a Transformer.

Friend Ranking in Online Games via Pre-training Edge Transformers SIGIR’23, July 23–27, 2023, Taipei, Taiwan, China.

Reconstruction

Encoder

𝑥ℎ

𝑥𝑟

𝑥𝑡

Masked Input

CLS

Decoder

𝑥ℎ

𝑥𝑟

𝑥𝑡

Embedding for
downstream task

Figure 3: The proposed Edge MAE model. During pre-
training, a random subset of edge tokens (e.g., 1/3) ismasked
out. The encoder is performed on the subset of visible to-
kens. Masked tokens are introduced after the encoder, and
the full set of encoded tokens and masked tokens are pro-
cessed by a small decoder that reconstructs the original fea-
tures of nodes or edges. After pre-training, the decoder is
discarded and the encoder is applied to uncorrupted edges
(full sets of tokens) for edge classification.

An overview of the Edge Transformer model is depicted in Fig-
ure 2. The standard Transformer receives a 1D sequence of token
embeddings as input. To handle edges, we linearly embed the head
node feature 𝑋ℎ (for active players), edge feature 𝑋𝑟 (intimacy
scores), and tail node feature 𝑋𝑡 (for lost players) to the same di-
mension via three multilayer perceptions (MLP). The Transformer
uses latent vector size 𝐷 through all of its layers, so we map the fea-
tures to 𝐷 dimensions. We refer to the output of these projections
as the token embeddings.

Similar to BERT [5] and ViT [6]’s [CLS] token, we add a learn-
able embedding to the sequence of embedded tokens. Its state at
the output of the Transformer encoder H𝐿

[CLS] serves as the edge
representation for classification. Position embeddings POS0, POS1,
POS2 and POS3 are added to the tokens embeddings to keep posi-
tional information. The resulting sequence of embedding vectors
H0
[CLS], H

0
ℎ
, H0

𝑟 and H0
𝑡 is as input to the encoder. The details of the

Transformer encoder are the same as in [13].
The Transformer encoder can be only trained on labeled edges,

while massive unlabeled edges are not used. Inspired by MAE [7]
in CV which pre-trains masked auto-encoders on unlabeled images,
we propose to improve Edge Transformer with an Edge MAEmodel.
The model is depicted in Figure 3. Following MAE, Edge MAE ran-
domly masks a proportion of input tokens. The encoder of an Edge
MAE is an Edge Transformer but only applied on unmasked tokens.
All four edge tokens are the input to the Edge MAE decoder. The
decoder is another series of Transformer blocks and is only used
in pre-training to perform node/edge feature reconstruction tasks.
The reconstruction target is to predict each feature value of mask
tokens. The last layer of the decoder is a linear projection that maps
the hidden vector (size 𝐷) to the original feature dimension. Our
loss function computes the mean squared error (MSE) between
the reconstructed and original features. After pre-training, the pa-
rameters of the encoder are used as the initialization of the Edge
Transformer model for edge classification fine-tuning.

4 EVALUATION
In this section, we evaluate our Edge Transformer and Edge MAE
in two settings. Specifically, we want to determine:

• Can our model achieve satisfactory ranking performance on
validation data?

• Can our model outperform traditional methods in online
A/B tests?

4.1 Baselines
We compare our proposed method with the two traditional methods
Intimacy scores and XGBoost [4] for lost players, as well as several
popular link prediction models: TranS [17], ConvKB [9], TransE [2],
DistMult [16] and Bilinear3. We also perform MLP and XGB on the
concatenation of three features𝑋ℎ ,𝑋𝑟 and𝑋𝑡 andwe call them Edge
MLP and Edge XGB. Additionally, we compare our method with the
pairwise ranking in a recent friend ranking method GraFRank [12].

4.2 Parameter Settings
For Edge Transformer and Edge MAE, we set the latent vector size
𝐷 as 256, the dropout rate as 0.0, and the number of attention heads
as 3. We tuned the encoder layer as 6 for Game A and 2 for Game B.
The decoder layer of Edge MAE is tuned as 1. For pre-training Edge
MAE, we tuned the learning rate as 1.5e-4, weight decay as 0.05, the
mask ratio as 1/3, and batch size as 2048. For fine-tuning, we tuned
the learning rate as 0.001, and the batch size as 2048. The model was
pre-trained with 20 epochs (about 15.5 hours for Game A and 153
hours for Game B) and fine-tuned for 50 epochs (about 3.2 hours
for Game A and 4.5 hours for Game B) on an NVIDIA A100 GPU.
For baseline methods, we use default parameter settings in their
original papers or implementations. We found small changes of
parameters for our method and baselines didn’t change the results
much. For a fair comparison, we add three MLP modules to produce
the token embeddings 𝐸ℎ , 𝐸𝑟 , and 𝐸𝑡 as the initialization before the
input of link prediction and pairwise ranking models.

4.3 Validation Results
The ranking performances of different methods on the validation
set are listed in Table 2 and Table 3. We use the commonly used
ranking metrics Hits@k, Mean Rank (MR, lower is better), Mean
Reciprocal Rank (MRR), and the number of players who were back
in a method’s top 5/10 recommendation. From the two tables, we
can see that, Edge Transformer outperforms almost all baseline
models, and the results can be further improved by pre-training
Edge MAE on unlabeled edges. The encouraging results showcase
the effectiveness of the Transformer model andmasked pre-training
with massive unlabeled data. For more in-depth performance anal-
ysis, we found link prediction models are much better than the
two traditional methods: even a classical MLP or XGB can perform
quite well, which indicates link prediction is a proper setting for
the friend recall task. The main reasons why our proposed method
outperforms others are 1). Self-attention allows Edge Transformer
to integrate information across nodes and edges. 2). The reconstruc-
tion target in MAE allows the model to learn the prior distribution
of node and edge features.

3https://pytorch.org/docs/stable/generated/torch.nn.Bilinear.html

https://pytorch.org/docs/stable/generated/torch.nn.Bilinear.html

SIGIR’23, July 23–27, 2023, Taipei, Taiwan, China. Yao, et al.

Table 2: Ranking performances of different methods on validation data of Game A. The best result is in bold font. We run all
models 10 times and found Edge MAE significantly outperforms baselines based on student 𝑡-test (𝑝 < 0.05).

Method Hits@1 Hits@3 Hits@5 Hits@10 MR MRR # top 5 back # top 10 back

Intimacy 0.2804 0.5857 0.8116 0.9368 4.0638 0.4824 44,957 51,897
XGB for lost players 0.5305 0.8498 0.9429 0.9856 2.2507 0.6993 52,235 54,598

Edge MLP 0.5482 0.8616 0.9491 0.9871 2.1490 0.7130 52,576 54,682
Edge XGB 0.5492 0.8622 0.9487 0.9872 2.1439 0.7129 52,554 54,703
Bilinear 0.5478 0.8625 0.9490 0.9874 2.1491 0.7128 52,569 54,697
DistMult 0.5424 0.8593 0.9475 0.9871 2.1751 0.7088 52,488 54,673
TransE 0.5276 0.8460 0.9419 0.9839 2.2715 0.6971 52,179 54,505
ConvKB 0.5478 0.8624 0.9494 0.9872 2.1462 0.7130 52,594 54,688
TranS 0.5450 0.8616 0.9477 0.9874 2.1628 0.7108 52,499 54,696

Pairwise Ranking 0.5353 0.8564 0.9467 0.9862 2.1982 0.7040 52,443 54,630
Edge Transformer 0.5475 0.8627 0.9488 0.9875 2.1470 0.7127 52,562 54,704

Edge MAE 0.5497 0.8628 0.9495 0.9875 2.1437 0.7139 52,596 54,704

Table 3: Ranking performances of different methods on validation data of Game B. The best result is in bold font. We run all
models 10 times and found Edge MAE significantly outperforms baselines based on student 𝑡-test (𝑝 < 0.05).

Method Hits@1 Hits@3 Hits@5 Hits@10 MR MRR # top 5 back # top 10 back

Intimacy 0.1324 0.2933 0.4661 0.6238 12.6622 0.2779 61,461 82,249
XGB for lost players 0.4055 0.6582 0.774 0.9011 4.1478 0.5659 102,052 118,811

Edge MLP 0.4428 0.699 0.8052 0.9148 3.7798 0.5998 106,161 120,616
Edge XGB 0.4399 0.6994 0.8054 0.9157 3.7906 0.5981 106,197 120,742
Bilinear 0.4435 0.6998 0.8047 0.9154 3.7788 0.6003 106,103 120,697
DistMult 0.4149 0.6709 0.7856 0.9067 4.0437 0.5755 103,583 119,555
TransE 0.1502 0.3582 0.5131 0.6814 10.7953 0.3120 67,651 89,848
ConvKB 0.4424 0.6982 0.8054 0.9155 3.7845 0.5993 106,190 120,704
TranS 0.4335 0.6906 0.7992 0.9134 3.8723 0.5919 105,382 120,439

Pairwise Ranking 0.3653 0.6158 0.7360 0.8771 4.7332 0.5291 97,039 115,651
Edge Transformer 0.4441 0.7004 0.8068 0.9159 3.7630 0.6011 106,379 120,761

Edge MAE 0.4451 0.7023 0.8091 0.9173 3.7485 0.6021 106,675 120,953

Table 4: Online A/B test result of different methods in a re-
cent event of Game A.

Method Click Rate Return Rate Conversion Rate Improvements

XGB for lost 4.43 % 13.70 % 1.2556 % –
Bilinear 4.46 % 14.37 % 1.3467 % 7.26%
ConvKB 4.43 % 14.61 % 1.3378 % 6.55%
Edge MAE 4.65 % 15.24 % 1.4704 % 17.11 %

Table 5: Online A/B test result of different methods in a re-
cent event of Game C.

Method Click Rate Return Rate Conversion Rate Improvements

XGB for lost 8.41 % 26.55 % 7.2168 % –
ConvKB 9.41 % 26.59 % 7.6109 % 5.46%
Edge MAE 9.64 % 27.86 % 8.1204 % 12.52 %

4.4 Online A/B Tests
We conducted online A/B tests in recent events of two games. We
randomly assigned different algorithm labels to each active player
and his/her lost friends, the lost friends are ranked by corresponding
models. The statistics are calculated after the online events given
in Table 4 and Table 5. The click rate is the proportion of active
players who invited at least one friend after seeing the friend list.
The return rate is the proportion of players who went back after
being invited. The conversion rate (the final metric) is the number
of return players divided by the number of active players who saw

the friend list. We can see the proposed Edge MAE achieves the best
results, and link prediction models perform better as they model
the whole return process entirely.

5 RELATEDWORK
Transformers [13] was first introduced for machine translation,
then become the de-facto standard for NLP tasks [5]. Recently,
Transformers became dominant in CV since the invention of ViT [6].
The ViT models are further improved by pre-training masked auto-
encoders on unlabeled images [7]. Transformers have also been
explored in the graph domain [8]. Our method is inspired by the line
of works, the distinction is we train a Transformer directly on edges
(features) while most existing graph Transformer architectures are
trained on graph-level or node-level tasks. A recent work [1] applies
Transformers to edges in complete graphs for NLP tasks, but the
model is not pre-trained.

With a variety of real-world applications, link prediction has
been recognized as of great importance and attracted the wide
attention of the research community. Existing link prediction ap-
proaches can be categorized into three families: heuristic feature-
based, embedding-based and neural network-based methods. The
closest line of works to ours in link prediction is the knowledge
graph embedding approach [15] which learns node and edge embed-
dings for triples. The major difference is that in knowledge graph
embeddings, the node/edge embeddings are randomly initialized,
while we explicitly use features of nodes and edges.

Friend Ranking in Online Games via Pre-training Edge Transformers SIGIR’23, July 23–27, 2023, Taipei, Taiwan, China.

There are also a number of studies for friend ranking [12] or
churn prediction in social platforms [10, 11, 14]. These works focus
on building network features for a user, then feeding user features
to a classifier (like XGB for lost players). In contrast, our method
learns representation for an edge (a pair of users with interactions)
in an end-to-end manner.

6 CONCLUSION
In this work, we study the real-world friend recall problem and
solve the problem via a novel Edge Transformer model with masked
auto-encoders. The method outperforms traditional strategies, link
prediction, and ranking models. We plan to improve the model
with more unlabeled edges and multi-modal information for future
work.

REFERENCES
[1] Leon Bergen, Timothy O’Donnell, and Dzmitry Bahdanau. 2021. Systematic

generalization with edge transformers. Advances in Neural Information Processing
Systems 34 (2021), 1390–1402.

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2021. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In International Conference on Learning
Representations (ICLR).

[7] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16000–16009.

[8] ErxueMin, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao,Wenbing Huang,
Peilin Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. 2022. Trans-
former for Graphs: An Overview from Architecture Perspective. arXiv preprint
arXiv:2202.08455 (2022).

[9] Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Phung, et al. 2018. A Novel Embed-
ding Model for Knowledge Base Completion Based on Convolutional Neural
Network. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers). 327–333.

[10] María Óskarsdóttir, Cristián Bravo, Wouter Verbeke, Carlos Sarraute, Bart Bae-
sens, and Jan Vanthienen. 2017. Social network analytics for churn prediction in
telco: Model building, evaluation and network architecture. Expert Systems with
Applications 85 (2017), 204–220.

[11] Yossi Richter, Elad Yom-Tov, and Noam Slonim. 2010. Predicting customer churn
in mobile networks through analysis of social groups. In Proceedings of the 2010
SIAM international conference on data mining. SIAM, 732–741.

[12] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. 2021. Graph neural networks
for friend ranking in large-scale social platforms. In Proceedings of the Web
Conference 2021. 2535–2546.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[14] Wouter Verbeke, David Martens, and Bart Baesens. 2014. Social network analysis
for customer churn prediction. Applied Soft Computing 14 (2014), 431–446.

[15] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724–2743.

[16] Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015.
Embedding Entities and Relations for Learning and Inference in Knowledge Bases.

In Proceedings of the International Conference on Learning Representations (ICLR).
[17] Xuanyu Zhang, Qing Yang, and Dongliang Xu. 2022. TranS: Transition-based

Knowledge Graph Embedding with Synthetic Relation Representation. arXiv
preprint arXiv:2204.08401 (2022).

	Abstract
	1 Introduction
	2 Data
	3 Method
	4 Evaluation
	4.1 Baselines
	4.2 Parameter Settings
	4.3 Validation Results
	4.4 Online A/B Tests

	5 Related Work
	6 Conclusion
	References

