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ABSTRACT
Current semantic search approaches rely on black-box language
models, such as BERT, which limit their interpretability and trans-
parency. In this work, we propose MaxSimE, an explanation method
for language models applied to measure semantic similarity. Our
approach is inspired by the explainable-by-design ColBERT archi-
tecture and generates explanations by matching contextualized
query tokens to the most similar tokens from the retrieved docu-
ment according to the cosine similarity of their embeddings. Unlike
existing post-hoc explanation methods, which may lack fidelity
to the model and thus fail to provide trustworthy explanations in
critical settings, we demonstrate that MaxSimE can generate faith-
ful explanations under certain conditions and how it improves the
interpretability of semantic search results on ranked documents
from the LoTTe benchmark, showing its potential for trustworthy
information retrieval.

CCS CONCEPTS
• Information systems → Similarity measures; Query repre-
sentation; Document representation; • Computing method-
ologies → Neural networks.
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1 INTRODUCTION
Modern ranking systems often depend on pre-trained language
models to compute representations for queries and documents [12].
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Because of the black-box nature of the large deep neural networks
they mostly rely on, these models are not suitable when the user
requires some explanation to trust the system or to correct it when
its output is erroneous [1]. Among the recent Transformer-based
[20] approaches, ColBERT [8] introduces a late interaction mech-
anism to a pre-trained BERT model [5]. This additional layer is
used to calculate a similarity score between a query and a docu-
ment by matching each token vector representation from the query
to the closest document token representations, summing them all
into a global similarity score. This sum of similarity scores over
query terms is similar to more standard ranking methods such as
BM25 [16] and we can exploit it to generate explanations about the
similarity score. Under the hood, this so-called MaxSim operation
matches each query token to the most semantically similar docu-
ment token within their respective contexts. Since we can compute
the cosine similarity between any two token representations, we
can show the matched tokens by decreasing order of similarity i.e.,
by decreasing contribution to the global similarity score, so that we
can visualize why a retrieved document is (not) similar to the input
query. Since the BERT tokens are mostly (sub)words, the matched
token pairs can be interpretable terms that are found to be similar.

In this work, we provide examples of where these matches seem
informative and discuss the limitations of their interpretability.
Additionally, we extend this approach to more ’standard’ BERT-
based models and compare the resulting explanations to those
obtained from ColBERTv2. Our contribution on MaxSim-based
Explanations (MaxSimE)1 is twofold:

(1) We propose an explainability method for Transformer-based
semantic similarity, whose fidelity is maximal when applied
to models fine-tuned via late interaction such as ColBERTv2
[17]. Visualizing the contextualized best matching tokens
can help to confirm a highly ranked document or to hint at
some model failure e.g., paired tokens wrongly contributing
to a high similarity score.

(2) We intrinsically measure the correctness of MaxSimE taking
ColBERTv2 as a proxy for the ground truth to discuss the
settings where our explanations are most informative while
considering their limitations as well.

1Source code available on https://github.com/fraunhofer-iais/MaxSimE
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2 RELATED WORK
From the wide spectrum of available explanation methods [1, 3,
11], feature attribution aims to identify the important features or
terms that contribute to a particular result. Among them, Local
Interpretable Model-agnostic Explanations (LIME) [15] is a popu-
lar method that has been adapted for information retrieval tasks
[18, 21]. More recent approaches focus on generating explanations
that consider not only individual retrieved documents but also the
context of the entire search result list to provide more coherent
and diverse explanations [23]. While all these approaches provide
post-hoc explanations, whose fidelity to the ranker cannot be guar-
anteed, we focus instead on an explainable by architecture approach.
Formal et al. [6] report how BERT-based representations implic-
itly capture term importance and how the ColBERT fine-tuning
approach amplifies this effect, improving the retrieval results. Our
approach explicitly exploits this fact to generate explanations high-
lighting the matched terms and their contribution to the similarity
score. Some frameworks focus on inspecting ranking models by
evaluating on diagnostic datasets to detect global properties of the
tested ranking models [4, 10, 13]. They progress towards a better
understanding of why contextualized word embeddings outperform
traditional term-based IR methods. Our approach does not aim to
analyze model behavior as a whole like them but rather explain
a similarity score i.e., to provide local explanations. Calculating
semantic similarity based on token embeddings is not a new idea
and it has been explored to rank documents [22]. However, we do
not aim to build a ranking model from the computed similarity
scores but to explain existing models instead.

3 MAXSIME
MaxSimE is a method to generate local explanations for document
retrieval systems using language models from which the seman-
tic similarity between two tokens can be measured by the cosine
similarity between their vector representations. Its purpose is to
provide insights into why a document was retrieved given a query
by highlighting the tokens in both the query and the document
that contribute the most to their similarity score. We adopt the
notation from Santhanam et al. [17] and define a similarity function
(@,3 between a query @ of # tokens and a document 3 of " tokens
as the summation of query-side MaxSim operations, namely, the
maximum cosine similarity between each query token embedding
and all document token embeddings (implemented as dot-products
assuming normalized embeddings):

(@,3 :=
#∑
8=1

"
max
9=1

&8 · �)
3 9
, (1)

where Q is a matrix of N vectors encoding @ and D a matrix of M
vectors encoding 3 , being each vector an embedding of a token.

We match each query token to the most similar document token
(given a context) according to the MaxSim operation, as displayed
in Figure 1. Formally, given a query embedding @8 , our matching
function 5<0C2ℎ returns the document token embedding 3 9 with
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Figure 1: Visualization of the MaxSim operation. Each em-
bedding represents a token created by the BERT tokenizer.
Given a query @ and a document 3 , for a query embedding @8 ,
MaxSim selects the closest document embedding 3 9 . When
the represented query token is an interpretable term, this
is equivalent to finding the most semantically similar term
appearing in 3 , represented by the document embedding 3 9 .

the highest dot product to @8 :

5<0C2ℎ (@8 ) := argmax
3 9

@8 · 3 9 , (2)

8 ∈ J1..# K, 9 ∈ J1.."K

Applying our matching function to all embeddings from a query
results in a list of token pairs with the highest similarity according
to the cosine similarity of their respective embeddings. These token
pairs with their respective similarity scores (computed from their
dot product) construct an explanation about ”why” document 3 9
was retrieved given @8 as a query.

4 EXPERIMENTS
4.1 Data
Our experiments are performed on the LoTTE benchmark, a collec-
tion of questions and answers sourced from StackExchange. The
benchmark covers a wide range of topics, including writing, recre-
ation, science, technology, and lifestyle [17]. To pair documents,
we use ColBERTv2 to rank the documents, and we select the top-1-
ranked document for each question.

4.2 Fully Faithful Explanations from
ColBERT-based Models

We apply our approach first to a ColBERTv2 model to generate ex-
planations. The first observed explanations seem to be informative
from a qualitative point of view, as seen in the example from Table
1. The fidelity of the explanations is maximal because ColBERTv2
scoring is directly reliant on the sum of query side MaxSim scores,
and the similarity function has been optimized through fine-tuning,
thereby giving more significance to the best matching token pairs.
In addition, these explanations come at no cost, since the MaxSim
scores for each query token are already computed in the retrieval
process. Considering that ColBERTv2 approaches state-of-the-art
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Table 1: Matched tokens from the query ”Why do kittens
love packets?” and first ranked document by the pretrained
ColBERTv2 model. MaxSim was performed on ColBERTv2
and S-BERT10B4 , sorted by descending similarity score.

Query ColBERTv2 S-BERT10B4
Token Token Score Token Score
why because 0.874 because 0.911
kitten [D] 0.809 cats 0.891
##s they 0.756 they 0.874
[CLS] [CLS] 0.728 [CLS] 0.843
do which 0.722 to 0.848
love love 0.694 love 0.912
packets boxes 0.485 dart 0.787
? boxes 0.466 means 0.843

level according to most of the metrics from the BEIR benchmark
for dense retrieval [19], we assume these explanations to be our
”gold standard” for further experiments.

4.3 Explanations from Other BERT-based
Models

We generate explanations with our approach from other BERT-
based models that were not fine-tuned with a late interaction mech-
anism like ColBERT. We aim to confirm if these explanations are
trustworthy and we thus compare the resulting explanations with
those extracted from ColBERTv2 as in Section 4.2, assuming the
latter as the reference. As shown in the example from Table 1, the
matched tokens partially coincide with those obtained from the
ColBERTv2 model although the contribution of the token pairs to
the similarity score differs to a greater extent. Performance-wise,
generating explanations for non-ColBERT architectures involves
# ·" cosine distance computations (see Equation 1).

4.4 Evaluation
Despite the absence of ground truth and user feedback, we aim to
evaluate the correctness of our explanations extracted from several
BERT-based models by comparing them with the ColBERTv2 ex-
planations we generated in Section 4.2, which we take as a proxy
for a ”gold standard”. Let ) be the number of correctly retrieved
document tokens, % the number of retrieved query/token pairs ac-
cording to the gold standard, and # the number of query tokens.
For each query document, we evaluate the following metrics on
the Top-1 document retrieved by ColBERTv2:

(1) Token precision:
)

#

(2) Matching accuracy:
%

#
(3) Spearman’s rank correlation of the matching token scores

with the gold standard.
Notice that the matching accuracy is a stricter variant of the token
precision since the token precision just measures how many of
the expected document tokens were retrieved (independent from
the query tokens they were matched to), whereas the matching
accuracy only counts the matches where the tokens are correct
both from the query and the document side. The Spearman’s rank

correlation is intended to capture the similarity in terms of ranking
query tokens.

We compare the explanations from two variants of model archi-
tectures: Cross-Encoders, which use a regression head to compute
the similarity of two input texts directly; and Bi-Encoders, which
produce one embedding per document either by Mean/Max Pooling
token embeddings or by selecting the [CLS] token embedding so
that the similarity of two texts is measured by the cosine similar-
ity of the respective embeddings. Bi-Encoders therefore also use a
late-interactionmechanism for similarity estimation whereas Cross-
Encoders are fully attention-based. We analyze the effect this has
on the generated explanations. For Cross-Encoders we choose the
MSMARCO pretrained TinyBERT and MiniLM-L6 model, provided
by the sentence-transformers library [14]. For Bi-Encoders we
compare the S-BERT10B4 model with its distilled variant DistilBERT
and with the MiniLM-L6 model.

4.5 Results
We first analyze the explanations generated by both ColBERTv2 and
the Bi-Encoder S-BERT10B4 . Table 1 shows token matching pairs of
both models. Qualitatively, we can observe that both explanations
match similar document tokens to the query. Partially thesematches
coincide between the two models. From Figure 2 we can observe
a noticeable difference in absolute score values, especially in the
ranking of the matching token pairs. In comparison, S-BERT10B4
yields higher scores for query tokens ranked lower by ColBERTv2.
Furthermore, the score values produced by ColBERTv2 exhibit
a greater degree of variance, especially for these lower-ranked
tokens. We assume that this is due to the fine-tuning of ColBERTv2
token representations with theMaxSim late-interaction mechanism,
which forces the model to also perform a fine-grained ranking on
the token level.

When evaluating the correctness of our explanations on non-
ColBERT models, we observe that token precision is generally high
across most models (as displayed in Table 2). All metrics have high
variance, which suggests that the quality of the explanations is
highly dependent on the query sentence. Especially the matching
accuracy and ranking of the tokens are inconsistent throughout
the dataset. For the smaller model MiniLM-L6, we see that the Bi-
Encoder variant provides explanations closer to our gold standard.
This could be explained by the fact that the late-interaction mecha-
nism used in sentence transformers (especially with mean pooling)
is more similar to the MaxSim operation than the regression head
in Cross-Encoders.

4.6 Discussion
We observe that, although the non-ColBERT models were not
trained using the MaxSim operations, the generated explanations
largely align with those of ColBERTv2, as demonstrated by the ex-
ample in Table 1. The similarity between the explanations suggests
that they similarly capture term importance, in line with previous
white box analysis on ColBERT [6]. Considering that the ranking
performance does differ, we guess that the different similarity value
distributions assigned to the matches have a noticeable impact on
the global similarity score and thus on the ranked documents. The
distributions in Figure 2 illustrate how ColBERTv2 weights with
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Figure 2: Cosine similarity distribution of the top 8 ranked
query tokens for each query from the LoTTE dataset.

Table 2: Similarity of explanations from BERT-based models
to ourColBERTv2 gold standardmeasured by token precision
(TP), match accuracy (MA), and Spearman’s rank correlation
(SR).

Model TP MA SR
Bi-Encoders

S-BERT10B4 0.730 ± 0.153 0.471 ± 0.213 0.427 ± 0.380
DistilBERT 0.740 ± 0.163 0.444 ± 0.212 0.349 ± 0.386
MiniLM-L6 0.664 ± 0.149 0.411 ± 0.200 0.473 ± 0.376

Cross-Encoders

TinyBERT 0.749 ± 0.158 0.446 ± 0.204 0.391 ± 0.343
MiniLM-L6 0.387 ± 0.233 0.307 ± 0.192 0.270 ± 0.284

significantly higher similarity scores for the most semantic relevant
terms than the rest of the tokens, whereas the similarity score dif-
ference among embeddings coming from BERT10B4 is clearly less
differentiated. Despite this, the high token precision (displayed in
Table 2) implies that non-ColBERT models frequently match the
same tokens as ColBERT.

Although we demonstrated how we can generate meaningful
explanations for both ColBERT and other BERT-based models using
the MaxSim operation, we acknowledge twomain limitations of our
approach: the limited faithfulness to the model for non-ColBERT
architectures and the limited interpretability of some explanations
because of the contribution of the [MASK] tokens to the similarity
score.

First, our explanations from non-late-interaction-based models
i.e., Bi- and Cross-encoders [14], cannot guarantee faithfulness
to their respective ranking models because their computed sim-
ilarity usually comes from either a regression head or from the
cosine similarity of [CLS] or mean pooled embeddings. Although
Cross-Encoder models may achieve better evaluation scores, their
computational cost is much higher, becoming impractical for most
setups. Hence, we favor late interaction models for ranking not only

because of their efficiency on ranking tasks but also because we can
extract fully faithful explanations from the underlying language
model.

Second, Khattab and Zaharia [8] use [MASK] tokens within the
ColBERTv2 model for query expansion. These non-interpretable
tokens are also included in the late-interaction scoring mechanism,
leading to best-matching token pairs that cannot be explained in
a meaningful way. Depending on the length of the query, these
[MASK] tokens make up for up to 62% of the final score of the
retrieved document. Nonetheless, Lassance et al. [9] show that
these special tokens can be safely removed without affecting model
performance in a significant way.

Finally, we could only evaluate the correctness of the explana-
tions extracted from the different models by comparing them to our
ColBERTv2 gold standard, which we consider confirmed when they
correlate but we cannot discard otherwise. Other explainability as-
pects such as plausibility [7] are yet to be assessed as well. Despite
the limitations, we find our first exploratory results promising and
we hope to motivate more work towards trustworthy information
retrieval.

5 CONCLUSION AND FUTURE WORK
We leveraged the MaxSim operation from the ColBERT approach to
generate explanations for the documents retrieved by the ranking
system, based on the most relevant document tokens that match
those of the query. We also demonstrated that our method can be
applied to other BERT-based models, although we cannot guarantee
its fidelity for those models. The correlation between the explana-
tions generated by the different models confirms that our proposed
method can provide insights into the underlying model, and can be
used as a proxy to evaluate explanation correctness. Our presented
method enables ”explanations for free” i.e., without needing to learn
any explanation model, from similarity functions constructed upon
BERT-based language models. Our proposed approach may have
applications beyond information retrieval e.g., text classification
use cases where unfaithful explanations from black-box models
are not acceptable and where a similarity-based classifier can be
used without a dramatic performance loss compared to the best-
performing black-box deep learning model [2]; or even less related
areas where Transformer-based models can deal with a concept of
semantic similarity such as computer vision [24]. In future work,
we aim to systematically compare the ranking performance of dif-
ferent BERT-based models with our evaluation results, including
additional evaluation criteria and benchmark datasets where Col-
BERTv2 was not fine-tuned. From a more applied perspective, we
also plan to apply our approach to domain-specific settings e.g.,
information retrieval on legal texts to support lawyers finding
previous similar legal cases when facing a new one, which is an
opportunity to assess the plausibility of our explanations.
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