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ABSTRACT
The problem of inner product search (IPS) is important in many

fields. Although maximum inner product search (MIPS) is often

considered, its result is usually skewed and static. Users are hence

hard to obtain diverse and/or new items by using the MIPS problem.

Motivated by this, we formulate a new problem, namely the fair and

independent IPS problem. Given a query, a threshold, and an output

size 𝑘 , this problem randomly samples 𝑘 items from a set of items

such that the inner product of the query and item is not less than the

threshold. For each item that satisfies the threshold, this problem is

fair, because the probability that such an item is outputted is equal

to that for each other item. This fairness can yield diversity and

novelty, but this problem faces a computational challenge. Some

existing (M)IPS techniques can be employed in this problem, but

they require𝑂 (𝑛) or 𝑜 (𝑛) time, where 𝑛 is the dataset size. To scale

well to large datasets, we propose a simple yet efficient algorithm

that runs in 𝑂 (log𝑛 + 𝑘) expected time. We conduct experiments

using real datasets, and the results demonstrate that our algorithm

is up to 330 times faster than baselines.
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1 INTRODUCTION
The inner product search (IPS) problem is important in many

fields, e.g., information retrieval [18, 32, 35], recommender sys-

tems [6, 7, 30], data mining [19, 27], databases [22, 24, 29], artificial

intelligence [13, 36], and machine learning [14, 23, 34]. These fields
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usually consider the 𝑘 maximum inner product search (𝑘-MIPS)

problem, which, given a query vector and an output size 𝑘 , returns

the 𝑘 vectors having the maximum inner product with the query. Al-

though this problem considers user preferences, the search results

are static, because, for the same queries (and 𝑘), the search results

are always the same (as long as the vector set is static). In addition,

the 𝑘-MIPS results tend to be skewed [17], although diversity and

novel items are usually required, as claimed in real services [1, 8].

To remove the above limitations, this paper formulates a new

problem, namely the fair and independent inner product search (or

FI-IPS) problem. Given a query vector q, a threshold 𝜏 , a set X
of 𝑛 vectors, and an output size 𝑘 , this problem returns a set Q𝑘

of 𝑘 vectors such that Q𝑘 ⊆ Q = {x | x ∈ X, x · q ≥ 𝜏} while
satisfying the following: (i) Pr[x ∈ Q𝑘 ] = Pr[x′ ∈ Q𝑘 ] for any x,
x′ ∈ Q and (ii) Q𝑘 is independent of the previous query results.

The inner product threshold 𝜏 still takes the user preference into

account, because 𝜏 is regarded as a user preference threshold. The

probability condition guarantees fairness, as each vector in Q is

returned with an equal probability. The independence condition

ensures that each vector in Q𝑘 is randomly chosen from Q (so the

same query vectors may not have the same search results). This

problem provides merits to both users and service providers.

(1) Search results can be diverse. Trivially, returning all vectors in

Q may overwhelm users, because |Q| can be large as |Q| = 𝑂 (𝑛).
To select 𝑘 vectors (from Q), some existing works use diversity

maximization [4, 5, 17, 21, 26]. However, it is not always easy to

select an objective function for diversity maximization that best fits

applications [28]. In this case, 𝑘 vectors randomly sampled from Q
would be a good solution, because these 𝑘 vectors are uniformly

distributed in the space of Q. The FI-IPS problem ensures this.

In addition, thanks to the independence property, the FI-IPS

problem returns a different result for every request of the same

user. This user, therefore, can know not only items with the highest

inner products but also novel items for him/her.

(2) Search results do not suffer from unfair ranking. If we use a

ranking-based approach (e.g., 𝑘-MIPS) to limit the result size, we

may suffer from unfairness (usually derived from the unfairness

hidden in datasets) [25]. For example, assume an e-commerce plat-

form where items from some companies tend to be ranked at higher

positions than those of the other companies. In this case, the latter

companies have a complaint about this platform and leave. The

FI-IPS problem alleviates this concern, as it does not employ such a

ranking and all items x satisfying x ·q ≥ 𝜏 have an equal probability

of being outputted.

2379

https://doi.org/10.1145/3539618.3592061
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3539618.3592061
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539618.3592061&domain=pdf&date_stamp=2023-07-18


SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Kazuyoshi Aoyama, Daichi Amagata, Sumio Fujita, & Takahiro Hara

(3)Queries can be anonymous. Because of the randomness and the in-

dependence of the FI-IPS problem, it is hard to recover a given query.

This effect contributes to easy-to-implement privacy-preserving

query processing [9].

Challenge.Although the FI-IPS problem has the above advantages,

it is not trivial to process an FI-IPS query efficiently. A straightfor-

ward algorithm for this problem is to computeQ, but this algorithm
requires𝑂 (𝑛) time, which is too long for applications that want only

𝑘 ≪ 𝑛 vectors. Even if we employ some existing techniques for fair

and independent search problems, they still need 𝑜 (𝑛) = 𝑂 (𝑛1−𝜖 )
time, where 𝜖 ∈ (0, 1) is a constant, see Section 2.

Contribution. We overcome the above challenge and propose an

efficient algorithm that guarantees the correctness and runs in

𝑂 (log𝑛 + 𝑘) expected time. The FI-IPS problem trivially requires

Ω(𝑘) time, so our algorithm needs only an additional 𝑂 (log𝑛) fac-
tor. Furthermore, even if applications require a success probability

of nearly 1, our algorithm still needs only 𝑂 (𝑘 log𝑛) time. We con-

duct experiments using real datasets, and the results confirm that

our algorithm is significantly faster than baseline algorithms.

2 PRELIMINARY
Problem definition. Let X be a set of 𝑑-dimensional vectors (e.g.,

item embeddings), and |X| = 𝑛. We assume that 𝑑 is high and, for

simplicity, 𝑑 = 𝑂 (1). For ease of presentation, we first define the
inner product search (IPS) problem.

Definition 1 (Inner product search problem). Given a query
vector q, X, and a threshold 𝜏 , this problem retrieves Q = {x | x ∈
X, x · q ≥ 𝜏}.
Note that 𝜏 is a user-tolerable inner product (e.g., a user may specify

𝜏 = 4 in 5-star rating systems).

The IPS problem cannot limit the output size and |Q| can be

large, as |Q| = 𝑂 (𝑛). Returning all vectors in Q therefore not only

overwhelms users but also incurs a large computational cost. In

addition, many systems and users require the output size to be

limited to 𝑘 (e.g., 𝑘 ≤ 20), so it is important to consider how to

select 𝑘 vectors from Q. Our idea is to choose 𝑘 vectors uniformly

at random for fairness, which follows existing works [2, 3, 20, 33].

Based on this idea, we propose the fair and independent IPS (FI-IPS)

problem.

Definition 2 (Fair and independent IPS problem). Given a query
vector q, X, a threshold 𝜏 , and an output size 𝑘 , this problem retrieves
a set of 𝑘 vectors Q𝑘 ⊆ Q1 and satisfies the following:

• Pr[x ∈ Q𝑘 ] = Pr[x′ ∈ Q𝑘 ] for any x, x′ ∈ Q and
• Q𝑘 is independent of the other query results.

The first condition guarantees that each vector in Q has an equal

probability of being included in Q𝑘 . The second condition guaran-

tees that Pr[x ∈ Q
k
] is independent of any other query results. For

example, let Q𝑖
𝑘
be a result of a query q𝑖 , and we can have Q𝑖

𝑘
≠ Q𝑗

𝑘

even if q𝑖 = q𝑗 . That is, under a recommendation scenario, each

user can have a different recommendation list for every recommen-

dation request. This is not guaranteed without the second condition

(independence), suggesting its importance.

1
Definition 2 assumes that 𝜏 is a reasonable value for satisfying |Q | ≥ 𝑘 . If |Q | < 𝑘 ,

we return Q.

Linear-Scan. A straightforward approach to solving the FI-IPS

problem is to first obtain Q by solving the IPS problem and then

randomly pick 𝑘 vectors from Q. This satisfies the fairness and in-

dependence conditions. Moreover, we can employ a state-of-the-art

algorithm
2
(e.g., FEXIPRO [22]) to solve the IPS problem efficiently.

Large-scale systems need to handle a lot of users. Each search

request (i.e., query) hence should be processed within a millisec (or

less) order. However, the above approach is hard to achieve this

for large datasets, because it incurs at least Ω( |Q|) (at most 𝑂 (𝑛))
time. We usually have 𝑘 ≪ |Q|, so �̃� (𝑘) time algorithm is required,

where �̃� (·) hides any polylog factors.

Existing fair search algorithms in high dimensions are based
on random permutation and locality-sensitive hashing (LSH) [9–

11, 15]. A random permutation is a random shuffling of the order

of vectors, making each vector at a rank with probability 1/𝑛. This
approach is used to try to satisfy the fairness and independence

conditions. (For details, refer to a nice summary [28]). LSH is a

hashing technique, and similar vectors tend to have the same (or

similar) hash values by using an LSH function. This technique has

a probabilistic performance guarantee, and, for a given query, its

similar vector can be found in time sub-linearly to 𝑛 (but it incurs a

super-linear space complexity). LSH, unfortunately, does not guar-

antee that the state-of-the-art techniques [9–11, 15] can always

access each x ∈ Q with equal probability.

3 FI-IPS ALGORITHM
As seen above, the existing techniques require 𝑂 (𝑛) or 𝑜 (𝑛) time,

and [9–11, 15] do not always guarantee fairness. We overcome

these limitations and propose an algorithm that runs in𝑂 (log𝑛+𝑘)
expected time and guarantees fairness and independence.

Our main idea for satisfying the fairness, independence, and fast

time is to (i) identify a superset of Q (but with a much smaller size

than 𝑛) with a small computational cost and then (2) pick random

vectors from the superset. Different from enumerating each vector

in this superset (which requires 𝑂 (𝑛) time in the worst case), we

identify only the range (e.g., [𝛼, 𝛽] and 1 ≤ 𝛼 ≤ 𝛽 ≤ 𝑛) where each

x𝑖 ∈ Q exists, to implement the first idea.

Algorithm description. Assume that X is sorted in descending

order of Euclidean norm (i.e., ∥x∥). This is done offline, because it
does not use any query information. Without loss of generality, we

assume that ∥x1∥ ≥ ∥x2∥ ≥ ... ≥ ∥x𝑛 ∥.
Given a query vector q, a threshold 𝜏 , and an output size 𝑘 ,

1○ we first compute 𝑗 = max𝑖∈[1,𝑛] 𝑖 such that ∥x𝑖 ∥∥q∥ ≥ 𝜏 . From

Cauchy–Schwarz inequality (x · q ≤ ∥x∥∥q∥), every vector

x𝑗+𝑏 (𝑏 ∈ [1, 𝑛 − 𝑗]) cannot satisfy x𝑗+𝑏 · q ≥ 𝜏 . This means

that we can focus only on {x1, x2, ..., x𝑗 }, and notice that Q ⊆
{x1, x2, ..., x𝑗 }.

2○ We next pick a random integer 𝑖 ∈ [1, 𝑗]. If x𝑖 · q ≥ 𝜏 and

x𝑖 ∉ Q𝑘 , we add x𝑖 into Q𝑘 .

3○ We iterate the above operation until we have |Q𝑘 | = 𝑘 .

2
State-of-the-art exact IPS algorithms are based on linear scan [22, 29]. Trivially,

approximation algorithms which do not guarantee that all vectors such that x · q ≥ 𝜏

are included in the search result cannot solve the FI-IPS problem correctly. This paper

does not assume GPU settings [31, 32], because parallelization does not overcome the

essential drawback of𝑂 (𝑛) time.
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Algorithm 1: Our FI-IPS Algorithm
Input: X, q, 𝜏 , and 𝑘
Output: Q𝑘

1 𝑗 ← max 𝑖 s.t. ∥x𝑖 ∥∥q∥ ≥ 𝜏 ⊲ ∥x𝑎 ∥ ≥ ∥x𝑎+1 ∥ for 𝑎 ∈ [1, 𝑛 − 1]

2 while |Q𝑘 | < 𝑘 do
3 𝑖 ← a random integer in [1, 𝑗]
4 if x𝑖 · q ≥ 𝜏 then
5 Q𝑘 ← Q𝑘 ∪ {x𝑖 }

Algorithm 1 summarizes the above operations
3
. We below analyze

the performance of our algorithm.

Fairness and independence. For each vector x𝑖 ∈ Q, its sampling

probability is always 1/ 𝑗 . Our algorithm hence yields Pr[x ∈ Q𝑘 ] =
Pr[x′ ∈ Q𝑘 ] for any x, x′ ∈ Q. In addition, it is straightforward to

see that Q𝑘 returned by our algorithm is a set of random samples

of Q. Thus, our algorithm guarantees independence.

Space complexity. Our algorithm maintains only X, so the space

complexity of our algorithm is trivially 𝑂 (𝑛).
Time complexity. Although our algorithm is surprisingly simple

and the above performances are easy to obtain, its time complexity

is not trivial. Notice that operation 2○ of our algorithm may pick 𝑖

such that x𝑖 · q < 𝜏 or 𝑖 has been previously picked. Therefore, it is

not clear how many iterations of 2○ are required to obtain a correct

Q𝑘 . We achieve this non-trivial task and prove that our algorithm

runs in �̃� (𝑘) expected time.

Theorem 1. Our algorithm correctly returns Q𝑘 in 𝑂 (log𝑛 + 𝑘) ex-
pected time.

Proof. Computing 𝑗 can be done in 𝑂 (log𝑛) time by a binary

search. Next, we analyze the expected iteration number of 2○ that

is necessary to return 𝑘 distinct vectors in Q. Assume that we have

Q𝑘 such that |Q𝑘 | = 𝑘′ < 𝑘 . Let 𝐴𝑘 ′ be the number of iterations

required to find x, where x · q ≥ 𝜏 and x ∉ Q𝑘 . Notice that 𝐴𝑘 ′ is a

random variable. We have

Pr[𝐴𝑘 ′ =𝑚] = ( 𝑗 − |Q| + 𝑘
′

𝑗
)𝑚−1 × |Q| − 𝑘

′

𝑗
.

Let 𝑧 = 1 − |Q |−𝑘
′

𝑗 , then

𝐸 [𝐴𝑘 ′ ] =
∞∑︁

𝑚=1

𝑚𝑧𝑚−1 (1 − 𝑧) = 1

1 − 𝑧 (∵
∞∑︁

𝑚=1

𝑚𝑧𝑚−1 =
1

(1 − 𝑧)2
)

=
𝑗

|Q| − 𝑘′ = 𝑂 (1),

since 𝑗 = 𝑂 (𝑛), |Q| = 𝑂 (𝑛), and 𝑘′ = 𝑂 (𝑘). Now it is clear

that the expected number of iterations for having |Q𝑘 | = 𝑘 is∑𝑘−1
𝑘 ′=0 𝐸 [𝐴𝑘 ′ ] = 𝑂 (𝑘). This theorem hence holds. □

We can achieve the same running time as this expected time,

with at least constant probability.

Theorem 2. Our algorithm correctly returns Q𝑘 in𝑂 (log𝑛 + 𝑘) time
with at least constant probability.

3
We assume that |Q | ≥ 𝑘 . By setting the maximum number of iterations of 2○ as

𝑂 (log𝑛) , the worst case time of our algorithm still holds even if |Q | < 𝑘 .

Proof. Again assume that we have Q𝑘 such that |Q𝑘 | = 𝑘′ < 𝑘 . Let

𝐵 be an iteration that fails to obtain x, where x · q ≥ 𝜏 and x ∉ Q𝑘 .

Clearly, Pr[𝐵] = 1 − |Q |−𝑘
′

𝑗 . Assume that we have a sequence of 𝑠

failure iterations. This failure probability is bounded by

Pr[𝐵 ∪ ... ∪ 𝐵] ≤
∑︁
𝑠

Pr[𝐵] = 𝑠 (1 − |Q| − 𝑘
′

𝑗
)

from union bound. By considering 𝑠 (1 − |Q |−𝑘
′

𝑗 ) = 𝑐 such that

𝑐 ∈ (0, 1] and 𝑐 = 𝑂 (1), we have 𝑠 = 𝑂 (1). Then, we see that our
algorithm can obtain x with at least constant probability in 𝑂 (1)
time. By repeating this sequence 𝑘 times, this theorem is clear. □

Next, we consider the case where a higher success probability is

required.

Theorem 3. Our algorithm correctly returns Q𝑘 in 𝑂 (𝑘 log𝑛) time
with probability at least (1 − 1

𝑛 )
𝑘 .

Proof. Consider a similar setting to that in the proof of Theorem 2.

When we have a sequence of 𝑠 iterations, the probability that there

is at least one success iteration is 1− (1−𝑝)𝑠 , where 𝑝 =
|Q |−𝑘 ′

𝑗 . We

want to make it high probability, i.e., 1−1/𝑛. By setting 𝑠 = log 1

1−𝑝
𝑛,

this high probability is obtained. It is straightforward to see that

𝑠 = 𝑂 (log𝑛) from the proof of Theorem 1. Then, by using the same

rationale of the proof of Theorem 2, we can conclude that Theorem

3 also holds. □

Remark 1. For 𝑛 ≥ 10, 000 and 𝑘 ≤ 100 (which is a reasonable
setting), (1 − 1

𝑛 )
𝑘 ≥ 0.99. This means that our algorithm runs in at

most �̃� (𝑘) time in almost all cases.

The above theorems demonstrate that our algorithm runs in �̃� (𝑘)
time and theoretically outperforms the baseline algorithms employing
the state-of-the-art fair search techniques.

4 EXPERIMENT
This section reports our experimental results. All experiments were

conducted on a a Ubuntu 18.04 LTS machine with 128GB RAM and

3.0GHz Core i9-10980XE CPU.

Datasets. We used the following four real datasets.

• Amazon-Kindle [16]: A rating dataset for books in Amazon

Kindle. The number of items is 430,530.

• Amazon-Movie [16]: A rating dataset for movies in Amazon.

The number of items is 200,941.

• MovieLens
4
: This is theMovieLens 25M dataset, and the number

of items is 59,047.

• Netflix
5
: This is a rating dataset used in Netflix Prize, and the

number of items is 17,770.

We used Matrix Factorization [12] to generate query (user) vectors

and item vectors in an inner product space. The dimensionality of

each vector was 200.

Competitors. We compared our algorithm with

• Linear-Scan: the algorithm introduced in Section 2 that runs in

𝑂 (𝑛) time,

• NNS [10]: A state-of-the-art fair search algorithm that runs in

𝑜 (𝑘𝑛 log𝑛) expected time, and

4
https://grouplens.org/datasets/movielens/

5
https://www.cs.uic.edu/liub/Netflix-KDD-Cup-2007.html
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(d) Netflix

Figure 1: Impact of 𝑘 (output size): “×” shows Linear-Scan, “◦” shows NNS, “△” shows NNIS, and “▽” shows Ours.
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Figure 2: Impact of 𝜏 (threshold): “×” shows Linear-Scan, “◦” shows NNS, “△” shows NNIS, and “▽” shows Ours.

• NNIS [9]: A state-of-the-art fair and independent search algo-

rithm that runs in 𝑜 (𝑘𝑛 log5 𝑛) expected time.

All algorithms were implemented in C++ and compiled by g++ 7.5.0

with -O3 optimization.

All evaluated algorithms can provide a correct solution, i.e., they

return Q𝑘 such that |Q𝑘 | = 𝑘 and each x ∈ Q𝑘 satisfies x · q ≥ 𝜏 .

We therefore measured their running times and report the average

times by using all user vectors
6
. We did not test the space cost

of each algorithm, since it is guaranteed that our algorithm and

Linear-Scan, which do not require additional data structures, are

better than NNS and NNIS, which require 𝑂 (𝑛1+𝜖 ) space, where
𝜖 ∈ (0, 1), w.r.t. space cost. The default values of 𝑘 and 𝜏 were

respectively 5 and 4.0 (because the scale of ratings in the datasets

is 1 to 5).

Impact of 𝑘 . Figure 1 shows the results of our experiments vary-

ing the output size 𝑘 . As 𝑘 increases, our algorithm needs longer

running time. This is reasonable, as its time complexity is linear to

𝑘 . Since Linear-Scan needs 𝑂 (𝑛) time, it has no impact of 𝑘 . NNS

and NNIS are also less sensitive to 𝑘 .

We see that our algorithm is significantly faster than the other

algorithms. When 𝑘 = 5, for example, our algorithm is 318, 182, 72,

and 56 times faster than the best of the competitors on Amazon-

Kindle, Amazon-Movie, MovieLens, and Netflix, respectively. Fur-

thermore, even when 𝑘 = 20, our algorithm needs less than 0.15

[msec] in average for these four datasets. As noted in Section 2,

this less than millisecond order is highly preferable in large-scale

systems, clarifying the practical advantage of our algorithm.

6
Amazon-Kindle, Amazon-Movie, MovieLens, and Netflix have 1,406,890, 2,088,620,

162,541, and 480,189 users, respectively.

Impact of 𝜏 . Figure 2 exhibits the results of our experiments vary-

ing the threshold 𝜏 . Notice that, as 𝜏 increases, |Q| decreases. There-
fore, the running time of Linear-Scan decreases as 𝜏 increases. On

the other hand, the other algorithms need longer running times as 𝜏

increases. We found that, as 𝜏 increases, the success probability (i.e.,

the probability of sampling x ∈ Q) decreases. (For instance, |Q|/ 𝑗
of our algorithm decreases for larger values of 𝜏 .) This situation

requires a larger number of iterations, which leads to the longer

running time. Nevertheless, our algorithm keeps outperforming

the other algorithms, so our algorithm is still the first choice even

when 𝜏 is large.

5 CONCLUSION
This paper formulated a new problem, namely the fair and inde-

pendent inner product search (FI-IPS) problem. This problem can

alleviate the drawback of the 𝑘-maximum IPS problem (i.e., skewed

and static results), because FI-IPS returns 𝑘 items randomly sampled

from a set of items satisfying x · q ≥ 𝜏 . This paper overcame the

computational challenge of the FI-IPS problem, and we proposed

a simple yet efficient algorithm that returns a correct solution in

𝑂 (log𝑛 + 𝑘) expected time. We conducted experiments using real

datasets and demonstrated that our algorithm significantly outper-

forms baselines.
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