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ABSTRACT

Generally speaking, the model training for recommender systems

can be based on two types of data, namely explicit feedback and im-

plicit feedback.Moreover, because of its general availability, we see

wide adoption of implicit feedback data, such as click signal. There

are mainly two challenges for the application of implicit feedback.

First, implicit data just includes positive feedback. Therefore, we

are not sure whether the non-interacted items are really negative

or positive but not displayed to the corresponding user. Moreover,

the relevance of rare items is usually underestimated since much

fewer positive feedback of rare items is collected compared with

popular ones. To tackle such difficulties, both pointwise and pair-

wise solutions are proposed before for unbiased relevance learning.

As pairwise learning suits well for the ranking tasks, the previously

proposed unbiased pairwise learning algorithm already achieves

state-of-the-art performance. Nonetheless, the existing unbiased

pairwise learning method suffers from high variance. To get sat-

isfactory performance, non-negative estimator is utilized for prac-

tical variance control but introduces additional bias. In this work,

we propose an unbiased pairwise learning method, named UPL,

with much lower variance to learn a truly unbiased recommender

model. Extensive offline experiments on real world datasets and

online A/B testing demonstrate the superior performance of our

proposed method.
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1 INTRODUCTION

Recommender systems usually rely on implicit user feedback for

model training owning to the cheap cost of collecting such data

[17]. For this scenario, the typical model learning techniques [10,

14, 19], recognize interacted items as positive and all the other

items as potential negative examples. There are mainly two dif-

ficulties to learn unbiased user preference based on implicit feed-

back data. First, we are not sure whether a non-interacted item is

irrelevant to the user or positive but not yet recommended [4, 6].

The second challenge is that the positive feedback is missing-not-

at-random (MNAR) [25, 29] since users are more likely to interact

with the popular items because of the exposure bias and selection

bias [5].

To handle the aforementioned challenges, multiple methods [7,

15, 16, 21, 22] are proposed to learn unbiased models based on

the Missing-Not-At-Random implicit feedback data. WMF [7] ad-

dresses the first problemof positive-unlabeled feedback by upweight-

ing the training loss of the interacted ones. ExpoMF [16] models

the items’ exposure probability for more accurate training weight

of different items. Rel-MF [22] adopts inverse propensity weight-

ing [20, 23, 26] and derives the unbiased point-wise loss to achieve

better recommendation quality. And MF-DU [15] separately esti-

mate the exposure probability for interacted and non-interacted

data for better bias correction. Unlike the point-wise algorithms

of [7, 15, 16, 22], Unbiased Bayesian Personalized Ranking [21] ex-

tends the pair-wise learning algorithm of [19] and formulates an

unbiased objective function. As pairwise approach is more suitable

than the pointwise methods for the ranking task of recommender

systems [24, 27], UBPR [21] achieves state-of-the-art recommenda-

tion performance. Nevertheless, UBPR [21] suffers from high vari-

ance. As a result, non-negative estimator is applied to practically

control the variance at the cost of introducing additional bias.

One related but different line of research [2, 3, 8, 9, 18, 28] fo-

cuses on learning unbiased learning to rank models by modelling

position bias [5] as a counterfactual effect. In contrast, exposure

bias and selection bias [5] are much more important in our setting.

In this paper, we design an unbiased pairwise learning algo-

rithm with lower variance so as to circumvent the step of variance

control and perform truly unbiased learning. We summarize our

main contributions below.

• We design an effective unbiased pairwise learning algorithm

for implicit feedback with theoretically lower variance than

the existing approach.

• Thanks to the proposed low variance algorithm, its unbiased

pairwise loss function can be directly used without further

bias-variance trade-off.

http://arxiv.org/abs/2304.05066v2
https://doi.org/10.1145/3539618.3592077
https://doi.org/10.1145/3539618.3592077
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• We conduct offline experiments and online A/B testing to eval-

uate and understand the effectiveness of our method.

2 PRELIMINARIES AND NOTATIONS

Let D ∈ * represent a user and 8, 9 ∈ � denote an item. In addition,

let �?>8=C = * × � be the set of all possible interaction data. 2D,8
denotes the binary random variable of implicit interaction between

D and 8 . And AD,8 is the binary random variable representing the

relevance between D and 8 . Furthermore, >D,8 denotes the status

of exposure 8 to D . Only the interaction variables are observed for

implicit feedback. The implicit feedback 2D,8 can be modeled below.

% (2D,8 = 1) = % (>D,8 = 1) × % (AD,8 = 1)

= \D,8 × WD,8 ,∀(D, 8) ∈ �?>8=C (1)

where \D,8 = % (>D,8 = 1) and WD,8 = % (AD,8 = 1) represent the

exposure and relevance probability respectively. Moreover, we use

\−D,8 to represent the posterior exposure probability with negative

implicit feedback and can be computed below.

\−D,8 = % (>D,8 = 1|2D,8 = 0) =
\D,8 (1 − WD,8)

1 − \D,8WD,8
(2)

And % (AD,8>AD,9 ), which equals % (AD,8 = 1, AD,9 = 0), denotes the

probability distribution that user D prefers item 8 over item 9 . Fur-

thermore, given independent observation probability of different

items, it is intuitive to derive % (2D,8 = 1, 2D,9 = 0, >D,8 = 1, >D,9 = 1)

as follows.
% (2D,8 = 1, 2D,9 = 0, >D,8 = 1, >D,9 = 1)

= % (>D,8 = 1)% (>D,9 = 1)% (AD,8 = 1, AD,9 = 0))

= \D,8\D,9% (AD,8 = 1, AD,9 = 0)) (3)

3 METHODOLOGY

In this section, we propose an unbiased pairwise learning algo-

rithm, named UPL, with lower variance than the state-of-the-art

methods. It performs truly unbiased pairwise learning based on

implicit feedback by circumventing the step of external variance

control.

3.1 Existing Unbiased Pairwise Learning
Method for Biased Implicit Feedback

In the pairwise setting, the loss function is defined on the pair of

positive item 8 and negative item 9 for user D . For this scenario,

we let 5 (D, 8) denotes the ranker function to be learned to reflect

the relevance between D and 8 . And !( 5 (D, 8), 5 (D, 9)) denotes the

pairwise loss function. UBPR [21] utilizes an unbiased estimator

for the ideal pairwise loss and achieves the state-of-the-art results.

The unbiased loss function is defined as follows, where '46( 5 ) and

_ are the regularization loss and loss weight respectively. Unlike

BPR [19] with strict pair defined on the implicit feedback, 2D,9 be-

low can be positive or negative.

'D1?A ( 5 ) =
∑
D,8, 9

2D,8

\D,8
(1 −

2D,9

\D,9
)!( 5 (D, 8), 5 (D, 9)) + _'46( 5 ) (4)

Nonetheless, its variance depends on the inverse of the product of
two propensity scores, namely \D,8 and \D,9 . Thus, it tends to pro-

duce suboptimal results, especially for the tail items with low expo-

sure probability. Furthermore, the unbiased estimator can take neg-

ative values by definition, thereby causing ever severe variance is-

sues and hindering model convergence. Therefore, inspired by the

work of positive-unlabeled learning [13], non-negative estimator,

which clips large negative values, is applied for practical variance

control but introduces additional bias.

3.2 Proposed Unbiased Pairwise Estimator

First, the ideal pairwise risk function and the ranker learned through

empirical riskminimization are defined in Equation 5 and Equation

6 respectively. With the ideal pairwise risk of Equation 5, we try

to minimize the overall loss for valid tuples of (D, 8, 9).

'8340; ( 5 ) =

∫
!( 5 (D, 8), 5 (D, 9))3% (AD,8 = 1, AD,9 = 0) (5)

5̂8340; = argmin
5

(
∑

AD,8=1,AD,9=0

!( 5 (D, 8), 5 (D, 9)) + _'46( 5 )) (6)

Then, according to equation 3, we can prove the unbiased risk

function defined on the implicit feedback pairs:
'*%! ( 5 )

=

∫
!( 5 (D, 8), 5 (D, 9))

\D,8\D,9
% (>D,9 =1|2D,8 =1, 2D,9 =0)3% (2D,8=1,2D,9=0)

=

∫
!( 5 (D, 8), 5 (D, 9))

\D,8\D,9
3% (2D,8=1,2D,9=0,>D,8=1,>D,9=1)

=

∫
!( 5 (D, 8), 5 (D, 9))

\D,8\D,9
3% (AD,8=1,AD,9=0)% (>D,8=1)% (>D,9=1)

=

∫
!( 5 (D, 8), 5 (D, 9))3% (AD,8 = 1, AD,9 = 0)= '8340; ( 5 ) (7)

As '*%! is an unbiased estimator of '8340; , we can learn an unbi-

ased ranker through minimizing the corresponding empirical loss

function. Moreover, given independent exposure probabilities be-

tween different items, we can see % (>D,9 = 1|2D,8 = 1, 2D,9 = 0) =

% (>D,9 = 1|2D,9 = 0) = \−D,9 . All in all, the unbiased ranker can be

learned based on Equation 8, where '46( 5 ) and _ are the regular-

ization loss and loss weight respectively. In contrast to UBPR, the

empirical risk is only dependent on the valid pairs of implicit feed-

back, for which 2D,8 is greater than 2D,9 .

5̂*%! = argmin
5

(
∑

2D,8=1,2D,9=0

!( 5 (D, 8) 5 (D, 9))\−D,9

\D,8\D,9
+ _'46( 5 ))

= argmin
5

(
∑

2D,8=1,2D,9=0

!( 5 (D, 8), 5 (D, 9))(1 − WD,9 )

\D,8 (1 − \D,9WD,9 )
+ _'46( 5 )) (8)

First, we can see the risk function cannot take negative values.
Furthermore, we can derive its variance as below. Because of con-

trained space, we omit the detailed proof here.

+�'*%! =

∑
2D,8=1
2D,9=0

( 1
\D,8

− WD,8 )WD,8 (1 − WD,9 )
2!2D,8, 9

(1 − \D,9WD,9 )2

+
∑

2D,8=1,2D,9=0
2D,:=0,:≠ 9

( 1
\D,8

− WD,8 )WD,8 (1 − WD,9 )(1 − WD,: )!D,8, 9!D,8,:

(1 − \D,9WD,9 )(1 − \D,:WD,: )
(9)

where !D,8, 9 stands for !( 5 (D, 8) 5 (D, 9)). Since (1−\D,9WD,9 ) is usu-
ally far away from 0 even for the most popular items and other

factors, including WD,8 and (1−WD,9 ), are bounded between 0 and 1,

the variance of Equation 9 largely depends on the inverse of \D,8 . In

comparison, the variance of UBPR [21] is impacted by the inverse

of the product of \D,8 and \D,9 , thereby producing a much greater
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DataSets Methods
DCG@K Recall@K MAP@K

K=3 K=5 K=8 K=3 K=5 K=8 K=3 K=5 K=8

Yahoo! R3

WMF 0.08312 0.09643 0.10809 0.08962 0.11807 0.15041 0.06809 0.07649 0.08343

Rel-MF 0.08586 0.09894 0.11019 0.09243 0.12040 0.15165 0.07052 0.07896 0.08574

MF-DU 0.08493 0.09828 0.10967 0.09150 0.12002 0.15160 0.06995 0.07854 0.08538

BPR 0.09077 0.10415 0.11405 0.09745 0.12577 0.15327 0.07455 0.08313 0.08917

UBPR 0.09418 0.10745 0.11693 0.10127 0.12941 0.15555 0.07792 0.08667 0.09263

*�%'#�;8? 0.09061− 0.10389− 0.11425− 0.09745− 0.12572− 0.15442− 0.07485− 0.08350− 0.08988−

*%! 0.09698 0.11005 0.11906 0.10403 0.13175 0.15673 0.08072 0.08945 0.09511

Coat

,"� 0.10320 0.12415 0.14580 0.11322 0.15815 0.21844 0.08616 0.10017 0.11392

Rel-MF 0.10516 0.12474 0.14815 0.11513 0.15648 0.22141 0.08728 0.10088 0.11539

MF-DU 0.10529 0.12596 0.14955 0.11511 0.15923 0.22419 0.08795 0.10212 0.11628

�%' 0.10048 0.12127 0.14451 0.11023 0.15477 0.21932 0.08357 0.09717 0.11158

*�%' 0.10727 0.12735 0.14990 0.11769 0.16082 0.22359 0.08897 0.10229 0.11641

*�%'#�;8? 0.10597 0.12649 0.14900 0.11598− 0.16013 0.22279 0.08808 0.10142 0.11520

*%! 0.10730 0.12886 0.15073 0.11787 0.16416 0.22510 0.08923 0.10375 0.11751

Table 1: Ranking performance on Yahoo! R3 and Coat datasets. (The results of UPL with underline indicate p < 0.05 for one-

tailed t-test with the best competitor. And *�%'#�;8? ’ results with ’-’ indicate significant worse than UBPR (p<0.05).)

variance. As a result, we do not adopt any further variance reduc-

tion techniques on top of the unbiased pairwise learning estimator.

Interestingly, if \−D,9 is approximated with \D,9 in equation 8, we

can derive exactly the same estimator practically applied in UBPR

after clipping all of the negative values. From this perspective, it is

pretty obvious that the UBPR algorithm is not really unbiased in

practice. To verify the necessity of variance control in UBPR, we

will also remove the variance-bias trade-off step to test its perfor-

mance in our experiments.

3.3 Learning Algorithm

Algorithm 1: Unbiased Pairwise Learning (UPL)

Data: implicit feedback data {2D,8 }; learned relevance from

Rel-MF {WD,8 }

Input: mini-batch size" ; regularization parameter _;

learning_rate U

Output: learned ranker 5 ’s parameters,

1 Initialize parameters, of Ranker 5

2 Estimate propensity scores of {\D,8 }

3 while Not Convergence do

4 Sample one mini-batch data of size"

5 !>BB =
∑
2D,8=1,2D,9=0

! (5 (D,8),5 (D,9)) (1−WD,9 )

\D,8 (1−\D,9WD,9 )
+ _'46( 5 )

6 Compute the gradient of, based on !>BB

7 Update, according to U

8 Return,

In this section, we formally describe the learning algorithm. First,

the dependence on WD,9 is one problem of the above learning algo-

rithm. Thanks to the work of Rel-MF [22], theoretically, the Rel-MF

model can predict unbiased relevance after convergence, which is

also used as our input. Though the prediction results of Rel-MF

may deviate, intuitively, we are likely to get better performance

than UBPR since it uses a rather loose approximation for \−D,9 . Then,

the ranker 5 is trained by optimizing the empirical risk function

of Equation 8. The whole learning procedure is illustrated in Al-

gorithm 1. As the model training is of a general process, it can be

combined with any pairwise algorithms, such as [11, 19, 24],

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed

UPL algorithm. We open all of the related source code on Github1.

4.1 Experimental Setup
4.1.1 Datasets. We used Yahoo! R32 and Coat3. They are selected

because we can leverage the explicit feedback data with five-star

ratings for relevance evaluation.Morevoer, they include bothMissing-

Not-At-Random training data andMissing-Completely-At-Random

test data. First, we transform five-star ratings into relevance prob-

ability with WD,8 = n + (1 − n) 2A−1
2A<0G −1 . We apply n = 0.1 for train-

ing while n = 0 for testing. Second, we sample binary relevance

variable with AD,8 = �4A=(WD,8). Third, we define the exposure vari-

able >D,8 based on whether userD rated item 8 . Finally, we compute

2D,8 = >D,8AD,8 , which is the observed implicit feedback.

4.1.2 EvaluationMetrics. We adopt three widely used implicit rec-

ommendation evaluation metrics – DCG@k (Discounted Cumula-

tive Gain), Recall@k and MAP@k (Mean Average Precision). The

detailed definition can be found in [21, 22]. We report results with

k = 3, 5, 8.

4.1.3 Models. We tested pointwise algorithms of WMF [7], Rel-

MF [22], MF-DU [15] and pairwise algorithms of BPR [19] and

UBPR [21] as baselines. For UPL, we combined with the BPR [19]

algorithm. For UBPR, we also included the variant of removing

the variance-bias trade-off step, named *�%'#�;8? , to study the

impact of its variance. We followed the definition of [21] for rare

items (less than 100 clicks in the training set) and cold-start users

1https://github.com/renyi533/unbiased-pairwise-rec/tree/main
2http://webscope.sandbox.yahoo.com/
3https://www.cs.cornell.edu/schnabts/mnar/
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Subsets Methods
DCG@K Recall@K MAP@K

K=3 K=5 K=8 K=3 K=5 K=8 K=3 K=5 K=8

Cold-start users

WMF 0.08406 0.09618 0.10773 0.08984 0.11584 0.14790 0.07002 0.07791 0.08465

Rel-MF 0.08729 0.09944 0.11058 0.09337 0.11943 0.15038 0.07290 0.08077 0.08737

MF-DU 0.08701 0.09958 0.11058 0.09306 0.11992 0.15046 0.07305 0.08108 0.08766

BPR 0.09209 0.10442 0.11450 0.09892 0.12501 0.15307 0.07647 0.08442 0.09055

UBPR 0.09560 0.10880 0.11792 0.10230 0.13035 0.15537 0.08061 0.08942 0.09507

UPL 0.09689 0.11005 0.11905 0.10345 0.13139 0.15626 0.08278 0.09159 0.09711

Rare items

WMF 0.04227 0.05324 0.06011 0.04711 0.07057 0.08935 0.03214 0.03890 0.04291

Rel-MF 0.04454 0.05484 0.06141 0.04940 0.07147 0.08943 0.03429 0.04064 0.04456

MF-DU 0.04545 0.05565 0.06199 0.05032 0.07210 0.08940 0.03520 0.04156 0.04532

BPR 0.04720 0.05690 0.06287 0.05208 0.07283 0.08917 0.03713 0.04311 0.04672

UBPR 0.05268 0.06160 0.06639 0.05797 0.07694 0.08995 0.04122 0.04691 0.04998

UPL 0.05483 0.06336 0.06761 0.06016 0.07826 0.08981 0.04366 0.04923 0.05198

Table 2: Ranking performance for cold-start users and rare items on Yahoo! R3 (The results of UPL with underline indicate p

< 0.05 for one-tailed t-test with the best competitor.)

(less than six clicks in the training set) to study the performance

of different algorithms in these two harder tasks.

Following [15], for MF-DU, we separately computed the propen-

sity scores for clicked and non-clicked items respectively as:

\�;82:∗,8 = (
=8

<0G8 ∈�=8
)0.5 \#�;82:

∗,8 = (1 −
=8

<0G8 ∈�=8
)0.5 (10)

where =8 means the number of interactions to the item 8 by all
users. While for Rel-MF, UBPR and UPL, following [21, 22], we

used \�;82:∗,8 as the propensity scores for all of the items.

To be Consistent with [21], we randomly sampled 10% of the

training data as validation data to tune the user-item latent fac-

tors within [100, 300], L2 regularization hyperparameter within

[10−7, 10−3], and the non-negative estimator’s clipping threshold

for UBPR in [-10, 0]. All models are implemented with tensorflow

[1] and optimized using the Adam optimizer [12] with an initial

learning rate of 0.001 and a mini-batch size of 256.

For eachmodel, we performed 50 runs on both datasets to report

the experiment results.
4.2 Experiment Results
4.2.1 Overall Offline Results. For the overall ranking performance

on both the Yahoo! R3 and Coat datasets, the results of all meth-

ods are presented in Table 1. For both datasets, our UPL algorithm

outperforms the other baseline methods under all settings. For the

results of UPL, the underline symbol indicates a significant gain

(p<0.05 for one tailed t-test) over the best competitor algorithm.

For all the results of Yahoo! R3, UPL achieves significant perfor-

mance gain. Though the results of Coat are of more variance, UPL

still showes significant performance gain for themetrics ofDCG@5,

Recall@5 and MAP@5. These results support that our strategy of

performing true unbiased pairwise learning is effective in improv-

ing the ranking performances.

In addition, the pairwise algorithms show better ranking perfor-

mance than the pointwise ones. For instance, BPR achieves even

better results than the debiased pointwise algorithms in Yahoo! R3

datasets. And UBPR is the second best method for almost all set-

tings.

Finally, *�%'#�;8? is of worse performance than UBPR, espe-

cially for Yahoo R3 dataset, which verifies the necessity to perform

external variance control for UBPR. Moreover, though the loss clip-

ping threshold for UBPR is tuned between [-10, 0], the best per-

formance is always derived with a value very near to 0, which is

exactly one approximation of UPL by approximating \−D,9 with \D,9
as described in section 3.2.

In summary, the proposed approach in this paper is helpful for

addressing the positive-unlabeled and Missing-Not-At-Random is-

sues, which constitute themain challenges for recommendermodel

learning from implicit feedback data.
4.2.2 Offline Results for Rare Items and Cold-start Users. Consid-

ering the importance of recommendation for rare items and cold-

start users in real-world scenarios, we added the experiment re-

sults on Yahoo R3! datasets for rare items and cold-start users in

table 2. Except the metric of Recall@8 for rare items, UPL achieves

significant gain over the most competitive baselines. And for Re-

call@8 of rare items, UBPR does not show significant gain over

UPL. Overall, we can draw the conclusion that the proposedmethod

is a promising choice for constructing recommender systems based

on implicit feedback.
4.2.3 Online A/B Testing. We verified the effectiveness of our pro-

posed algorithm by replacing the existing BPR [19] model with

the UPL model in the matching stage of a large-scale content rec-

ommender system at Tencent. There were tens of recall models

deployed in the matching stage. The union of the outputs of these

models was used as the input to the ranking stage. And the BPR

model used to be the most important recall model by accounting

for about 30% displayed items. The seven days A/B testing showed

a significant gain of 0.7% for our main online metric of app stay

time per person.Moreover, we classified the items to long-tail (<3,000

impressions), hot (500,000+) and others based on their exposure

count before the A/B tesing. For long-tail and other contents, we

observed more exposure by 1.31% and 1.74% respectively. While

the impressions for hot items decreased 2.43%.

5 CONCLUSION
In this paper, we propose an unbiased pairwise learning method,

named UPL, for recommender systems based on implicit feedback.

We theoretically prove the unbiasedness of UPL and its advantage

of lower variance over the existingmethod of UBPR [21]. Extensive
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offline experiments and online A/B testing help to verify UPL’s

effectiveness at tackling the positive-unlabeled and Missing-Not-

At-Random challenge for recommender model learning from the

biased implicit feedback. Both the theoretical and empirical results

suggest the proposed method is a competent candidate.
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