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ABSTRACT
Negative sampling plays a crucial role in training successful se-
quential recommendation models. Instead of merely employing
random negative sample selection, numerous strategies have been
proposed to mine informative negative samples to enhance train-
ing and performance. However, few of these approaches utilize
structural information. In this work, we observe that as training
progresses, the distributions of node-pair similarities in different
groups with varying degrees of neighborhood overlap change sig-
nificantly, suggesting that item pairs in distinct groups may pos-
sess different negative relationships. Motivated by this observation,
we propose a graph-based negative sampling approach based on
neighborhood overlap (GNNO) to exploit structural information hid-
den in user behaviors for negative mining. GNNO first constructs
a global weighted item transition graph using training sequences.
Subsequently, it mines hard negative samples based on the degree
of overlap with the target item on the graph. Furthermore, GNNO
employs curriculum learning to control the hardness of negative
samples, progressing from easy to difficult. Extensive experiments
on three Amazon benchmarks demonstrate GNNO’s effectiveness
in consistently enhancing the performance of various state-of-the-
art models and surpassing existing negative sampling strategies.
The code will be released at https://github.com/floatSDSDS/GNNO.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
sequential recommendation, hard negative mining, graph mining

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9408-6/23/07. . . $15.00
https://doi.org/10.1145/3539618.3591995

ACM Reference Format:
Lu Fan, Jiashu Pu, Rongsheng Zhang, andXiao-MingWu. 2023. Neighborhood-
based Hard Negative Mining for Sequential Recommendation. In Proceedings
of the 46th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’23), July 23–27, 2023, Taipei, Taiwan. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3539618.3591995

1 INTRODUCTION
Sequential recommendation (SR) is a task that predicts the next
item that a user may be interested in given his or her past behav-
ior sequence. Most SR models use Noise Contrastive Estimation
(NCE), which brings positive items closer to the sequence and
pushes negative ones away. Negative sampling strategies play a
crucial role in the development of successful SR models. However,
while the majority of SR models adopt uniform sampling strate-
gies and focus on designing sequence encoders or incorporating
additional training tasks, a few attempts have been made to focus
on mining informative negative samples for SR. These attempts
can be broadly categorized into two groups: (1) sampling-based
methods [2, 4, 8, 20, 22] that aim to learn a proper distribution for
negative mining, and (2) generation-based methods [6, 16, 18, 25]
that develop generative models that synthesize negative samples
for model training. Despite the various types of negative mining
methods, to our knowledge, there is no effort that explicitly uti-
lizes structural information concealed in user behavior sequences
to mine hard negatives via graph analysis for SR. In this work,
we develop a new negative sampling approach for SR by utilizing
the structural information of behavior sequences and creating a
negative sampler based on neighborhood analysis.

Our approach is motivated by a pilot experiment in Figure 1,
which visualizes the distributions of node-pair similarities in dif-
ferent groups at the different epochs during training an SR model.
The nodes on a global weighted item transition graph (WITG) are
divided into four groups w.r.t. the Jaccard similarity defined in Eq. 2
that measures the degree of neighborhood overlap between two
nodes on the graph. Higher 𝐽 (𝑖, 𝑗) indicates the neighborhoods of 𝑖
and 𝑗 have a larger overlap. Figure 1 shows that for each group, the
distribution of embedding similarity shifts as training progresses.
The distributions of group-zero and group-low exhibit similar pat-
terns that they only change slightly. The two groups represent easy
negatives, which, although less informative, are essential for train-
ing the SR model. Item pairs within group-medium display some
overlap in their respective neighborhoods. As training progresses,
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Figure 1: Visualization of the distributions of node-pair sim-
ilarities in different groups on the Beauty dataset at the
training epoch 0 and 20, respectively. Nodes are divided
into four groups w.r.t. their Jaccard similarity 𝐽 (𝑖, 𝑗) on a
global weighted item transition graph. Node/item pairs in
group-zero have no common neighbors, those in group-low
have 𝐽 (𝑖, 𝑗) ∈ (0, 0.15], those in group-medium have 𝐽 (𝑖, 𝑗) ∈
(0.15, 0.3], and those in group-highhave 𝐽 (𝑖, 𝑗) ∈ (0.3, 1.0]. Note
that due to the considerable differences in group size, we use
different bin values for different groups.

a significant shift in the distribution is observed. In this study, we
treat item pairs in group-medium as hard negative pairs, positing
that they contribute more information during the training process.
Since item pairs in group-high have strong connections and are
likely to be false negatives, we propose to exclude them from the
item pool for negative sampling.

Specifically, we propose a graph-based negative sampling ap-
proach based on neighborhood overlap (GNNO). GNNO first con-
structs a WITG as described in Sec 3.2. Utilizing the built WITG, it
selects negative samples for each target item by considering the ex-
tent of the neighborhood overlap between the target item and any
other item. Additionally, GNNO employs curriculum learning (CL)
to adjust the maximum hardness of negative samples, ranging from
easy to hard. Among existing graph-based negative sampling strate-
gies, GNNO is most similar to RecNS [24] in that we also perform
region division and propose sampling variations that account for
unique characteristics in each region. The key differences between
GNNO and RecNS are three-fold: (1) GNNO is designed for sequen-
tial recommendation and explicitly utilizes structural information
in user behavior sequences; (2) Rather than dividing the sampling
region by 𝑘-hop distance, GNNO creates a negative sampler that
samples from a distribution based on the relative Jaccard index; (3)
GNNO suggests negative samples from distant regions are indis-
pensable for training an SR model. In summary, the contributions
of this paper include:

• To the best of our knowledge, this is the first work to inves-
tigate the structural properties of negative samples in SR.
We observed that item pairs with varying levels of neighbor-
hood overlap on WITG may exhibit distinct characteristics,
signifying a valuable signal for hard negative discrimination
in sequential recommendation.
• We introduce GNNO, which adaptively samples negatives for
each item based on the relative Jaccard similarity on WITG.
We also employ CL to control the maximum hardness of
negative samples during training.
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Figure 2: Illustration of our proposed GNNO framework. The
false negatives for a given target node are annotated as black
blocks. For example, for the target node 𝑎, nodes 𝑏 and 𝑐

are false negatives and hence excluded from the sampling
distribution for 𝑎.

• Comprehensive comparative experiments on three Amazon
benchmarks demonstrate the effectiveness of our proposed
method.

2 RELATEDWORKS
Negative Sampling Methods for Sequential Recommendation. As

mentioned in Sec. 1, attempts for informative negative sampling for
SR are broadly categorized into two groups: sampling-based meth-
ods [2, 4, 8, 17, 20, 22] and generation-based methods [6, 16, 18, 25].
ANCE [22] proposes to sample hard negatives globally by using
an asynchronously updated ANN index. CBNS [17] proposes to
sample negatives cross-batch other than simply in-batch sampling.
SRNS [3] leverages the variance-based characteristics of false nega-
tives and hard negatives to improve the sampling strategy.

Graph-based Negative Sampling Methods. Existing graph-based
methods for negative sampling mostly concentrate on collaborative
filtering (CF)-based recommendations [6, 24], graph contrastive
learning [21, 23, 28, 28]. MixGCF [6] efficiently injects information
of positive samples into negative samples via a mix-up mecha-
nism. HORACE [28] and STENCIL [28] study heterogeneous graph
contrastive learning and utilize global topology features includ-
ing PageRank [9] and Laplacian vector. These features are usually
static and would suffer from potential risks in static hard negative
sampling. ProGCL [21] focuses on the problem of false negatives dis-
crimination in graph contrastive learning. It proposes to solve the
problem by fitting a two-component (true-false) beta mixture model
to distinguish true negatives. RecNS [24] proposes the three-region
principle to guide negative sampling for graph-based recommen-
dation. It suggests to sample more negatives at an intermediate
region while sampling less in adjacent and distant regions. In this
work, we propose to construct a global weighted item transition
graph to model sequential structural information for SR. To prevent
the potential risks of static hard sampling, we propose to employ
curriculum learning to adjust the maximum hardness of negative
samples. Additionally, to address the false negative challenge [21]
which is particularly severe in graph-based methods, we suggest
to avoid sampling negatives from the “adjacent region” (w.r.t. the
target item).
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3 METHOD
In this section, we start with the problem statement of sequential
recommendation. Subsequently, we present our proposed approach.
As illustrated in Figure 2, GNNO comprises threemodules: (1)WITG
construction; (2) overlapping-based negative sampling distribution
generator; and (3) curriculum scheduler for negative sampling.

3.1 Sequential Recommendation
Formally, let U and I denote the user and item sets from the
interaction sequences, respectively. For each user 𝑢 ∈ U, we use a
chronologically ordered list s = [𝑖1, 𝑖2, ..., 𝑖𝑁 ] to denote his or her
behavior sequence, where 𝑖𝑡 is the 𝑡𝑡ℎ interaction item of 𝑢 and
𝑁 is the length of the sequence. The task of SR is to predict the
subsequent user-item interactions with the given sequence s.

Training an SR model requires choosing an objective function 𝐿

and a negative sampling distribution 𝑝𝑛 . The commonly adopted
Bayesian Personalized Ranking (BPR) loss [11] w.r.t. all training
sequences and time steps is defined as follows:

𝐿𝐵𝑃𝑅 =
∑︁
(s𝑡 ,𝑖𝑡 )

− log𝜎 (𝑦 (s𝑡 , 𝑖𝑡 ) − 𝑦 (s𝑡 , 𝑖−𝑡 )), (1)

where s𝑡 = [𝑖1, 𝑖2, ..., 𝑖𝑡−1] is the historical sub-sequence of s at time
step 𝑡 , 𝑖𝑡 is the target item, 𝜎 denotes the sigmoid function, 𝑦 (s, 𝑖)
is a trainable network that predicts a matching score between a
sequence s and an item 𝑖 . 𝑖−𝑡 ∼ 𝑝𝑛 is a negative item sampled from
a distribution 𝑝𝑛 . Optimizing Eq 1 offers the model ability to score
the target item 𝑖𝑡 higher than the negative item 𝑖−𝑡 for a given s𝑡 .

3.2 Weighted Item Transition Graph (WITG)
In contrast to the commonly used user-item graph, to make use
of global information in behavior sequences, we propose to mine
hard negatives on a WITG G(I, E) [27] where E is the edge set. A
WITG contains global item transition patterns extracted from all
user behavior sequences in the training set D. G is constructed by
traversing every sequence inD. For a sequence s ∈ D, if there exists
no edge between the items 𝑖𝑚 and 𝑖 (𝑚+𝑘 ) in G, we connect them
and set the edge weight 𝑤 (𝑖𝑚, 𝑖 (𝑚+𝑘 ) ) = 1/𝑘 , where 𝑘 represents
the importance of a target item 𝑖𝑚 to its 𝑘-hop neighbor 𝑖 (𝑚+𝑘 ) in
s. Otherwise, if there is already an edge between them, we update
the edge weight as𝑤 (𝑖𝑚, 𝑖 (𝑚+𝑘 ) ) ← 𝑤 (𝑖𝑚, 𝑖 (𝑚+𝑘 ) ) + 1/𝑘 .

3.3 Neighborhood-based Negative Sampler
Given a target item, we can divide the other items into groups w.r.t.
their neighborhood overlap with the target item. As analyzed in
Sec. 1, these groups demonstrate distinct characteristics during the
training of a SR model, thus it can be advantageous to differentiate
and treat them differently. Here, we propose to use the Jaccard
similarity to measure the degree of neighborhood overlap between
the target item and the others. Let N(𝑖) denote the neighbor set of
an item 𝑖 on G. The Jaccard similarity between any two items 𝑖 and
𝑗 can be defined as:

𝐽 (𝑖, 𝑗) = N(𝑖) ∩ N ( 𝑗)N (𝑖) ∪ N ( 𝑗) . (2)

If 𝑖 and 𝑗 have many common neighbors, they will have a large
similarity. Meanwhile, the denominator acts as a normalizer, and
the similarity will be small if the degree of either 𝑖 or 𝑗 is large.

Table 1: Dataset statistics.

#user #item #entry #edge sparseness
Beauty 22,363 12,101 198,502 530,266 20.01%
Toys 19,413 11,925 148,455 486,740 16.32%
Phone 22,364 12,102 176,139 530,266 24.55%

As explained in Figure 1, group-medium is likely to be quality
hard negatives, hence wewant to give them higher sampling weight.
Meanwhile, we want to keep group-zero and group-medium for di-
versity, but we want to give them low sampling probability. Finally,
we want to exclude group-high as they are likely to be false nega-
tives. Therefore, we propose to sample the negatives for a target
item 𝑖 from the following distribution:

𝑝𝑛 (𝑖− |𝑖) =
𝑒 𝐽 (𝑖,𝑖

− )∑
𝑗∈N′ (𝑖 ) 𝑒 𝐽 (𝑖, 𝑗 )

, (3)

whereN ′ (𝑖) = I\{ 𝑗 |𝐽 (𝑖, 𝑗) > 𝜆} is the item set without group-high,
and 𝜆 is the threshold for group-high at the current training step.

3.4 Curriculum Scheduler for Negative
Sampling

Concentrating too much on hard negatives in the early training
stage may bring negative effects to the model [1]. We therefore
employ curriculum learning (CL) techniques to schedule the hard-
ness of the negatives. The main idea of CL is to order negative
samples during training based on their difficulty [19]. Let 𝑄 be the
maximum training step, then for each training step 𝑞 ∈ [1, ..., 𝑄],
we update 𝜆 to form N ′ (𝑖) in Eq. 3. The maximum Jaccard score is
updated from an initial hardness 𝑏 with a linear pacing function
𝑓 (𝑞):

𝑓 (𝑞) = 𝑐 ∗ 𝑞 + 𝑏, (4)
where 𝑞 is the current time step and 𝑐 is the pace coefficient. For
simplicity, we set 𝑏 = 0 in our experiments. Moreover, we set
a maximum hardness 𝜆𝑚𝑎𝑥 to clip the growth of 𝜆. Finally, 𝜆 is
updated as:

𝜆(𝑞) =𝑚𝑖𝑛(𝑓 (𝑞), 𝜆𝑚𝑎𝑥 ). (5)

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. Our experiments are conducted on three subsets
of the well-known Amazon dataset1 [10], which includes rich user-
item review interactions. Specifically, we choose the sub datasets
Beauty, Phone, and Toy for our empirical study. In our experiments,
we use the 5-core data. Items and users with no positive records
are filtered out for each subset. The statistics of the filtered datasets
are shown in Table 1.

4.1.2 Baselines. We compare our method with both state-of-the-
art sequential recommendation methods and negative sampling
strategies. As shown in Table 4, we compare our method with the
following baselines for sequential recommendation: BPRMF [11],
Caser [13],GRU4Rec [5], BERT4Rec [12], SASRec [7], TimiRec
[15], and ContraRec [14]. Meanwhile, as shown in Table 3, we
also compare our method with the following negative sampling
1http://jmcauley.ucsd.edu/data/amazon
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Table 2: Hyper-parameter settings. #𝑛𝑒𝑔ℎ𝑎𝑟𝑑 and #𝑛𝑒𝑔𝑟𝑎𝑛𝑑 in-
dicate the number of hard negatives and random negatives,
respectively.

#𝑛𝑒𝑔ℎ𝑎𝑟𝑑 #𝑛𝑒𝑔𝑟𝑎𝑛𝑑 𝑐 (Eq.4) 𝜆𝑚𝑎𝑥 (Eq.5)
Beauty 9 16 0.04 0.5
Toys 2 10 0.05 0.2
Phones 4 10 0.01 0.9

Table 3: Comparison of our proposed method with hard neg-
ative mining baselines on three Amazon review sub datasets.
The best results are highlighted in bold.

Dataset Method HR@5 NDCG@5 HR@20 NDCG@20

Beauty

DNS 0.3858 0.2984 0.5890 0.3561
MCNS 0.4101 0.3141 0.6135 0.3721
MixGCF 0.4123 0.3168 0.6140 0.3743
GNNO 0.4149 0.3215 0.6174 0.3792

Phone

DNS 0.4307 0.3300 0.6563 0.3943
MCNS 0.4794 0.3646 0.7179 0.4334
MixGCF 0.4810 0.3655 0.7197 0.4342
GNNO 0.4897 0.3754 0.7249 0.4430

Toy

DNS 0.3470 0.2666 0.5598 0.3266
MCNS 0.4035 0.3084 0.6238 0.3711
MixGCF 0.4049 0.3097 0.6252 0.3723
GNNO 0.4074 0.3148 0.6245 0.3762

approaches: DNS [26] that adaptively samples the negative item
scored highest by the recommender,MCNS [23]that samples neg-
atives with the distribution sub-linearly related to the positive
distribution and accelerates the sampling process by Metropolis-
Hastings, and MixGCF [6] that injects positive samples into nega-
tives via hop mixing to synthesize hard negatives. Note that MCNS
and MixGCF are graph-based but DNS is not.

4.1.3 Implementation details. All recommendation baselines are
implemented with ReChorus2, a framework for top-𝑘 recommen-
dation. GNNO and other negative sampling strategies are imple-
mented on the state-of-the-art SR method ContraRec. We use the
default settings of ContraRec. Specifically, we use Adam as the
optimizer and BERT4Rec as the sequence encoder. The batch size
is set to 4096, and the dimension of hidden units is set to 64. The
hyper-parameters of GNNO, as shown in Table 2, are selected based
on the performances on the validation set using grid search.

4.1.4 Evalutaion Protocals. Following [14], we adopt the commonly
used leave-one-out strategy to evaluate model performance. We
employ two evaluation metrics: hit rate (HR@K) and normalized
discounted cumulative gain (NDCG@K). For each sequence, the
target products are mixed up with candidates randomly sampled
from the entire product set, forming a candidate set of size 1000.

4.2 Results and Analysis
4.2.1 Comparisons with Negative Sampling Baselines. Table 3 sum-
marizes the recommendation performance of GNNO in compar-
ison to existing negative sampling approaches on three Amazon
benchmarks. GNNO outperforms the baselines in almost all cases,

2https://github.com/THUwangcy/ReChorus

Table 4: Comparison of our proposed method with baselines
for sequential recommendation on three Amazon review sub-
datasets. The best results are highlighted in bold.

Dataset Method HR@5 NDCG@5 HR@20 NDCG@20

Beauty

BPRMF 0.3588 0.2593 0.5716 0.3202
Caser 0.3198 0.2238 0.5772 0.2970
GRU4Rec 0.3254 0.2318 0.5762 0.3030
BERT4Rec 0.3590 0.2658 0.5734 0.3266
SASRec 0.3653 0.2780 0.5744 0.3372
TimRec 0.3781 0.2812 0.5958 0.3433
ContraRec 0.4112 0.3158 0.6111 0.3727
GNNO 0.4149 0.3215 0.6174 0.3792

Phone

BPRMF 0.3690 0.2709 0.5945 0.3352
Caser 0.3873 0.2745 0.6727 0.3560
GRU4Rec 0.4122 0.2973 0.6935 0.3777
BERT4Rec 0.4209 0.3145 0.6664 0.3849
SASRec 0.4432 0.3349 0.6809 0.4032
TimRec 0.4338 0.3241 0.6712 0.3925
ContraRec 0.4831 0.3673 0.7210 0.4358
GNNO 0.4897 0.3754 0.7249 0.4430

Toys

BPRMF 0.3107 0.2255 0.5255 0.2864
Caser 0.2921 0.2000 0.5584 0.2757
GRU4Rec 0.3113 0.2168 0.5802 0.2934
BERT4Rec 0.3457 0.2561 0.5582 0.3164
SASRec 0.3594 0.2731 0.5694 0.3328
TimRec 0.3535 0.2628 0.5849 0.3287
ContraRec 0.4013 0.3065 0.6177 0.3676
GNNO 0.4074 0.3148 0.6245 0.3762

demonstrating its efficacy. It can be seen that all graph-based meth-
ods perform better than DNS, which highlights the advantages of
incorporating structural information for negative sampling.

4.2.2 Comparisons with Baselines for Sequential Recommendation.
Table 4 shows the recommendation performance of GNNO against
state-of-the-art methods for SR on three Amazon benchmarks.
GNNO improves over ContraRec on every dataset. It demonstrates
the effectiveness of the proposed negative sampling strategy, show-
ing that pushing away negatives with some neighborhood overlap
is beneficial for SR. In addition, both ContraRec and GNNO outper-
form other baselines consistently, where the performance gain is
probably brought by the context-context contrastive learning task.

5 CONCLUSION
In this work, we observed that as training progresses, the embed-
ding similarity between item pairs in different groups with varying
degrees of neighborhood overlap on a weighted item transition
graph (WITG) changes significantly. Based on this observation,
we propose GNNO, which samples negatives with respect to the
Jaccard index on a global WITG. Additionally, GNNO employs cur-
riculum learning to manage the hardness of negative samples at
each training step. Extensive experiments on three Amazon bench-
marks demonstrate the effectiveness of our proposed method. In
future work, we plan to study hard negative mining over dynamic
graphs for sequential recommendation.
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