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ABSTRACT
Wepresent amethod for performing zero-shot Dialogue State Track-

ing (DST) by casting the task as a learning-to-ask-questions frame-

work. The framework learns to pair the best question generation

(QG) strategy with in-domain question answering (QA) methods to

extract slot values from a dialogue without any human intervention.

A novel self-supervised QA pretraining step using in-domain data is

essential to learn the structure without requiring any slot-filling an-

notations. Moreover, we show that QG methods need to be aligned

with the same grammatical person used in the dialogue. Empirical

evaluation on the MultiWOZ 2.1 dataset demonstrates that our

approach, when used alongside robust QA models, outperforms

existing zero-shot methods in the challenging task of zero-shot

cross domain adaptation—given a comparable amount of domain

knowledge during data creation. Finally, we analyze the impact of

the types of questions used, and demonstrate that the algorithmic

approach outperforms template-based question generation.

CCS CONCEPTS
• Information systems → Question answering; • Computing
methodologies → Natural language processing.
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1 INTRODUCTION
Task-oriented dialogue (TOD) systems interact with a user using

natural language to achieve a specific goal, such as booking airline

tickets or making a restaurant reservation. The state of a dialogue

is defined by a set of (key, value) pairs which represent the informa-

tion requested or accepted by the user, up to the current utterance.
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Knowing which important slots have and have not been filled al-

lows a dialogue system to guide the conversation to quickly gather

the information needed to complete the task at hand. We refer to

assigning values to the set of slot keys in an utterance as slot-filling,
and the task of maintaining this state throughout an entire dialogue

as Dialogue State Tracking (DST). A TOD system deployed in the

wild should adapt to new functionalities without needing to be

fully rebuilt. However, to train the system on the new informa-

tion, it needs dialogue data and DST annotations. Circumventing

this problem requires models with zero-shot capabilities; specif-
ically, models which are robust not only to the addition of new

slots, but also entirely new domains. When early open-vocabulary

DST approaches [13, 23] tackled this task, they were faced with

a typical difficulty of the zero-shot learning setting: how to best

employ external textual knowledge, such as slot keys, to maximize

performance in unseen domains [3]. More recent work [16, 26] uses

textual descriptions of the domains and slots, which, though richer,

are also noisier [3], and require human intervention to be created

when the domain is novel. In an ideal zero-shot system, no human

effort is needed to bootstrap—or enable—zero-shot capabilities.

To tackle these challenges, we begin by casting the DST task as

a reading comprehension problem, allowing for explicit zero-shot

DST support. As each slot will be directly linked to a question,

we also propose ways to generate the set of questions pertaining

to each slot. We propose a novel method which emphasizes the

relationships between semantically similar slots, which are likely to

share values. Lastly, we propose two self-supervised approaches to

bootstrap DST models as QA, which address two typical situations:

when in-domain dialogues exist, but no annotations are present,

and when no in-domain dialogues exist. While we loosely follow

the the approach presented by Honovich et al. [11], as far as we

know, we are the first to use question generation techniques for

pretraining in the DST task. In the latter, the larger and richer pool

of data offered by the QA domain allows us to bootstrap models

that can adapt to novel zero-shot classes.

Our contributions are twofold: first, we propose a self-supervised

approach to pretrainDSTmodels with in-domain and out-of-domain

QA data, as a way to bootstrap DST models (Section 3.1). Second,

we present a question generation strategy which emphasizes the

relationships between semantically similar slots—slots which refer

to similar types of values—as a way to maximize zero-shot DST

performance (Section 3.2).
1

1
We release all sets of questions and prompts in https://github.com/d-c-t/learning-to-

ask-questions-zero-shot-dst.
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Di = (u0, u1, …, (“i’d like to book a table for 1 at 17:15 on 
wednesday. can you do that?”, “absolutely.”))

{‘wednesday’, ‘1’, ‘a table’} {‘1’, ‘a table’}

Q: On what day would you like to book a table for 1?
Q: How many people would you like to have a table for?
Q: What would you like to book for 1 on wednesday?

A: wednesday
A: 1

A: a table

(NER + nounphrases) - stop_words

Q: How many people would you like to have a table for?
Q: What would you like to book for 1 on wednesday?

A: [none]
A: [none]

Question Generation
Remove all that exist 

in Di+1

Di+1 = (u0, u1, …, (“i need a train from birmingham to cambridge this 
wednesday”, “we found 17 trains like that. what’s the best time?”)) 

Figure 1: Step-by-step illustration of question generation for model pretraining. We emphasize (in bold) the slot annotations in
𝑢𝑖 , to highlight how they overlap with the outputs of span extraction.

2 RELATEDWORK
Early DST approaches [13, 23] heavily focused on not only the full-

shot performance, but also on its behavior under low—and no—data

situations, using the slot keys and RNN to generate the slot value.

Rastogi et al. [22] and Ma et al. [17] perform slot-filling in zero-

shot scenarios using Transformer encoders. Both models use extra

information when encoding categorical slots: the former encoding

all possible slot values; the latter performing feature engineering.

Later works [16, 26] use the user intent and slot descriptions, which

are richer than slot keys alone [3], as input to a T5 [20] model, and

generate the dialogue state during the decoding step. Gupta et al. [9]

and Hu et al. [12] use dialogue examples to prompt Large Language

Models. Gupta et al. [9] use a single hand-crafted dialogue example

per domain in conjunction with a T5 variant [20]. The performance

increases proportionally with the required supervision. Hu et al.

[12], rather than manually writing a dialogue, retrieve the most

similar training example, and perform slot-filling with GPT-3 [1].

Some efforts have been made into mapping the QA domain to

DST, following the success of approaches relying on span extrac-

tion [2, 24]. Gao et al. [7] explicitly model slot-filling as a series

of questions about each slot and decodes the answers with a RNN.

Zhou and Small [27] ask a question per slot, and propose a dy-

namic graph that attempts to model relations between semantically

similar slots. Gao et al. [6] and Namazifar et al. [18] introduce

one handcrafted question per slot key. The former explicitly sepa-

rates non-categorical slots as span-based QA, and categorical slots

as multiple choice QA, thus requiring all examples to be listed.

The latter employs models previously trained on the SQuAD [21]

dataset to perform few-shot DST. Li et al. [14] also uses handcrafted

questions and a GPT-2 based decoder to generate slot values. Lin

et al. [15] employ a T5 model trained on several QA datasets and

shows that knowledge transfer between the QA to DST domains

is feasible. Categorical slots are also handled as multiple choice

QA. Rule-based question generation approaches for pretraining

have been explored by Du et al. [4]. Pretraining is performed by

transforming slot annotations from an unrelated dataset into a set

of questions, using its slot ontology. BERT models pretrained in

SQuAD have also been used with span-based slot-filling, using slot

descriptions as auxiliary inputs [8]. Lastly, one of the baselines

of Lin et al. [16] uses template-based question generation and a T5-

small model fine-tuned for QA. While casting DST to QA has been

shown to be promising [14, 15, 18], we focus on the underexplored

problem of identifying the types of questions to be asked per slot.

Furthermore, while in-domain and out-of-domain pretraining have

been shown to improve performance [4, 8, 18], this avenue remains

largely underexplored.

3 DST AS QUESTION ANSWERING
We cast DST as a reading comprehension problem by converting

slot-filling annotations into question-answering. To do so, given a

domain with a set of slot keys 𝑆 , we create one natural language

question 𝑞𝑖 ∈ 𝑄𝑠𝑙𝑜𝑡 for each slot key 𝑠𝑖 ∈ 𝑆 , with 0 ≤ 𝑖 < |𝑆 |. Then,
for both user and agent utterances 𝑢𝑛 at turn 𝑛 of a dialogue 𝐷 , so

that 𝑢𝑛 ∈ 𝐷 , we input ((𝑢0, 𝑢1, ..., 𝑢𝑛), 𝑄𝑠𝑙𝑜𝑡 ) to a QA model. The

dialogue state at turn 𝑛 is the aggregation of all model responses to

𝑄𝑠𝑙𝑜𝑡 , using all utterances until that point (𝑢0, 𝑢1, ..., 𝑢𝑛) as context.

While some approaches to QA-based zero-shot slot-filling [15, 16,

26] follow a multiple-choice paradigm for categorical slots, we rely

only on 𝐷 and𝑄𝑠𝑙𝑜𝑡 for this task, meaning we rely on less data, and

require less data to be manually created in real-world situations.

Furthermore, we bootstrap our models by either pretraining them

with in or out of domain data, without slot-filling annotations.

Finally, we show our findings through two classes of QA model:

span-based, which requires slot values to be explicitly mentioned

in the text, and generative, which does not.

3.1 Self-Supervised Reading Comprehension
Pretraining

To bootstrap our QA models for the DST task, we investigate two

pretraining techniques: one focusing on out of domain QA data,

and one on in-domain dialogues, without using DST annotations.

Each strategy tackles a different zero-shot environment: the former,

when no dialogues of the new domains exist; the latter, when dia-

logues in the novel domain already exist, but no DST annotations

are present. We hypothesize that each pretraining method confers

its own distinct advantages. Models pretrained on QA data interact

with a larger range of domains and high-quality questions. Being

trained on several domains may allow them to generalize in the

zero-shot cross-domain adaptation, where the model is presented

with multiple domains and must generalize to an unseen one. On

the other hand, we posit that there are two main benefits to in-

troducing a self-supervised, in-domain, pretraining step. First, by

supplying models with highly varied albeit lower-quality in-domain

examples, we increase their familiarity with language and domain

characteristics. This allows the models to capture common lan-

guage patterns specific to that domain. Second, it introduces a bias

towards answering with named entities and noun phrases—which

we posit that makes up most of the slot values.
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Each initialization technique is based on the creation of a set

of questions 𝑄𝑝𝑟𝑒 and their answers 𝐴𝑝𝑟𝑒 . For the out-of-domain

examples, we use the question and answer sets provided in SQuAD

2.0 [21], due to its high variety of domains and high quality ques-

tions. For the in-domain examples, we first create𝐴𝑝𝑟𝑒 by extracting

informative spans from the dialogues of the MultiWOZ training

split, using spaCy [10] to tag named entities, noun phrases, and to

remove stop-words from the extracted set. Then, for each element

of 𝐴𝑝𝑟𝑒 , we use a T5 model, fine-tuned on the question generation

task using SQuAD
2
, to generate 𝑄𝑝𝑟𝑒 , given elements of 𝐴𝑝𝑟𝑒 as

the answer and the dialogue each element is extracted from as its

context paragraph. We use greedy decoding to generate each ques-

tion. QA models for DST require the ability to classify questions

as unanswerable, as each utterance will generally only mention a

small fraction of slots. This is crucial for maintaining good perfor-

mance, as error propagation caused by misclassifications can lead

to a rapid decrease in joint goal accuracy. In the out-of-domain pre-

training step, we use the unanswerable SQuAD question set. In the

in-domain step, we apply each question 𝑄𝑖
𝑝𝑟𝑒 to the next dialogue

in the training set, if the dialogue does not explicitly contain the

corresponding answer 𝐴𝑖
𝑝𝑟𝑒 . We illustrate this strategy in Figure 1.

3.2 Slot-based Question Formulation (𝑄𝑠𝑙𝑜𝑡 )
We will refer to any information in a slot-key that is not its domain

as a slot type. For instance, given the slot-key hotel-pricerange, the
domain is hotel and the type is pricerange. To study the impact of

𝑄𝑠𝑙𝑜𝑡 on model performance, we experiment with its formulation in

a number of ways.The strategies include template-based, LLM-based,
and handcrafted approaches.

3.2.1 Template. This approach relies on the following templates:

"what is the <slot key>?" and "what is the value of the slot <slot key>
?" [7]—referred to as what-is and simple, respectively.

3.2.2 LLM. We generate 𝑄𝑠𝑙𝑜𝑡 by prompting a Large Language

Model (LLM) so that a natural language question is composed for

each slot type. This reduces the human bias inherent to manually

generating slot questions [14] or descriptions [16, 26]. An immedi-

ate pitfall lies in language models not explicitly containing domain

knowledge. This may cause the questions to misrepresent slot se-

mantics when those are not immediately clear from the type. We

define two LLM prompt strategies for question generation: LLM,

which simply prompts all questions to be generated, and Pronouns,
in which the LLM prompt requires the pronouns in the question to

be in the third person, and refer to "the user", whenever needed.

3.2.3 Handcrafted. Wealsomanually created a set of questions that

contain explicit domain knowledge, alongside explicitly enforcing

semantically similar slots to have similar questions. The resulting

set is composed of questions less abstract and more meaningful to

the dialogue than those in template-based approaches [6].

3.2.4 Implementation Details. When using span-based QA mod-

els, we prepend { Yes, No, Dontcare } to each question [18]. This

allows the model to respond to questions pertaining to service-

based slots (namely, hotel-internet, hotel-parking) with the required

"yes" and "no". Furthermore, this facilitates assigning the commonly

2
https://huggingface.co/mrm8488/t5-base-finetuned-question-generation-ap

used "dontcare" value to questions. We initialize the embedding of

the Dontcare token to the average of embeddings in "do not care".

We format the input of generative models with the "question: 𝑞𝑖
context: 𝐷" prompt.

3.3 Reading Comprehension Fine-Tuning
We use the MultiWOZ 2.1 [5] dataset for inference and fine-tuning.

We fine-tune our models following the TRADE [23] pre and post-

processing methodology, as recommended by the MultiWOZ au-

thors, to ensure our results are directly comparable to the literature.

We train and evaluate following a cross-domain adaptation setting,

meaning we train on 4 dataset domains, and evaluate on the unseen

domain data, with the proposed reading comprehension approach.

Given that MultiWOZ is composed of 5 domains, we train a total

of 5 instances of each model. We evaluate using the joint goal ac-

curacy metric on the target slots, and use the average of the five

runs as the main comparison metric. We use RoBERTa-base as our

backbone span-based QA model and T5-base as our backbone gen-

erative model. We generate the LLM and Pronouns 𝑄𝑠𝑙𝑜𝑡 using a

single InstructGPT [19] input. Unless otherwise stated, we use the

LLM 𝑄𝑠𝑙𝑜𝑡 strategy in our experiments.

4 RESULTS AND DISCUSSION
4.1 Baselines
We compare our performancewith the following approaches:TRADE
[23] andMA-DST [13], which use RNNs and slot names as input;

Li et al. [14] manually write questions and use a GPT-2 model for

decoding the slot values. T5-DST [16], which uses slot descriptions

with a T5-small model—T5-DST (QA), one of the presented base-

lines in T5-DST, uses automatic question generation. This model

is evaluated on MultiWOZ 2.0, which may not make it directly

comparable to our work. TransferQA [15] pretrains a T5-large

model using several QA datasets and applies it to the DST task,

without any in-domain training; D3ST [26] uses slot descriptions

and a T5 model. Finally, SDT [9] uses a T5-XXL model, and requires

dialogue examples to be manually written from analyzing the data.

SDT always contains the input of a handwritten example, making it

explicitly a one-shot approach. Li et al. [14], T5-DST, D3ST, and SDT

require more domain expertise and a higher developer workload

to express new slots: not only do they require manually creating

slot descriptions or examples, but also explicitly listing all values of

categorical slots—which may not be trivial when adding new slots.

While generating all the descriptions for D3ST and examples for

SDT (in the SGD dataset [22]) takes 1.5 and 2 hours, respectively

[9], we generate 𝑄𝑠𝑙𝑜𝑡 automatically from only the slot keys, the

minimal representation of a slot; thus requiring less data.

4.2 Zero-shot cross-domain adaptation
Table 1 presents the results for the zero-shot domain transfer task.

Each column represents an instance of the model trained on all

domains except one, then evaluated on that domain. The metric is

the standard per-domain joint goal accuracy (JGA). We also present

the average JGA over all domains, which we use as our main means

of comparison. We obtain SOTA performance versus models with

comparable amounts of information (slot keys only), consistently

outperforming them in most domains, oftentimes by large margins.
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Table 1: Zero-shot cross-domain adaptation results. The top
approaches rely on simple features, such as slot names. The
bottom approaches rely on more complex features, such as
slot descriptions or full examples.

Model Hotel Rest. Taxi Attr. Train Avg.

Fully zero-shot

TRADE [23] 13.7 11.5 60.6 19.9 22.4 25.6

MA-DST [13] 16.3 13.6 59.3 22.5 22.8 26.9

T5-DST (QA) [16] 19.8 21.8 64.4 32.5 32.6 34.3

TransferQA [15] 22.7 26.3 61.9 31.3 36.7 35.8

T5-self (ours) 29.4 54.0 65.5 46.5 35.6 46.2

Zero-shot with extra information

Li et al. [14] 24.4 26.2 59.6 31.3 29.1 34.1

T5-DST [16] 21.2 21.7 64.6 33.1 35.4 35.2

D3ST [26] 21.8 38.2 78.4 56.4 38.7 46.7

SDT [9] 33.9 72.0 86.4 74.4 62.9 65.9

Table 2: We experiment with all classes of the models.
Model nomenclature consists of the backbone model name
(RoBERTa or T5), then the pretraining strategy.

Model Hotel Rest. Taxi Attr. Train Avg.

RoBERTa 27.8 30.0 63.1 38.1 24.3 36.7

RoBERTa-squad 29.4 35.5 61.6 38.5 23.7 37.7

RoBERTa-self 29.8 47.3 64.1 40.8 28.3 42.1

T5 27.5 35.4 66.1 43.6 38.9 42.3

T5-squad 28.8 37.7 65.3 44.1 39.2 43.0

T5-self 29.4 54.0 65.5 46.5 35.6 46.2

However, we under-performwhen compared to D3ST and SDT. This

is expected, as these models utilize descriptions or full examples,

alongside listing all possible slot values when applicable. Our model

obtains comparable performance while using substantially less

information.

In Table 2, we show both classes of models and each pretrain-

ing step. Generally, the sequence-to-sequence models outperform

encoder-based approaches. This is due in part to span-based models

not supporting categorical slots directly, which make up a signifi-

cant number of slots [25].

4.2.1 Impact of pretraining. Table 2 also displays the impact of

different pretraining strategies. Our in-domain pretraining method

outperforms models pretrained on SQuAD. Nevertheless, both

strategies show strong improvements when compared to the vanilla

backbone models. This indicates that pretraining in the QA task is

useful for zero-shot slot-filling. Note that although our pretraining

strategy doesn’t use any DST annotations, it still interacts with dia-

logues whose domains we evaluate on the cross-domain adaptation

task. This situation, however, can be reflected in the real world,

where users of a dialogue agent may attempt to invoke features

before they are present, and the features are later added. In this

situation, our in-domain pretraining methodology is viable—the

dialogues happen, but there are no annotations—so we argue that it

is comparable to the other approaches. This may also indicate that

more pretraining can be done: we can combine other QA datasets

besides SQuAD [15], and even use other DST data when applying

our pretraining step. This is left as future work.

Table 3: T5-self performance with different question genera-
tion strategies.

Hotel Rest. Taxi Attr. Train Avg.

Generative

LLM 29.4 54.0 65.5 46.5 35.6 46.2
Pronouns 29.2 54.3 65.4 47.5 32.5 45.8

Template-based

What-is 28.5 47.0 63.7 44.4 39.9 44.7

Simple 28.9 44.3 64.5 46.0 40.7 44.9

Manual 29.0 45.5 65.0 41.9 41.9 44.6

4.2.2 Impact of𝑄𝑠𝑙𝑜𝑡 . Table 3 displays the impact of different ques-

tion generation approaches, with each row referring to a unique

strategy. The performance improvement of LLM versus Pronouns
highlights how small differences in questions can make a differ-

ence: using third person pronouns whenever possible contrasts

with the questions present in both pretraining strategies. Ques-

tions with the natural pronouns of a two-person dialogue (i.e. "you"

and "I") generally outperformed these. Forcing natural pronouns

causes the performance of LLM-based 𝑄𝑠𝑙𝑜𝑡 strategies to outper-

form manual question generation. On the other hand, we find that

simpler, template-based approaches, perform comparably to ques-

tion generation, without requiring access to a LLM or prompt. The

semantic similarities between slots, while not as explicit, are still in

display when using these questions. It’s worth noting that the per-

formance improvement of the LLM strategy isn’t consistent across

domains. We see a steep performance drop in the train domain,

largely due to the LLM misrepresenting the slots train-arriveby and

train-leaveat. The train-leave day question is also worth noting:

although semantically correct, it is considerably different from the

pretraining questions. Both these factors could explain its—and the

train domain’s—lower overall performance. In the Manual strat-
egy, where train-arriveby and leaveat are fixed, the performance is

considerably higher. This indicates that there is space for manual,

domain-specific, tuning when generating𝑄𝑠𝑙𝑜𝑡 , which goes beyond

our zero-shot DST premise.

5 CONCLUSIONS
We presented a zero-shot DSTmethod that requires no human input

or domain knowledge, through QA. The questions are posed by a

generative LLM, and as such, new slots and domains can be easily

added without any extra manual workload. We experimented with

two pretraining methodologies, both of which outperform non-

pretrained models, and as such, may be used to bootstrap models

throughout the early data collection processes, to train more robust,

full-shot, approaches. For future work, we plan to explore other

approaches to automatically generate 𝑄𝑠𝑙𝑜𝑡 , introduce pretraining

methods which focus on more, varied, data, and explore methods

for automatically correcting misrepresented slot questions.
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