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ABSTRACT
In this paper, we highlight that both conformity and risk prefer-
ence matter in making fund investment decisions beyond personal
interest and seek to jointly characterize these aspects in a disentan-
gled manner. Consequently, we develop a novel Multi-granularity
Graph Disentangled Learning framework named MGDL to effec-
tively perform intelligent matching of fund investment products.
Benefiting from the well-established fund graph and the attention
module, multi-granularity user representations are derived from
historical behaviors to separately express personal interest, confor-
mity and risk preference in a fine-grained way. To attain stronger
disentangled representations with specific semantics, MGDL ex-
plicitly involve two self-supervised signals, i.e., fund type based
contrasts and fund popularity. Extensive experiments in offline and
online environments verify the effectiveness of MGDL.
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1 INTRODUCTION
The beginning of the economic era centered on “personal finance”
encourages the flourishing of online investment platforms(e.g.,
Wealthfront and Alipay). To help individual investors make fund
investment decisions, current financial platforms strive to provide
intelligent matching of fund products among a large number of
choices, which can be naturally abstracted as a classical matching
or recommendation problem [7, 16, 26] with great interest-oriented
efforts [15, 20] based on sequential [4, 10, 17] and graph learn-
ing [2, 3, 6, 8, 12, 21, 25, 28] based modelling. Despite considerable
success in various traditional recommendation scenarios, e.g., E-
commerce, intelligent fund matching may be unlikely to benefit
since personal interest may lose its leading role in the decision of
financial products.

Comprehensive facts have shed light on the question “Which
matters most in making fund investment decisions beyond per-
sonal interest”, lying in the following two aspects related to the
fairly unique financial scenarios (as shown in Fig. 1): (1) Conformity
widely exists among individual investors. In the current fund mar-
ket, a wealth of investment products have sprung up. Unfortunately,
most users’ financial knowledge could not meet their increasing
investment needs, resulting in the common phenomenon that a
large number of users buy fund products with the crowd. (2) Risk
Preference is of crucial importance for making investment decisions.
Different fund products refer to different risk levels. Therefore,
users’ risk preference derived from historical behavior, as a decisive
signal, deserves more attention for discovering desired funds.

Intuitively, the idea of injecting both conformity and risk pref-
erence is impressive, while the solution is non-trivial, facing the
following challenges. (C1): Users’ investment decisions are attrib-
uted to multiple aspects, i.e., personal interest, conformity and risk
preference. Therefore, it is desired to develop a multi-granularity
framework for disentanglement since a unified user representation
is insufficient to capture such differences. (C2): The interactivity
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Figure 1: A toy example of graph based intelligent fund
matching in practical financial platforms.

between funds is powerful to capture users’ disentangled repre-
sentations, since fund products with similar categories or fund
managers always show similar representations through interaction.
Subsequently, high-order correlations between fund products are
encouraged to be incorporated. (C3): In the practical scenarios,
only implicit feedback (e.g., click) could be collected for guiding the
overall learning procedure (i.e., personal interest). Hence, it is hard
to obtain external labeled data to distinguish the remaining aspects
(i.e., conformity and risk preference) with explicit supervision.

To tackle these challenges, we proposeMGDL, aMulti-granularity
Graph Disentangled Learning framework to help users discover
the most proper fund products. To distinguish multiple aspects
of user representations, we seek to build MGDL upon recently
emerging disentangled procedure with historical behaviors, where
multi-granularity representation could be obtained based on the
attention mechanism in a fine-grained manner (C1). By introducing
the fund knowledge graph (Fig. 1), we inject graph learning into
sequential learning based on the well-designed fund graph, whose
goal is to pull similar funds closer in the disentangled process while
dynamic preference could be also summarized simultaneously (C2).
Aiming at alleviating the dependency on labeled data for learning
multi-granularity user representations, we creatively explore and
explicitly exploit two parts of self-supervised signals: fund type
based contrasts and fund popularity. (C3). Multifaceted experiments
show the superiority of MGDL across offline and online settings.

2 THE PROPOSED APPROACH
In this section, we present MGDL, for intelligent matching of fund
investment products, as shown in Fig. 2.

Incorporating Fund Graph Learning into Disentanglement.
Actually, disentangled learning has been widely applied in tradi-
tional recommendation scenarios for multi-interest extraction [1,
11, 18], which could be viewed as a soft clustering process between
historical behaviors. As a promising way, the message passing pro-
cedure of GNNs could enlarge the similarities of neighbor funds in
the graph [24], and thus potentially facilitating such a clustering
process. On the other hand, financial products in practical plat-
forms essentially form a graph in nature, connected via common
organizations, fund managers, types and heavyweight stocks.

…

…
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Figure 2: Overall architecture of the proposed MGDL.

i) Fund Graph Learning.We briefly review the well-established
fund graph, which potentially enhances the fund representations
and the following disentangled process. We consider five rela-

tions: a) fund
𝑚𝑎𝑛𝑎𝑔𝑒
←→ fund manager, b) fund

𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜
←→ organization,

c) fund
ℎ𝑒𝑎𝑣𝑦𝑤𝑒𝑖𝑔ℎ𝑡
←→ stock, d) fund

𝑡𝑟𝑎𝑐𝑘←→ stock index, e) fund
𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜
←→

type. The fund graph serves as a bridge between non-adjacent funds
in historical behaviors with external knowledge for enhancing fund
representations in the following disentanglement.

Given the fund graph G = {E,R} with the entity set E and the
relation set R, following the common practice, we perform graph
convolution operation Conv(G;Θ) to summarize the fund graph
structural information. Note that the above operation could be
easily implemented as an attention [19] or a SAGE [5] convolution.

ii) Multi-granularity Representation Learning with Disentangle-
ment. After extracting graph enhanced fund representation H(𝐿) ∈
R | E |×𝑑 with Conv(G;Θ), given target user 𝑢’s historical behaviors
𝑆 =

{
𝑓1, · · · 𝑓 |S |

}
, we retrieve corresponding fund representations

to express user’s behavior sequence as X𝑆
𝑢 ∈ R |S |×𝑑 . Next, we em-

ploy the self-attention mechanism to perform disentanglement with
the 𝑑-dimensional vector set {𝒘I ,𝒘R ,𝒘C} that focus on different
aspects (i.e., personal Interest, Risk preference and Conformity).

𝜷𝑢 = 𝜎 (X𝑆
𝑢W

𝐷 ),

{𝜷I𝑢 , 𝜷R𝑢 , 𝜷 C𝑢 } = {𝜷𝑢𝒘I , 𝜷𝑢𝒘R , 𝜷𝑢𝒘C},

{xI𝑢 , xR𝑢 , xC𝑢 } = {X𝑆
𝑢
⊤
𝑓 (𝜷I𝑢 ),X𝑆

𝑢
⊤
𝑓 (𝜷R𝑢 ),X𝑆

𝑢
⊤
𝑓 (𝜷 C𝑢 )}.

(1)

Here, 𝜎 (·) is a non-linear function, 𝑓 (·) is the softmax function
and W𝐷 ∈ R𝑑×𝑑 is the base weight matrix. Although the above
self-attention model has a strong capability of separating multiple
aspects of user representations, disentanglement among them is
not guaranteed in such an unsupervised manner [13].

Supervising Risk Preference with Fund Type based Contrasts.
In fact, the entire historical behaviors related to funds provide a
holistic view of user risk preference. On the other hand, we notice
that the fund type is a vital factor for characterizing the risk level
of funds. In light of these observations, we can abstract useful
priors for risk preference from the historical fund type sequences to
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supervise the representation of risk preference. Formally, we denote
the historical fund type sequence of user 𝑢 as ST𝑢 = {𝑡1, · · · , 𝑡 |ST𝑢 | },
and then we calculate the unifying representation of the entire
interaction history as the self-supervised signal for risk preference.

xT𝑢 = FFN(𝑔({Φ(𝑡) |𝑡 ∈ ST𝑢 })), (2)

where Φ(·) denotes the “Embedding” operation, 𝑔(·) is the pooling
function and FFN(·) represents the feed forward neural networks.

Inspired by the success of contrastive learning in various appli-
cations [9], we construct our self-supervised loss as follows,

LR = −
∑︁
B

∑︁
𝑢∈B

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(xR𝑢 , xT𝑢 )/𝜏)∑

𝑢′∼𝑃B𝑛𝑒𝑔 𝑒𝑥𝑝 (𝑠𝑖𝑚(x
R
𝑢 , xT

𝑢
′ )/𝜏)

−
∑︁
B

∑︁
𝑢∈B

𝑙𝑜𝑔
𝑒𝑥𝑝 (xT𝑢 , xR𝑢 )/𝜏)∑

𝑢′∼𝑃B𝑛𝑒𝑔 𝑒𝑥𝑝 (𝑠𝑖𝑚(x
T
𝑢 , xR

𝑢
′ )/𝜏)

,

(3)

where 𝜏 is the temperature parameter, and negative samples are
drawn from the uniform distribution 𝑃B𝑛𝑒𝑔 under batch B.

Supervising Conformity with Fund Popularity. Actually, con-
formity encourages users with limited financial knowledge to pick
popular funds, which are always highly recommended by fund
managers and even the public. Hence, it inspires that the fund popu-
larity is a critical factor to capture conformity. Formally, we define
the popularity of target fund 𝑓 as follows,

𝛾𝑓 =
log𝐶𝑓 − log𝐶𝑚𝑖𝑛

log𝐶𝑚𝑎𝑥 − log𝐶𝑚𝑖𝑛
. (4)

Here, 𝐶𝑓 denotes the number of user interactions w.r.t. fund 𝑓

while 𝐶𝑚𝑎𝑥 = max𝑓 ∈F 𝐶𝑓 and 𝐶𝑚𝑖𝑛 = min𝑓 ∈F 𝐶𝑓 respectively
represent the maximum and the minimum, where F is the fund
set. Meanwhile, given target user 𝑢 and fund 𝑓 , we can obtain the
conformity based score as follows,

𝑦C
𝑢,𝑓

= 𝜎 (FFNC (xP𝑢 | |xC𝑢 )⊤ · FFNC (x𝑓 )), (5)

where xP𝑢 is the feature vector of user basic profile, x𝑓 is the fund
representation retrieved from H(𝐿) , “| |” is the concatenation opera-
tion and 𝜎 (·) is the sigmoid function. Considering the positive corre-
lation between conformity score and fund popularity, we formulate
the conformity-side loss function in the following supervised way,

LC = 𝛾𝑓 · C-E(𝑦C𝑢,𝑓 , 𝑦𝑢,𝑓 ), (6)

where 𝑦𝑢,𝑓 is the ground truth and C-E(·) represents the cross
entropy loss. Analogously, personal interest can be modelled in the
above similar way where funds with low popularity are the core.

𝑦I
𝑢,𝑓

= 𝜎 (FFNI (xP𝑢 | |xI𝑢 )⊤ · FFNI (x𝑓 )),

LI = (1 − 𝛾𝑓 ) · C-E(𝑦I𝑢,𝑓 , 𝑦𝑢,𝑓 ) .
(7)

Putting All Together and Making Prediction. By integrating
all the above loss functions, the overall objective function for the
proposed MGDL is defined as follows,

L = LI + LC + 𝜖 · LR , (8)

where 𝜖 ≥ 0 controls the risk preference term LR . At last, MGDL
considers both conformity and interest for the final prediction,

𝑦𝑢,𝑓 = 𝛾𝑓 · 𝑦C𝑢,𝑓 + (1 − 𝛾𝑓 ) · 𝑦
I
𝑢,𝑓

. (9)
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Figure 3: Ablation studies w.r.t. NDCG. Similar trends could
also be observed on Mar. and Apr. datasets.

3 EXPERIMENTS

Dataset Description. We collect a real-world large-scale dataset1
from one of the biggest financial platforms in China, and extract
four sub-datasets by month for performance evaluation, namely
Jan., Feb.,Mar. andApr.. Specifically, for each month, we leave out
interactions on the last day as the test set and utilize the remaining
data for training. Moreover, we hold out a part of the training data as
the validation set for parameter tuning. Due to the huge volume of
real-world interaction records, the daily sampling strategy is applied
in each sub-dataset. Finally, each sub-dataset includes about one
million users and about ten thousand funds, with about fifty
million records for training, about half a million records for
validation and about eight million records for testing. Meanwhile,
we organize the fund graph with about ten thousand entities and
about half a million relations.

Overall Performance.We report the overall comparison results
in Table 1. Note that the fund graph is adopted in MGDL, thus we
extend LightGCN and DisenGCN to adapt to the mixed graph con-
sisting of the user-item bipartite graph and the fund graph for a fair
comparison. Besides, we find NGCF [22] , KGAT [21] and DGCF [23]
achieve relatively poor performance when compared to above se-
lected baselines, and thus we omit them in our experimental results.
We find that MGDL outperforms all baselines by a large margin
in all cases, indicating the superiority of supplementing the fund
recommendation issue with both conformity and risk preference
modelling via the multi-granularity graph disentangled learning.
Moreover, the performance gain of DisenGCN w.r.t. ComiRec re-
veals the usefulness of fund graph structure for pulling similar
funds closer in the disentangled process, while SASRec works re-
markably well among these baselines, intuitively attributed to the
powerful ability of Transformer architecture.

1The dataset does not contain any Personalized Identifiable Information.
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Datasets Methods Recall@5 Recall@10 Recall@15 Recall@20 NDCG@5 NDCG@10 NDCG@15 NDCG@20
SASRec [10] 0.1805 0.2537 0.2985 0.3313 0.1192 0.1428 0.1547 0.1624
ComiRec [1] 0.1324 0.1846 0.2185 0.2519 0.0813 0.0978 0.1068 0.1147

Jan. LightGCN [6] 0.1148 0.1755 0.2068 0.2330 0.0729 0.0927 0.1010 0.1071
DisenGCN [14, 27] 0.1363 0.1869 0.2240 0.2545 0.0924 0.1086 0.1184 0.1256

MGDL 0.2088 0.2892 0.3338 0.3680 0.1424 0.1686 0.1804 0.1885
SASRec [10] 0.1861 0.2471 0.2910 0.3251 0.1253 0.1450 0.1565 0.1646
ComiRec [1] 0.1282 0.1830 0.2306 0.2556 0.0838 0.1014 0.1140 0.1199

Feb. LightGCN [6] 0.1399 0.1932 0.2281 0.2566 0.0891 0.1063 0.1156 0.1223
DisenGCN [14, 27] 0.1389 0.2017 0.2369 0.2630 0.0866 0.1070 0.1163 0.1224

MGDL 0.2069 0.2752 0.3188 0.3514 0.1424 0.1644 0.1760 0.1837
SASRec [10] 0.2054 0.2720 0.3138 0.3480 0.1489 0.1703 0.1814 0.1895
ComiRec [1] 0.1231 0.1840 0.2165 0.2438 0.0802 0.0998 0.1085 0.1149

Mar. LightGCN [6] 0.1258 0.1767 0.2173 0.2533 0.0856 0.1019 0.1126 0.1211
DisenGCN [14, 27] 0.1441 0.2068 0.2536 0.2895 0.0934 0.1136 0.1260 0.1344

MGDL 0.2423 0.3131 0.3591 0.3935 0.1646 0.1875 0.1997 0.2078
SASRec [10] 0.2113 0.2734 0.3110 0.3380 0.1452 0.1653 0.1752 0.1816
ComiRec [1] 0.1129 0.1871 0.2204 0.2434 0.0809 0.1042 0.1130 0.1184

Apr. LightGCN [6] 0.1243 0.1782 0.2130 0.2402 0.0814 0.0989 0.1081 0.1145
DisenGCN [14, 27] 0.1607 0.2192 0.2543 0.2836 0.1056 0.1247 0.1340 0.1409

MGDL 0.2295 0.2924 0.3313 0.3614 0.1636 0.1839 0.1942 0.2014

Table 1: Overall performance evaluation across four offline datasets. The best results are highlighted in boldface.

Ablation I: Impact of Multi-granularity Disentangled Learn-
ing.We prepare two variants of MGDL, namely i)MGDL w/o Con,
which removes the conformity part and ii)MGDL w/o RP, which
removes the risk preference modelling. From Fig. 3 (a) and (b) we
observe that the complete MGDL achieves the best performance in
all cases across evaluation metrics. It indicates that both conformity
and risk preference are indispensable to the fund recommenda-
tion task, and the well-designed disentangled component with self-
supervision endows MGDL with more meaningful representations.

Ablation II: Effectiveness Analysis of Fund Graph Learning.
Next, we zoom into the effectiveness of the fund graph learning
towards MGDL, and specifically denote the variant removing the
fund graph learning as MGDL w/o Graph. Not surprisingly, we
observe that the performance of MGDL drops a lot without fund
graph learning in Fig. 3 (c) and (d), revealing that the fund graph
structure, as a critical prior, could greatly contribute to MGDL.

Visualization Analysis. To examine the capability of MGDL intu-
itively, we visualize the conformity- and personal interest-side user
representations (i.e., xC𝑢 and xI𝑢 ) using 𝑡-SNE, since they are used
for the final predictions. We label each user according to his/her
fund holding level: 0∼4 for xC𝑢 and 5∼9 for xI𝑢 , e.g., users hold 0∼100
in our platform would be labeled as 0 for xC𝑢 and 5 for xI𝑢 .

From Fig. 4 (a), we find that: i) MGDL can reasonably separate
the conformity- and personal interest-side representations and
learn a relatively crisp boundary. It depicts that user conformity is
well distinguished by MGDL through our proposed self-supervised
signal, i.e., fund popularity. ii) Both of the conformity- and personal
interest-side representations are well layered w.r.t. the user holding
level, which shows that MGDL could well reflect the risk preference
even though no relevant label (i.e., user holding level) is available.

(a)
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Figure 4: (a) Visualization of predictive user embeddings
learned by MGDL. (b) Online performance.

Online Performance. We deploy MGDL on our platform for A/B
test against a baseline model based on FM and Transformer. We per-
form online evaluation from “2022/3/30” to “2022/4/09” via metrics
UV-Click and UV-Purchase 2, and show the experimental results
in Fig. 4 (b). Compared to the baseline (i.e., the red solid line in
the Fig. 4 (b)), MGDL gains the overall improvements of 3.12% and
6.92% w.r.t. UV-Click and UV-Purchase, which are both statistically
significant with a significance level of 95%. This practice-oriented
experiment further demonstrates the superiority of MGDL.

4 CONCLUSION
In this paper, we propose MGDL to perform effective intelligent
matching of fund investment products, where both conformity
and risk preference are emphasized in making fund investment
decisions beyond personal interest. Comprehensive experiments in
offline/online environments demonstrate the superiority of MGDL.
2UV means unique visitor
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