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ABSTRACT
Learning expressive representations for high-dimensional yet sparse

features has been a longstanding problem in information retrieval.

Though recent deep learning methods can partially solve the prob-

lem, they often fail to handle the numerous sparse features, par-

ticularly those tail feature values with infrequent occurrences in

the training data. Worse still, existing methods cannot explicitly

leverage the correlations among different instances to help fur-

ther improve the representation learning on sparse features since

such relational prior knowledge is not provided. To address these

challenges, in this paper, we tackle the problem of representation

learning on feature-sparse data from a graph learning perspective.

Specifically, we propose to model the sparse features of different

instances using hypergraphs where each node represents a data

instance and each hyperedge denotes a distinct feature value. By

passing messages on the constructed hypergraphs based on our

Hypergraph Transformer (HyperFormer), the learned feature rep-

resentations capture not only the correlations among different in-

stances but also the correlations among features. Our experiments

demonstrate that the proposed approach can effectively improve

feature representation learning on sparse features.
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1 INTRODUCTION
As one prevailing line of research for dealing with sparse features,

researchers try to model the cross features in either the raw feature

level [22] or the embedding level [31] to improve the representa-

tion expressiveness. Despite their success, existing methods still

have a major bottleneck of capturing the following relational infor-

mation within data: (1) Instance Correlations. Most of the existing

efforts assume training instances are independently and identically

distributed (i.i.d.), while different instances in the data may share

correlated behavior/feature patterns [36]. Since the features of an

instance could be extremely sparse, leveraging the knowledge from

other instances is highly beneficial to improve the representation

quality of sparse features in a collective way. Yet, how to model

the correlations between different data instances without prior

knowledge remains unexplored in this field; (2) Feature Correla-
tions. In general, different feature values are usually correlated

(e.g., two different feature values are commonly shared by many

instances), which should not be neglected for learning expressive

feature representations. In real-world systems, as the data scale

grows continuously in a power-law distribution, a large number

of features appear very few times in the training set, also known

as tail features. As a result, existing methods such as feature in-

teraction learning approaches that rely on feature co-occurrence

will lose their efficacy on tail features due to their rarity in the

data [9]. How to better capture feature correlations is a key to im-

prove the representation learning of sparse features. Based on those

two limitations, one natural research question to ask is that – given
the input data with high-dimensional and sparse features, is there a
natural way to explicitly model both instance correlations and feature
correlations simultaneously?

To answer this question, we go beyond the existing learning

paradigm and study relational representation learning on data with

sparse features from a graph learning perspective. Due to the fact

that the relationships among instances are naturally high-order

rather than pair-wise, e.g., a group of users sharing the same feature

"location", instead of using simple graph, we adopt hypergraph [37]

to model the high-order correlations among data instances. Specif-

ically, we take feature values as the proxy (i.e., hyperedges) to

connect different data instances (i.e., nodes) with the same feature

values. In order to facilitate learning representations on each hyper-

graph constructed from the feature-sparse data, we further develop

a plug-and-play model – Hypergraph Transformer (HyperFormer),

which serves as an embedding module and is compatible to be

trained together with arbitrary prediction model for task-agnostic

sparse predictive analytics. HyperFormer iteratively aggregates the

information from hyperedges to nodes and vice versa, which allows

multi-hop message-passing on the constructed hypergraphs and
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Figure 1: Illustration of the proposed HyperFormer.

captures the instance correlations as well as feature correlations

simultaneously. The resulted feature representations can improve

the predictive power of different models on feature-sparse data. Our

experiments on (i) CTR prediction and (ii) top-K item recommen-

dation tasks demonstrate that HyperFormer is generalizable across

different tasks, and further enhances state-of-the-art approaches of

representation learning for sparse features.

2 RELATEDWORK
Learning with Sparse Features has been a classic yet challenging

problem in information retrieval and recommender system. A pre-

vailing line of research tries to model the cross features in either the

raw feature level or the embedding level. Compared to conventional

approaches [13, 20, 22], deep learning models have shown their su-

periority for handling high-dimensional sparse features [2, 3, 23, 31].

Methods such as Wide&Deep [2], Deep Crossing [23], PNN [21],

DCN [30], AutoInt [24], Fi-GNN [16], DCN-v2 [31] have been pro-

posed to automatically model the cross features. However, existing

methods are not able to explicitly capture the correlations between

instances and are also ineffective to handle the tail features that

appear rarely in the data.

Graph Neural Networks (GNNs) generally follow the neigh-

borhood aggregation scheme [7, 10, 14, 26], learning the latent

node representation via message passing among local or high-

order neighbors in the graph [4, 6, 15]. More recently, GNNs have

been actively explored to improve the performance of CTR predic-

tion [9, 16, 17, 36] by capturing the interactions between features.

Our approach leverages the idea of hypergraph [5, 8, 12, 27, 28, 37]

and we buildHyperFormer to perform representation learning on

sparse features. In addition, our work focuses on developing a new

embedding module rather than learning the cross-features, and our

plug-and-play model is compatible to be trained with any feature

interaction learning methods for making final predictions.

3 METHODOLOGY
Problem Definition. For the sake of simplicity, we only consider

sparse features and use multi-hot representation for sparse features,

where each sparse feature is also called a field. The input of our

problem is a high-dimensional sparse vector x ∈ R
𝑁

of multi-

hot representation, where 𝑁 is the total number of sparse feature

values. Also, 𝑥𝑖 = 0 means the 𝑖-th feature value does not exist in

the instance and 𝑥𝑖 = 1 means otherwise. The objective is to learn

a low-dimensional embedding vector e ∈ R
𝑑
that represents the

raw input features in the latent space.

Existing works apply an embedding layer to project the in-

put features into a low dimensional feature vector, which is com-

monly implemented by looking up from an embedding table F =

[f1, f2, ..., f𝑁 ] ∈ R𝑁×𝑑
and concatenating the retrieved embeddings

into a dense real-value vector. Correspondingly, f𝑘 can be regarded

as the dense representation for feature 𝑥𝑘 . In this paper, we argue

that existing methods cannot explicitly consider the correlations

between instances and the correlations between features, leading

to the feature representations less expressive.

3.1 Feature Hypergraph
In this paper, we propose to alleviate the feature sparsity issue

through relational representation learning. Since each specific fea-

ture can appear in multiple data instances, it can be naturally uti-

lized as a bridge to capture instance correlations as well as feature

correlations. For example, a group of users sharing the same feature

values for “location” or “age”. Such correlations among instances

are inherently high-order rather than pair-wise, thus we propose to

build feature hypergraph to model the input data and try to enable

message-passing on it to capture desired relational information.

Specifically, we define the feature hypergraph as follows:

Definition 3.1. Feature Hypergraph: A feature hypergraph is

defined as a graph 𝐺 = (V, E), where V = {𝑣1, . . . , 𝑣𝑛} represents
the set of nodes in the graph, and E = {𝑒1, . . . , 𝑒𝑚} represents

the set of hyperedges. Specifically, each node represents a data

instance and each hyperedge represents a unique feature value.

Correspondingly, for any hyperedge 𝑒 , it can connect arbitrary

number of nodes/instances (i.e., 𝜎 (𝑒) ≥ 1).

Scalability Extension. Considering the fact that the scale of train-
ing data could be extremely large in practice, it is almost impossible

to build a single feature hypergraph to handle all the data instances.

To counter this issue, we propose to construct in-batch hypergraph

based on data instances in the batch to further support mini-batch

training. In Figure 1, we illustrate the steps for constructing the

in-batch hypergraphs. For each batch, we randomly sample a batch

of instances and update the hypergraph structure based on the

data samples in the batch. From our experiments, the in-batch fea-

ture hypergraph is also effective for capturing the desired data

dependencies and achieves satisfying performance improvements.

3.2 Hypergraph Transformer
To support representation learning on the constructed feature hy-

pergraphs, we further propose a new model Hypergraph Trans-

former (HyperFormer) in this paper, which adopts the Transformer-

like architecture [25] to exploit the hypergraph structure to encode

both the instance correlations and feature correlations. Apart from

conventional GNN models, each layer in HyperFormer learns the

representations with two different hypergraph-guided message-

passing functions, capturing high-order instance correlations and

feature correlations simultaneously. Formally, a Transformer layer

can be defined as:

H𝑙 = TF𝑒𝑑𝑔𝑒

(
Q𝑙
𝑒𝑑𝑔𝑒

= H𝑙−1,K𝑙
𝑒𝑑𝑔𝑒

= F𝑙−1,V𝑙
𝑒𝑑𝑔𝑒

= F𝑙−1
)
,

F𝑙 = TF𝑛𝑜𝑑𝑒

(
Q𝑙
𝑛𝑜𝑑𝑒

= F𝑙−1,K𝑙
𝑛𝑜𝑑𝑒

= H𝑙 ,V𝑙
𝑛𝑜𝑑𝑒

= H𝑙
)
,

(1)

whereTF

(
Q,K,V

)
= FFN

[
softmax(QK

T

√
𝑑
)V

]
denotes the Transformer-

like attention mechanism. In essence, TF𝑒𝑑𝑔𝑒 is a message-passing

function that aggregates information from hyperedges to nodes
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and TF𝑛𝑜𝑑𝑒 is another message-passing function that aggregates

information from nodes to hyperedges. Specifically, we first look

up from the feature embedding table F to initialize hyperedge rep-

resentations and the initial node representation of each instance is

computed by concatenating all its feature representations. Without

loss of generality, we describe the two message-passing functions

in a single HyperFormer layer 𝑙 as follows:

Feature-to-Instance Message-Passing.With all the hyperedges

representations {f𝑙−1
𝑗

|∀𝑒 𝑗 ∈ E𝑖 }, we first apply an feature-to-instance
(edge-to-node) message-passing to learn the next-layer represen-

tation h𝑙
𝑖
of node 𝑣𝑖 . Specifically, we set the node representation

from the last HyperFormer layer 𝑙 − 1 as the query. The representa-

tions of the connected hyperedges can be projected into keys and

values. Formally, the similarity between the query and key can be

calculated as:

𝛼𝑖 𝑗 =
exp((h𝑙−1

𝑖
W𝑄

𝑒𝑑𝑔𝑒
)Tk𝑗 )∑

𝑒𝑝 ∈E𝑖
exp((h𝑙−1

𝑖
W𝑄

𝑒𝑑𝑔𝑒
)Tk𝑝 )

, k𝑝 = f𝑙−1𝑝 W𝐾
𝑒𝑑𝑔𝑒

, (2)

in which W𝐾
𝑒𝑑𝑔𝑒

is the projection matrix for the key of the feature-

to-instance transformer. Then the next layer node representation

can be computed as:

h𝑙𝑖 = 𝜎

( ∑︁
𝑒 𝑗 ∈E𝑖

𝛼𝑖 𝑗 f𝑙−1𝑗 W𝑉
𝑒𝑑𝑔𝑒

)
, (3)

where 𝜎 is the non-linearity such as ReLU andW𝑉
𝑒𝑑𝑔𝑒

is a trainable

projection matrix for the value.

Instance-to-Feature Message-Passing. With all the updated

node representations, we again apply an instance-to-feature (node-

to-edge) message-passing based on the Transformer layer to learn

the next-layer representation of hyperedge 𝑒 𝑗 . Similarly, this pro-

cess can be formally expressed as:

f𝑙𝑗 = 𝜎

( ∑︁
𝑣𝑘 ∈V𝑗

𝛽 𝑗𝑘h
𝑙
𝑘
W𝑉
𝑛𝑜𝑑𝑒

)
, (4)

where f𝑙
𝑗
is the output representation of hyperedge 𝑒 𝑗 andW𝑉

𝑛𝑜𝑑𝑒
is

the projection matrix. 𝛽 𝑗𝑘 denotes the attention score of hyperedge

𝑒 𝑗 on node 𝑣𝑘 , which can be computed by:

𝛽 𝑗𝑘 =
exp((f𝑙−1

𝑗
W𝑄

𝑛𝑜𝑑𝑒
)Tk𝑘 )∑

𝑣𝑝 ∈V𝑗
exp(f𝑙−1

𝑗
W𝑄

𝑛𝑜𝑑𝑒
)Tk𝑝 )

, k𝑝 = h𝑙𝑝W
𝐾
𝑛𝑜𝑑𝑒

, (5)

where W𝑄

𝑛𝑜𝑑𝑒
and W𝐾

𝑛𝑜𝑑𝑒
are the projection matrices for the query

and key of the instance-to-feature message-passing. By stacking

multiple HyperFormer layers, we are able to capture high-order

instance correlations and feature correlations. The feature repre-

sentations learned from the last HyperFormer F𝐿 can be directly

plugged into any model architecture as the feature embedding layer

and improve the prediction performance on the downstream tasks.

4 EXPERIMENTS
To evaluate the effectiveness of the proposed approach, we conduct

our experiments on two real-world tasks that often suffer from the

feature sparsity issue: (i) click-through-rate (CTR) prediction and

(ii) top-k item recommendation.

Table 1: Dataset Statistics.

CTR Prediction
Dataset #Sample #Field #Feature

MovieLen-1M 0.94M 7 3,529

Criteo 45.84M 39 998,960

Item Recommendation
Dataset #User #Item #Features

Amazon-Movie 19,873 10,176 8,504

Bookcrossing 48,999 193,765 5,100

4.1 Task1: CTR Prediction
Click-through-rate (CTR) prediction is a task that predicts how

likely a user is going to click an advertisement. Typically, an in-

stance sample is represented by high-dimensional and sparse fea-

tures, such as user profile, ad attributes, and contextual features

such as time, platform, and geographic location. We first try to

evaluate the effectiveness of HyperFormer for CTR prediction.

Datasets. For the task of CTR prediction, we adopt two public

real-world benchmark datasets in which the features are extremely

sparse and the statistics for those datasets can be found in Table

1. To adopt the MovieLens-1M dataset for CTR prediction, we

follow [24, 31] to transform the original user ratings into binary

values. The dataset is divided into 8:1:1 for training, validation, and

testing, respectively. The Criteo dataset is widely adopted for CTR

prediction that includes 45 million users’ ad clicks on display ads

over a 7-day period. As in [24, 31], we use the data from the first 6

days for training and randomly split the data from the last day into

validation and test sets.

Baselines. We include the following baselines methods for CTR

prediction: Logistic Regression (LR) and Factorization Machine

(FM) [22]. Different neural extensions of FM, including Neural Fac-

torization Machine (NFM) [11], xDeepFM [18], and HoFM [1].

AutoInt [24] is designed to automatically learn the feature inter-

action with self-attention. DCN-v2 [31] is an improved deep &

cross network that models the explicit and bounded-degree feature

interactions. To show the flexibility and effectiveness of Hyper-

Former, we integrate it into two representative baselines AutoInt

and DCN-v2 then report their performance in the experiments.

General Comparison. We evaluate the performance of different

methods based on two widely-used metrics for CTR prediction:

AUC and LogLoss in Table 2. FM is able to model the second-order

feature interaction and thus outperforms LR, which can only learn

from raw feature input. With the power of deep neural networks,

xDeepFM and NFM can improve the performance of FM in both

datasets by incorporating non-linear transformations and interac-

tions among features. AutoInt further improves on NFM by adap-

tively modeling feature interactions using an attention mechanism.

DCN-v2 is also shown to be an effective approach for CTR. More

importantly, our experimental results demonstrate the effective-

ness of HyperFormer, as it improves the performance of the two

representative CTR models for both AUC and LogLoss.

Further Analysis on Tail Features. Feature values usually follow
a power-law distribution and those tail features only appear a few

times among all the data examples. Without enough learning sig-

nals, it is hard for the low-frequency features to obtain informative

embeddings, resulting in low CTR prediction accuracy for data sam-

ples that contain those low-frequency features. Our HyperFormer
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Table 2: AUC and Logloss on CTR prediction.

Method Movielens-1M Criteo

AUC LogLoss AUC LogLoss

LR 0.7716 0.4424 0.7820 0.4695

FM 0.8252 0.3998 0.7836 0.4700

NFM 0.8357 0.3883 0.7957 0.4562

xDeepFM 0.8286 0.4108 0.8009 0.4517

HoFM 0.8304 0.4013 0.8004 0.4508

AutoInt 0.8456 0.3797 0.8061 0.4455

DCN-v2 0.8402 0.3811 0.8045 0.4462

AutoInt+HyperFormer 0.8462 0.3770 0.8072 0.4444
DCN-v2+HyperFormer 0.8471 0.3755 0.8061 0.4453

is proposed to address this issue by modeling the correlations be-

tween features through hypergraph message passing. To examine

whether HyperFormer achieves this goal, we first sort and slice

all the feature values in MovieLens-1M by frequency. Then we

retrieve the test inputs that contain each set of feature values for

evaluation. We compare the CTR performance of DCN-v2 with and

without HyperFormer in Figure 2. Our results show that Hyper-

Former enables DCN-v2 to achieve better performance on samples

with low-frequency features, as measured by both LogLoss and

AUC. This demonstrates that HyperFormer is effective in enhanc-

ing the quality of feature embeddings for tail features, leading to

more accurate CTR predictions for items with tail features.
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Figure 2: CTR performance across different instance groups.

4.2 Task2: Top-K Item Recommendation
In many real-world recommendation systems, the goal is to re-

trieve the Top-K relevant items for a given user. Indeed, the input

of these top-k recommendation frameworks also suffers from the

same issue as the CTR task in that the user and item features are

also extremely sparse and follow the long-tailed distribution. To

further demonstrate the generalizability of HyperFormer, we eval-

uate its performance on the relational representation learning for

recommendation systems.

Datasets. In the experiment, we adopt two benchmark datasets

for evaluation. Amazon-Movie consists of product reviews and
metadata for the "Movie" category spanning from May 1996 to July

2014 [19]. Bookcrossing [38] collects the user-item ratings within

the community, including both user demographic and age as well

as item features such as Title, Author, Year, and Publisher. After

removing the inactive users and items, we obtain the final datasets

as summarized in Table 1. We randomly sample 70% data for model

training, 10% for validation and 20% for testing.

Baselines. Due to its high efficiency and flexibility, Two-tower
model with separate user and item towers is widely adopted as

the fundamental learning architecture for large-scale top-k item re-

trieval [29, 32–35]. Specifically, the high-dimensional user and item

features are input to the corresponding towers, and the preference

scores are typically computed by a dot-product between user and

item embeddings encoded by the corresponding towers. To solve

the feature imbalance issue, DAT [34] was proposed to extend each

tower with an extra learnable vector to memorize the cross-tower

information. Recently, Yao et.al proposed SSL [32] to leverage latent

feature correlations in a two-tower model by augmenting the data

and incorporating an auxiliary self-supervised learning task.
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Figure 3: Top-k Recommendation performance comparison.

General Comparison. To evaluate HyperFormer on top-K item

recommendation, we plug it into a two-tower recommendation

model and compare it with the baseline methods above that were

proposed to address the feature sparsity issue. We use NDCG@10

and Recall@10 as evaluation metrics and summarize the results for

both Amazon-Movie and Bookcrossing in Figure 3. By introducing

the category alignment loss and an extended vector capturing the

cross-tower information, DAT can significantly improve two-tower

in top-k recommendation for both datasets. We find that SSL sig-

nificantly outperforms DAT in Bookcrossing but falls behind DAT

in Amazon-Movie. However, the proposed HyperFormer consis-

tently outperforms all other methods in both datasets, showcasing

its effectiveness in feature representation learning. The advantage

across both CTR prediction and top-k recommendation highlights

the generalizability of HyperFormer and its potential to address

feature sparsity in various real-world tasks.

5 CONCLUSION
In this paper, we focus on the problem of representation learning

on high-dimensional sparse features. We propose to build feature

hypergraphs to model the instance correlations and feature corre-

lations explicitly. The proposed Hypergraph Transformer further

enables message-passing on the constructed feature hypergraphs,

resulting in more informative feature representations that encode

instance correlations and feature correlations within the data. The

evaluation of different methods on click-through-rate prediction

and item recommendation demonstrate the effectiveness of our

approach in capturing the relational information within data for

learning informative feature representations.
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