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ABSTRACT
Graph Neural Network (GNN)-based models have become the main-
stream approach for recommender systems. Despite the effective-
ness, they are still suffering from the cold-start problem, i.e., recom-
mend for few-interaction items. Existing GNN-based recommen-
dation models to address the cold-start problem mainly focus on
utilizing auxiliary features of users and items, leaving the user-item
interactions under-utilized. However, embeddings distributions of
cold and warm items are still largely different, since cold items’
embeddings are learned from lower-popularity interactions, while
warm items’ embeddings are from higher-popularity interactions.
Thus, there is a seesaw phenomenon, where the recommendation
performance for the cold and warm items cannot be improved
simultaneously. To this end, we proposed a Uncertainty-aware
Consistency learning framework for Cold-start item recommenda-
tion (shorten as UCC) solely based on user-item interactions. Under
this framework, we train the teacher model (generator) and student
model (recommender) with consistency learning, to ensure the cold
items with additionally generated low-uncertainty interactions can
have similar distribution with the warm items. Therefore, the pro-
posed framework improves the recommendation of cold and warm
items at the same time, without hurting any one of them. Extensive
experiments on benchmark datasets demonstrate that our proposed
method significantly outperforms state-of-the-art methods on both
warm and cold items, with an average performance improvement
of 27.6%.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Recommender systems have become a fundamental service for
filtering information by learning from collected user behavioral
data and inferring users’ personalized demands. Currently, GNN-
based models, with their strengths in learning from structured data
and capturing high-order similarity, have become state-of-the-art
approaches in various recommendation tasks [9]. GNNs have a
strong ability to incorporate information from the neighboring
nodes, helping to understand the local context of nodes. However,
it leads to the poor performance for the cold-start recommenda-
tion [1, 4, 14, 21, 26, 27, 29], which occurs when a new item node
is added to the graph. Specifically, there are not enough neighbors
for the new item due to few user-item interactions. The cold-start
recommendation problem can be particularly challenging in scenar-
ios where the user-item graph rapidly evolves, such as short-video
recommendation [15].

To address this challenge, existing models [5, 8, 20, 21, 30] have
proposed various techniques for incorporating additional infor-
mation into GNNs, such as social networks, node attributes, and
other metadata, which can partly improve the performance for cold-
start items. However, cold items’ embeddings are still continuously
learned from fewer interactions, while warm items’ embeddings are
still mainly learned from adequate interactions [2, 3], which leads
to the issue that the distributions of embeddings of cold and warm
items are significantly different. That is, the collected interaction
of cold items cannot reflect the real item characteristics due to less
exposure, thus resulting in the seesaw phenomenon, i.e., improves
the recommendation of either the cold or warm items will hurt the
other [6, 28].
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To this end, we proposed a framework for bridging the distribu-
tion gap between cold items and warm items in the cold-start recom-
mendation, with two key designs included: a) Uncertainty-aware
InteractionGeneration, b)Graph-based Teacher-Student Con-
sistency Learning. In particular, we first introduce low-uncertainty
interactions and take use of generated interactions for embedding
learning, to address the distribution difference which causes the
seesaw phenomenon. We then develop a teacher-student training
paradigm that improves the robustness [16, 24] in embedding learn-
ing for cold and warm items. Specifically, we propose a contrastive
loss to keep the consistency of item embeddings before and after
the interaction generation. We further fine-tune the student model
on the recommendation task, maintaining the consistency between
the teacher model and student model. Our contributions can be
summarized as follows:
• We propose approach the cold-start problem from the novel per-
spective of addressing the distribution difference between cold
and warm items, by proposing a general UCC framework.
• Under the framework, we first address the distribution gap be-
tween cold and warm items through our uncertainty-aware in-
teraction generation, and keep both item-level and model-level
similarity with consistency learning, which can improve model’s
robustness.
• We conduct extensive experiments to demonstrate the effec-
tiveness of our framework. The results shown an average im-
provement of 27.6% in ranking metrics compared to the baseline
method on two widely-used benchmark datasets.

2 PROBLEM FORMULATION
Notations. The common GNN-based model paradigm can be for-
mulated as follows: LetU = {𝑢}, I = {𝑖} denote the set of users
and items respectively. The interactions of user and item can be
regard as O =

{
(𝑢, 𝑖+) | 𝑢 ∈ U, 𝑖+ ∈ I

}
, where each pair represents

each observed feedback.
Input:Most GNN-based models treat user-item interactions as a
bipartite graph, where the node set isV = U∪I and the edge set is
G = (V,O+). In the training process of graph representation learn-
ing, we use E𝑢 = [𝑒𝑢1 , · · · , 𝑒𝑢𝑀

] ∈ R𝑀×𝐷 ,E𝑖 = [𝑒𝑖1 , · · · , 𝑒𝑖𝑁 ] ∈
R𝑁×𝐷 to denote the user embedding and item embedding, where D
is the dimension size of embedding,𝑀, 𝑁 are the number of users
and items respectively.
Output: Recommendermodels estimate the relations of unobserved
user-item pairs through the dot products of their embeddings [10,
12, 13]. Specifically, the scores {𝑠𝑚𝑛} of a given user m and a given
item n, where 𝑠𝑚𝑛 is calculated as:

𝑠𝑚𝑛 = 𝑒𝑢𝑚𝑒
𝑇
𝑖𝑛
, (1)

then rank items by their scores - a high score means that the user
prefers. The top-k items from the ranking list are adopted into a
candidate set and recommended to the user.

3 METHODOLOGY
3.1 Uncertainty-aware Interaction Generation
For the cold-start recommendation, one main reason for the lim-
ited performance is the different distribution between cold items
and warm items caused by popularity bias. Hence, we propose to

generate similar distributed interactions for cold items as warm
items, and we need to select accurate and reliable interactions from
unobserved interactions.

However, since totally unbiased and accurate interactions for
the original data used are unavailable, especially for cold items,
it is hard to discriminate whether an interaction is reliable. We
thus propose to estimate the uncertainty degree of each user-item
interaction, and select low-uncertainty interactions for each item.
We estimate the uncertainty of the particular interaction between
the user 𝑢𝑚 and item 𝑖𝑛 by their similarity. We apply the cosine
distance to calculate the similarity:

𝑑𝑚𝑛 =

���𝑒𝑢𝑚𝑒𝑇𝑖𝑛 ���

𝑒𝑢𝑚 

 

𝑒𝑖𝑛 

 , (2)

With the pre-trained recommender, we have the ranking scores
{𝑠𝑚𝑛}𝑁𝑛=1 of each item 𝑖𝑛 for all users. The average of all ranking
scores measures the overall uncertainty degree of the item 𝑖𝑛 as
follows:

𝑠𝑛 =
1
𝑀

𝑀∑︁
𝑚=1

𝑠𝑚𝑛, (3)

where 𝑠𝑛 provides a description of the overall interaction uncer-
tainty of the item 𝑖𝑛 . We aim to force the cold items with generated
interactions to have a similar distribution as the warm items to
improve the recommendation performance for both cold and warm
items. A small 𝑑𝑛𝑚 interactions are regarded as uncertain ones and
are filtered out in the generation phase. This selection strategy
based on the interaction uncertainty guides the generator on more
certain interactions to mitigate the popularity bias in the cold-start
problem. The selection is as follows:

Ô𝑛 = 𝐼 (𝑑𝑚𝑛 > 𝛼𝑠𝑛), (4)

where 𝛼 is a pre-defined parameter and 𝐼 is the indicator function.

3.2 Teacher-Student Consistency Learning
The consistency learning for our framework consists of two parts:

3.2.1 Item-level consistency learning. We adopt the contrastive
loss for the item embeddings between pre-generation and post-
generation. Inspired by [19], we adopt two augmentations - strong
augmentation and weak augmentation. Specifically, the weak aug-
mentation drops out the edges in the graph with a dropout ratio 𝜌 ,
which can be formulated as follows:

G𝑤 = (V,M · O+), (5)

whereM ∈ {0, 1} | O+ | is the masking vector. The strong augmenta-
tion based on generated labels adds more edges to the graph, which
can be formulated as follows,

G𝑠 = (V,O+ + Ô), (6)

Two augmentation operations on the graph generates two dif-
ferent views of each node. For the item node 𝑖 , we denote its two
different views as 𝑧′

𝑖
, 𝑧′′

𝑖
(on weak and strong graphs respectively).

We perform a consistency regularization for these different views,
to encourage the similarity between different views of the same
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Figure 1: The overall framework of UCC. A teacher model (the upper blue frame) is first trained under weak augmentation
regularization. Then interactions are generated with uncertainty-aware selection process. Finally the generated interactions
serve for the student model training (the lower green frame). Strong augmentation based consistency regularization and
integrated teacher representation increase the robustness of the student model.

node. To implement the consistency regularization, the contrastive
loss [7] is as follows,

Lcr, item =
∑︁
𝑖∈I
− log

exp(sim(𝑧′
𝑖
, 𝑧′′
𝑖
)/𝜏)∑

𝑗∈I exp(sim(𝑧′
𝑖
, 𝑧′′

𝑗
)/𝜏) , (7)

where Lcr, item denotes the item-side consistency regularization
loss for the teacher and the student model, respectively. Here
sim(·, ·) denotes the similarity function, for which we use cosine
similarity, and 𝜏 is a pre-defined hyper-parameter. The user-side
consistency regularization loss Lcr, user can be similarly calculated,
and we omit it due to the limit of space. The final consistency loss
Lcr = Lcr, item + Lcr, user serves for consistency regularization.
For the recommendation loss we use Bayesian personalized ranking
(BPR) [17] loss to optimize the representation learning, which can
be formulated as follows,

Lrec =
∑︁

(𝑢,𝑖+,𝑖− ) ∈𝑂
− ln𝜎 (𝑦𝑢𝑖+ − 𝑦𝑢𝑖− ) + 𝜆∥Θ∥22, (8)

where (𝑢, 𝑖+), (𝑢, 𝑖−) represent observed/unobserved interaction
pairs and ∥Θ∥22 is L2-regularization of model’s parameters. Then
our final loss of the whole framework is:

Ltotal = Lrec + 𝜇Lcr, (9)

where 𝜇 is a hyper-parameter.

3.2.2 Model-level consistency learning. To maintain the consis-
tency between the teacher model and student model, We denote
the embedding of the student model’s embedding as E𝑠 . After each
iteration, we propose to accumulate the teacher embedding into
the student embedding:

E𝑠 ← 𝛾E𝑠 + (1 − 𝛾)E𝑡 , (10)

where 𝛾 denotes a momentum term that controls the impact of
the teacher model. Here the accumulation step includes both user
embeddings and item embeddings.

Table 1: Performance comparison on benchmark datasets.

Dataset Yelp Amazon-Book
Metric Recall NDCG Recall NDCG

LightGCN 0.0639 0.0515 0.0410 0.0318
IRBPR 0.0538 0.0438 0.0325 0.0246
NB 0.0640 0.0526 0.0425 0.0328
ADT 0.0691 0.0388 0.0335 0.0176
SGL 0.0673 0.0554 0.0477 0.0378
UCC 0.0713 0.0587 0.0523 0.0410

Improv. +11.6% +14.0% +27.6% +28.9%

4 EXPERIMENTS
4.1 Experimental Setting
Datasets. We conduct experiments on benchmark datasets: Yelp
and Amazon-Book, following the same 10-core setting as [11, 12].
We split all user-item interactions into training, validation, and
testing set with the ratio of 7:1:2, evaluating the top-𝐾 recommen-
dation performance with two widely-used metrics Recall@K and
NDCG@K where 𝐾 = 20, following [11].
Baselines.We select LightGCN[11] as the backbone of our GNN-
based model. Since we mainly focus on modeling user-item inter-
actions but not the features of items, we compare our model with
state-of-the-art recommendation models which can be classified
into two classes: generative model NB[18] and denosing model
IRBPR[23], ADT[22], SGL[25] for user-item interactions.

4.2 Recommendation Performance Comparison
We evaluate the model from two aspects, overall recommendation
performance and cold-start recommendation performance.

4.2.1 Overall Performance. The details of the comparison are listed
in Table 1. The following points are observed:
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Figure 2: Performance comparison over item groups.

•OurUCC outperforms previousmodels significantly on all datasets.
On the Yelp dataset, our method outperforming recall of LightGCN
by 11.6%. Compared to the state-of-the-art graph based method
SGL, our method also obtains a higher recall of SGL by 6%. The
improvement is consistent for Amazon-Book. This demonstrates
the effectiveness of our uncertainty-aware consistency learning.
•Ourmethod improves Recall@20 significantlymore on theAmazon-
Book dataset - 27.6% compared to LightGCN and 9.6% higher than
SGL. The reason is that the interactions for cold items in amazon-
book are more biased and sparse. This validates that our method
targets at the cold-start problem and well alleviates the restriction
of different distribution between cold items and warm items.

4.2.2 Cold-Start Performance. We further compare our methods
with LightGCN on cold and warm items separately to illustrate its
effectiveness for cold-start recommendation. We split items into
ten groups based on the popularity, meanwhile keeping the total
number of interactions of each group the same.We treat the last two
groups as cold-start items. The larger the GroupID is, the warmer
the items are. We evaluate our method on different groups and plot
the Recall@20 in Figure 2. From the results, we notice that our
method outperforms LightGCN on all groups, no matter whether
the items are warm or cold. In comparison, many current methods
improve the performance of cold items at the cost of warm item
accuracy. Also, our method improves the recall of LightGCN more
prominently on cold items. On the Yelp dataset, our method obtains
nearly 7 times compared to recall of LightGCN. Themost significant
improvement comes from the groupid 1 items of Amazon-Book. In
this group, the recall of amazon-book obtains is 0.0009. In contrast,
the recall of our method obtains 0.0045, improved by 400%. This
strongly demonstrates the effectiveness of our method for cold-start
recommendation and the problem of the seesaw phenomenon.

4.3 Ablation Study of UCC
In this section, we perform ablation studies to evaluate each com-
ponent of UCC, which consists of two parts: Uncertainty-aware
Interaction Generation and Teacher-Student Consistency Learning.

4.3.1 Uncertainty-aware interaction generation. We calculate the
average number of generated interactions for different item groups.
We find the number of generated interactions is adaptive for differ-
ent items. For cold items, the average number of produced interac-
tions is about 3.5, which is about 1.0 for warm items in comparison.
Since the generated low-uncertainty interactions contribute more
for cold items, the uncertainty guided strategy well alleviating the

30 35 40 45 50 55 60 65 70
Epoch

0.0695

0.0700

0.0705

0.0710

Re
ca

ll

teacher
finetune learning
continuous learning
teacher-student learning

Figure 3: Study of teacher-student learning.

different distribution between warm items and cold items. We also
notice that the simple usage of item-side generated interactions
helps improves the performance. The performance increase indi-
cates that our item-side adaptive generated interactions can indeed
alleviate the cold-start problem. User-side generated interactions,
in comparison, cannot improve the recommendation ability of the
model - even lowering the Recall@20 from 0.0673 to 0.0671. This is
because user-side generated interactions are biased and exacerbate
the distribution between cold and warm items. This demonstrates
the superiority of our uncertainty-aware interaction generation.

4.3.2 Teacher-Student Consistency Learning. We show the effec-
tiveness of our teacher-student learning approach. We design two
comparing experiments: 1) Finetune learning: We train the stu-
dent representations with generated interactions directly from the
teacher model embeddings without accumulating teacher represen-
tations. 2) Continuous learning: We train the student embeddings
with accumulating with teacher embeddings without using gen-
erated interactions. We plot the results in Figure 3. We observe
that our teacher-student learning approach obtains a higher per-
formance. The superior comes from two aspects. Compared with
finetune learning, our student model maintains more information
from the teacher model. The information within the teacher em-
beddings alleviates the negative effect of noise from generated
interactions. Compared with continuous learning, we provide more
interactions for cold items, thus mitigating the cold-start problem.
Through the proposed teacher-student learning framework, similar
distributions of information and data are accumulated together,
thus helping obtain a better recommendation performance.

5 CONCLUSION
In this paper, we identify that the main limitation comes from the
interaction-distribution difference between cold andwarm items. To
address it, we propose an uncertainty-aware consistency learning
framework. The extraordinary performance on benchmark datasets
and its easy-to-use property make our framework practical in both
academia and industry.
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