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Abstract / A B — =
Maximizing the user-item engagement based on vectorized em- - | Feature o Euclidean
beddings is a standard procedure of recent recommender models. Simitarity i ’ I Distance

Despite the superior performance for item recommendations, these
methods however implicitly deprioritize the modeling of user-wise
similarity in the embedding space; consequently, identifying similar
users is underperforming, and additional processing schemes are
usually required otherwise. To avoid thorough model re-training,
we propose WSFE, a model-agnostic and training-free represen-
tation encoder, to be flexibly employed on the fly for effective
user segmentation. Underpinned by the optimal transport theory,
the encoded representations from WSFE present a matched user-
wise similarity/distance measurement between the realistic and
embedding space. We incorporate WSFE into six state-of-the-art
recommender models and conduct extensive experiments on six
real-world datasets. The empirical analyses well demonstrate the
superiority and generality of WSFE to fuel multiple downstream
tasks with diverse underlying targets in recommendation.
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1 Introduction

Collaborative filtering (CF), as one effective strategy to perform
personalized modeling and prediction, has been widely deployed for
recommendation. One prevalent learning paradigm of CF models [4,
13, 25, 45, 47, 50] is to parameterize users and items as vectorized
embeddings and learn to reconstruct users’ historical interactions.
As such, the learned embeddings are convenient to interpret target
users’ diverse preferences and predict their future behaviors.
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Figure 1: Illustration of WSFE in encoding the similarity of
empirical feature distribution (left) with the corresponding
embedding distance (right).

In addition to reflecting preferences on items, another desirable
property of learned user embeddings is to explicitly capture the
user-wise similarity; this provides an intuitive recognition of simi-
lar user interests and affinities, which lays the foundation and is
particularly beneficial for user-centric analyses and applications
such as group recommendation and advertising [37, 39]. However,
this property is usually deprioritized and neglected by recent mod-
els [13, 22, 29, 44, 46, 48]. To address the unsatisfactory performance
in similar user identification, thorough model re-training may thus
be required. To tackle this issue, we are motivated to encode high-
quality embeddings in collaborative filtering, such that they can
efficiently and seamlessly serve the task of user segmentation.

In this work, we propose Wasserstein Sub-graph Feature Encoder
(WSEFE), to explicitly model the user behaviors in the form of user-
item interaction graph, and measure the user-wise similarity by
exploiting their high-order sub-graph patterns. We notice that users
with similar interaction behaviors naturally share overlapping sub-
graph patterns. Based on this observation, one straightforward
solution would be to exhaustively calculate similarities for all the
nodes in underlying sub-graphs; this however may be intractable
in practice mainly because of the exponential node scale in graph
exploration. On the contrary, our proposed WSFE captures user
similarity by directly encoding their sub-graph latent features, en-
abling it model-agnostic and flexible for a variety of graph-based
recommender models. Specifically, as shown in Figure 1, we assume
the user preference follows an unknown high-dimensional proba-
bility distribution; this unique preference distribution is empirically
observed and represented by the latent features that are well-learned
in the item recommendation task. Then WSFE explicitly captures the
distribution distances with Wasserstein metrics from the optimal
transport theory [19, 32, 35, 42]. Consequently, the encoded user
representations can effectively reflect their realistic item-interaction
similarity, producing a matched Euclidean distance measurement
for ease of user segmentation in the embedding space.

To summarize, our contributions are highlighted as follows:


https://doi.org/10.1145/3539618.3592089
https://doi.org/10.1145/3539618.3592089

o To the best of our knowledge, we are the first to focus on im-
proving the embedding quality for effective user segmentation
in collaborative filtering, while not jeopardizing the model eval-
uation for item recommendation.

o We propose WSEFE for effective representation encoding via cap-
turing the feature similarity of high-order user-item interaction
graph patterns. WSFE is adaptive for any graph-based models
and training-free; thus it can be invoked on the fly as long as the
backbone models are well-trained.

o We conduct extensive experiments by fusing WSFE into six state-
of-the-art models on six real-world datasets. Not only do we
present its performance superiority in empirical evaluation, but
we also provide technical discussion for future investigation.

2 WSFE Methodology

2.1 Preliminaries

Graph-based Collaborative Filtering. In view of user-item in-
teraction graphs, the general idea of graph-based approaches is to
capture CF signals in high-hop neighbors. In this work, we study
the Graph Convolutional Networks (GCNs) to learn node representa-
tions by smoothing the latent features via topology [3, 18, 40, 41].
It iteratively propagates neighborhood information to the target
node, e.g., user u, which can be abstracted:

1 -1) .
Uflg)h—m = Prop({ug )ie N(u)}), (1)
where vg;hﬁu is the representation after I layers of propagation

from interacted items in u’s neighboring set A'(u). With the prop-
agated information, node embeddings are iteratively updated by
aggregating features of the center and neighbor nodes [11, 12, 53].
Optimal Transport and Wasserstein Metrics. Optimal trans-
port is the general problem of moving one distribution of mass,
e.g., P, to another, e.g., Q, as efficiently as possible. The derived
minimum L, cost can be referred as their distribution distance:

W(p.Q) = (i erirg) [ Ix - fF@IFaP@) @)

where the infimum is over all transport plans in ¥ between P and Q.
For one-dimensional distributions, there is a closed-form solution
to compute such optimal transport map f* as f*(x) = Fp' (Fo(x));
F is the cumulative distribution function (CDF) associated with P.

For the high-dimensional case, the metric of sliced-Wasserstein
distance [2, 8, 35] is formally defined as follows:

SW; (P,Q) = (/Sdil %Z(Pe,Qa)de)%, 3)

where P? is projected by function ¢%: R¢ — R as P? := ¢¢(P) and
4% (x) = 8. @ is a unit vector in RZ and S9! is the unit d-dimensional
hypersphere. Due to holding positive-definiteness, symmetry, and
triangle inequality [20, 21, 32, 36, 55], we employ it as the distance
measurement for high-dimensional subgraph feature distributions.

2.2 Sub-graph Feature Encoding

2.2.1 Formulating Sub-graph Feature Distributions. Asillus-
trated in Figure 2(A), if two users are considered to be similar in
terms of historical preferences, they should share similar behaviors
with overlapping interaction graph patterns. Based on this intu-
ition, consider that each user’s preference follows an unknown,
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Figure 2: (A) Illustration of the similar sub-graph patterns.
(B) Mapping processing between the input and reference.

independent, and d-dimensional probability measure, e.g., P,. We
assume that the interaction pattern of u observed so far is sampled
from the underlying distribution P,,. Thus the empirical (discrete)
distribution P,, with its empirical CDF can be formulated as:

__L Nt 0
Fp (%) = ﬁz LS =) (4)
Notice that we initialize ”SZh—m = u](lo). Here 6(-) returns 1 if the

input is zero and 0 otherwise (discretizing from continuous case
[8(x)dx = 1). Without loss of generality, these empirical distribu-
tions are representative, i.e., P, ~ Py; thus we would refer P, to P,
hereafter to avoid notation abuse.

2.2.2 Implementing f*. We first set a d-dimensional reference
distribution P, that functions as the “origin” in the embedding space
to measure the distance toward any inputs. P, is associated with
random feature embeddings, e.g., oi,”, as: Fp, (x) = ﬁzﬁzoé(x -
o). To implement the optimal transport map f* for such discrete
and d-dimensional case, we have the following procedure.

We first conduct distribution slicing to P, and P, by projection
function g?. For each pair of distribution slices P¢ and P, let X¢ col-

lect their projected sub-graph features as X¢ = {OvalIg),Hu L, (s0

does for X¢ = {670y }L ). Then the corresponding optimal trans-
port map f*(x) = F;)(l, (Fpe (x)) can be quantitatively intepreted:

F(x]X9) = argmin,,, ¢ yo (FP,‘j (x") =r), where r = Fpo(x). (5)

Furthermore, let 7(x’|X?) denote the ranking of each input x’ in
the ascending sorting of Xg. We can replace the term Fpo and have:
FH(xIXT) = argming, o (r('1X]) = 7(xXS)).  (6)
As shown in Figure 2(B), Eqn.(6) essentially permutes different
layers of sub-graph embeddings of X¢ in encoding, such that the
distance to the reference of X¢ can be subsequently captured and
embedded. Please notice that the distance is in the Ly-norm form as
shown in Eqn.(2), a.k.a. the Euclidean distance, which is favorable to
scenarios for recalling vectorized objects that requires a reasonable
distance measurement in the embedding space.

2.2.3 Implementing WSFE. For each pair of distribution slices,
based on the algorithmic implementation of Eqn.(6), we proceed to
encode their representations as follows:
o _ 1 |
YO L+1

Lo ! 1 i
! (0706 1X7) B and B = m“ho‘ﬂ”g:;)

where || denotes the concatenation operation. According to the
theory in Eqn.(3), the next step is to draw infinite projections for
distance integral, which, however, may be computationally expen-
sive and infeasible in practice. In this work, we implement it with
Monte-Carlo approximation with S times of uniform sampling from
§9-1, Consequently, this leads to a cumulative sliced-Wasserstein



distance (i.e., approximating Eqn.(3)) between reference P, and the
original input feature distribution P, as:

1\0S Y
SWa(Po,Pu) ~ (5 WE(BS".PEF)) . ®)

Regularized by the distance cumulation in Eqn.(8), our Wasser-
stein Sub-graph Feature Encoder (WSFE) is finally defined:
B 1S 0, _ 1S
E, = 3 s:1Eu and E, := 3
where E,, E, € RS(I+1) Notice that in practice, the number of graph
convolutions L <4 [11, 13, 18] is a common setting mainly to avoid
the over-smoothing problem [23]. Moreover, our empirical observa-
tions in § 3.2.2 reveal that setting S = 64 already achieves satisfactory
model performances with an acceptable computational cost.
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2.3 Theoretical Analysis

One major expectation of encoded representations is that they can
reflect the similarity/distance of their sub-graph feature distribu-
tions. We illustrate this in Figure 3 with the theorem as follows:

THEOREM 1. For any input sub-graph features of users u; and u;
with distributions P,; and Py;, their encoded representations hold:

@ NIEu, llz ~ SW2 (Pu;. Po).
@ ”Eui_Euj Il2 :S‘/VZ(PupPuj)~

Proor. The proof is twofold.
For property (2), we have: /
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Let Fl;é (r) = x, meaning that r = FPS . We have:
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(11)

With symmetry, we have SW; (Pu;s Pu;) = SWa(Pu, Pu;). Then for

the reference P,, its encoded representation is straightforward to

have E, = 0. Thus we complete the proof as follows:

lEwu;ll2 = |Ew; = Eoll2 = SW2(Py;, Po), (12)

]

Complexity Analysis. WSFE is training-free that can be utilized

on the fly right after the backbone model is trained. Thus, the

complexity of WSFE is O(S(L+1)Md log d), where the cost O(d log d)

is for implementing z(-). Fortunately, it is linear to the input data
size, indicating that the encoding can be done at the input scale.

Table 1: The statistics of datasets.

‘MovieLens‘ Gowalla ‘ Pinterest ‘ Yelp2018 ‘ Kindle | AMZ-Book

#Users 6,040 29,858 55,186 31,668 | 115,652 52,643

#Items 3,952 40,981 9,916 38,048 98,729 91,599
#Avg. Interactions | 165.60 34.31 26.52 49.31 15.85 56.69
#All Interactions | 1,000,209 | 1,027,370 | 1,463,556 | 1,561,406 | 1,833,068 | 2,984,108

3 Experimental Results

We evaluate WSFE with the aim of answering the following research
questions: RQ1. How does WSFE boost the user segmentation
performance of state-of-the-art recommender models? RQ2. How
do different model settings affect WSFE performance?

3.1 Experimental Setups

Datasets. We collect six widely-evaluated public datasets (includ-
ing their original training/test data splits) from: MovieLens [5, 6,
31, 53], Gowalla [7, 10], Pinterest [9, 33], Yelp [49], Kindle [17, 52],
and Amazon-Book [1, 13]. Dataset statistics are reported in Table 1.

Evaluation Protocol. The fundamental property required by
user segmentation is user-wise similarity measurement. Thus, given
a query user, we treat this task as ranking towards candidates of
similar users, based on the encoded user representations. In this
work, we sort out similar users based on the number of overlapping
items they have interacted with; then we compared these ranking
lists with Top-K results inferred from the learning models. Recall@K
and NDCG@XK are the evaluation metrics.

Baselines. To demonstrate the effectiveness of WSFE, we incor-
porate it into the following state-of-the-art models.

(1) LightGCN [13] is one state-of-the-art GCN-based recommender
model with a more concise and powerful structure.

(2) SGL [46] is one representative graph-based model with con-
trastive learning to tackle the data sparsity issue.

(3) SimGCL [51] is the state-of-the-art contrastive-learning-based
recommender model that conducts the simplified augmentation
directly in the feature space.

(4) NCL [24] is one of the state-of-the-art graph-based models with
contrastive neighborhood information enrichment.

(5) BUIR [22] is one state-of-the-art model that bootstraps user
and item representations for collaborative filtering.

(6) DirectAU [43] is the latest model that improves the representa-
tion quality from the perspective of alignment and uniformity.

3.2 Empirical Analyses and Discussions
3.2.1 Overall Performance (RQ1). From Table 2, we notice that

o After integrating WSFE, recent recommender models improve
their segmentation capability across all datasets. Not only does
this show our method’s effectiveness, but more importantly, this
also validates its generality and flexibility to the variety of graph-
based models as well as different datasets.

e We notice that the model improvements on MovieLens dataset
are larger than those on other datasets. One major explanation
is that users of MovieLens have more average interactions, i.e.,
165.60 as shown in Table 1, leading to more complicated user
preference distributions whereas our WSFE can well utilize such
rich information to encode the user-wise similarity.



Table 2: Experimental results before and after implementing WSFE into the underlying models (best view in color).

Dataset ‘ Model ‘

Recall@5

NDCG@5

Recall@20

NDCG@20

Recall@50

NDCG@50

Recall@100

NDCG@100

LightGCN0.10-0.18 (+80.00%) 0.36-0.61 (+69.44%) | 0.37-0.69 (+86.49%) 0.36-0.65 (+80.56%) | 0.85—1.68 (+97.65%) 0.62—120 (+93.55%) | 1.63—3.04 (+86.50%) 0.97—1.83 (+88.66%)
SGL  [0.08-0.13 (+62.50%) 0.32-0.47 (+46.88%) | 0.24—0.37 (+54.17%) 0.25-0.39 (+56.00%) | 0.4250.73 (+73.81%) 0.36-0.59 (+63.89%) | 0.60-1.22 (+10333%) 0.47-0.81 (+72.34%)
SImGCL [0.90—1.02 (+13.33%) 3.40-3.04 (+13.82%) | 213—3.77 (+77.00%) 2.30-3.60 (+56.52%) | 3.10-8.56 (+176.13%) 2.925.99 (+105.14%) [4.4513.71 (+208.09%) 3.35-8.58 (+156.12%)
Movie | NCL [0.25-038 (+352.00%) 0.84—1.30 (+54.76%) | 0.88—147 (+67.05%) 0.84—138 (+64.29%) | 2015342 (+70.15%) 147247 (+68.03%) | 3.60—6.19 (+71.94%) 2.20—3.74 (+70.00%)
BUR [0.22-0.24 (+9.09%) 0.74—0.82 (+10.82%) | 0.83-0.96 (+15.66%) 0.79-0.92 (+16.46%) | 181-52.19 (+20.99%) 1.34—160 (+19.40%) | 3.21-3.95 (+23.05%) 198240 (+21.21%)
DirectAU [0.09-0.10 (+11.11%) 0.32-0.36 (+12.50%) | 0.25-031 (+24.00%) 0.26-0.32 (+23.08%) | 0.53-0.66 (+24.53%) 0.41-0.51 (+24.39%) | 0.98—1.23 (+25.51%) 0.62—0.77 (+24.19%)
LightGCN| 4.4154.56 (+3.40%)  6.59—6.52 (-1.06%) | 8.75—9.26 (+5.83%)  6.64—6.80 (+2.41%) |13.30—14.05 (+5.64%) 8.46—8.71 (+2.96%) |17.78—18.86 (+6.07%) 9.94—10.29 (+3.52%)
SGL  |4.96—55.30 (+6.85%) 7.58—7.62 (+0.53%) | 9.85—10.66 (+8.22%)  7.53—7.86 (+4.38%) |15.13516.68 (+10.24%) 9.66—10.23 (+5.90%) | 20.70—22.72 (+9.76%) 11.49—12.19 (+6.09%)
SimGCL |5.25—6.94 (+32.19%) 8.55—10.32 (+20.70%) [10.14—13.99 (+37.97%) 8.11—10.52 (+29.72%) |14.73—20.23 (+37.34%) 9.99—13.02 (+30.33%) [17.88—24.15 (+35.07%) 11.12—14.34 (+28.96%)
Gowalla | NCL |4.6555.01(+7.53%) 8.31—8.71 (+4.81%) | 9.41510.20 (+8.40%) 7.81—8.34 (+6.79%) |13.78—15.11 (+9.65%) 9.71—10.43 (+7.42%) |18.16—20.02 (+10.24%) 11.22—12.11 (+7.93%)
BUIR | 2.9453.07 (+4.42%) 5.64—5.74 (+1.77%) 6.65—6.92 (+4.06%) 5.52—55.66 (+2.54%) |10.74—11.00 (+2.42%) 7.30—7.42 (+1.64%) |15.09—15.36 (+1.79%) 8.78—8.91 (+1.48%)
DirectAU | 5.03—5.41 (+7.55%)  7.99—8.22 (+2.88%) | 10.24—10.98 (+7.23%) 7.90—8.31 (+5.19%) | 15.71—16.94 (+7.83%) 10.16—10.74 (+5.71%) | 21.20—22.86 (+7.83%) 12.00—12.73 (+6.08%)
LightGCN| 2.24-2.38 (+6.25%)  4.64—4.94 (+6.47%) | 7.24—7.68 (+6.08%)  5.51—5.87 (+6.53%) | 13.67—14.67 (+7.32%) 8.37—8.94 (+6.81%) |21.11-22.65 (+7.30%) 11.04—11.81 (+6.97%)
SGL | 3.9353.92(-0.25%)  7.58—7.58 (0%) | 11.21-11.35 (+1.25%) 8.57—8.63 (+0.70%) |19.62—19.86 (+1.22%) 12.23—12.35 (+0.98%) | 28.16—28.44 (+0.99%) 15.31—15.44 (+0.85%)
SimGCL [5.04—8.49 (+68.45%) 9.28—14.86 (+60.13%) [13.56—21.31 (+57.15%) 10.33—16.20 (+56.82%)|22.70—32.82 (+44.58%) 14.31—21.21 (+48.22%)|31.68—41.79 (+31.91%) 17.54—24.37 (+38.94%)
Pinterest | NCL  [4.10—4.63 (+12.93%) 8.21—9.11 (+10.84%) |11.48—13.02 (+13.41%) 8.98—10.08 (+12.25%) |19.55—22.32 (+14.17%) 12.59—14.18 (+12.63%)|27.85—31.76 (+14.04%) 15.60—17.58 (+12.69%)
BUIR |1.1651.22 (+5.17%) 2.55—2.64 (+3.53%) | 4.0954.31 (+5.38%)  3.1653.28 (+3.80%) | 8.29—8.77 (+5.79%)  5.05—5.26 (+4.16%) |13.34—14.16 (+6.15%) 6.92—7.23 (+4.48%)
DirectAU [8.03—9.12 (+13.57%) 13.34—14.84 (+11.24%)|21.32—24.11 (+13.09%) 15.40—17.26 (+12.08%)|34.53—38.47 (+11.47%) 20.93—23.30 (+11.32%)|46.73—51.57 (+10.36%) 25.21—27.88 (+10.59%)
LightGON|2.13-52.37 (+11.27%) 131164 (+25.19%) | 2.16—2.72 (+25.93%) 1.94-2.39 (+23.20%) | 4.075.23 (+28.50%) 2.88-3.62 (+25.69%) | 6.4T—8.37 (+29.37%) 3.87—4.88 (+26.10%)
SGL  |0.92-50.97 (+5.43%) 2.43-2.50 (+2.88%) | 2.28-2.57 (+1272%)  2.14-233 (+8.88%) | 4.06-4.67 (+15.02%) 3.0253.36 (+11.26%) | 6.21-7.18 (+15.62%) 3.91-4.38 (+12.02%)
SImGCL [1.012.00 (+98.02%) 2.72-5.24 (+92.65%) | 2.30-5.31 (+130.87%) 2.22—4.83 (+117.57%) | 3.67-8.68 (+136.51%) 2.92-6.52 (+123.29%) [4.9611.71 (+136.09%) 3.46—7.78 (+124.86%)
Yelp | NCL [116-1.41(+21.55%) 3.43-4.06 (+18.37%) | 2.91-53.65 (+25.43%) 287352 (+22.65%) | 4.766.13 (+28.78%) 383479 (+25.07%) | 6.74-8.88 (+31.75%) 4.67—5.91 (+26.55%)
BUIR | 053053 (+0%)  161-1.62(+0.62%) | 1555158 (+194%) 149151 (+134%) | 2765284 (+2.00%) 2135217 (+188%) | 4.19-433 (+334%)  2.74-2.79 (+1.82%)
DirectAU [1.39-1.66 (+19.42%) 3.54—4.12 (+16.38%) | 3.36—4.15 (+23.51%) 3.1153.74 (+20.26%) | 5.66—7.05 (+24.56%) 4.24-5.15 (+21.46%) | 8.28—10.27 (+24.03%) 5.31-6.46 (+21.66%)
LightGCN| 7.2157.26 (+0.69%)  8.81—8.56 (-2.84%) | 14.88—15.06 (+1.21%) 10.26—10.21 (-0.49%) | 19.76—20.23 (+2.38%) 12.18—12.19 (+0.08%) | 23.20—24.01 (+3.49%) 13.28—13.37 (+0.68%)
SGL  |7.9057.94 (+0.51%) 9.63—9.33 (-3.12%) | 16.93517.58 (+3.84%) 11.53511.61 (+0.69%) | 23.32524.37 (+4.50%) 13.99—14.19 (+1.43%) | 27.87—29.43 (+5.60%) 15.41—15.74 (+2.14%)
SimGCL | 8.54—8.80 (+3.04%) 11.55—11.25 (-2.60%) | 17.27—18.57 (+7.53%) 12.62—12.98 (+2.85%) | 22.79—24.71 (+8.42%) 14.82—15.38 (+3.78%) | 25.95—28.20 (+8.67%) 16.87—17.50 (+3.73%)
Kindle NCL | 9.26—9.66 (+4.32%) 12.55—12.85 (+2.39%) | 18.25519.42 (+6.41%) 13.50—14.10 (+4.44%) | 23.89—25.43 (+6.45%) 15.83—16.58 (+4.74%) | 27.62—29.60 (+7.17%) 17.08—17.96 (+5.15%)
BUIR |7.30-7.43 (+1.78%) 10.01—-10.01 (0%) |15.50—15.67 (+1.10%) 11.28—11.34 (+0.53%) | 20.64—20.98 (+1.65%) 13.46—13.58 (+0.89%) | 24.20—24.72 (+2.15%) 14.68—14.85 (+1.16%)
DirectAU | 8.00—8.26 (+3.25%) 10.24—10.23 (-0.10%) | 17.69—18.66 (+5.48%) 12.23—12.60 (+3.03%) | 24.89—26.57 (+6.75%) 15.07—15.67 (+3.98%) | 30.18—32.61 (+8.05%) 16.79—17.60 (+4.82%)
LightGON| 2.0252.14 (+5.94%)  4.62—4.77 (+3.25%) | 5.15-5.65 (+0.71%)  4.48—-4.82 (+7.59%) | 813926 (+13.90%)  5.92-6.49 (+9.63%) [11.05-12.78 (+15.66%) 7.06—7.85 (+11.19%)
SGL | 2.47—2.59 (+4.86%) 5.51—5.62 (+2.00%) | 6.06—6.64 (+9.57%)  5.30—5.65 (+6.60%) |9.46—10.66 (+12.68%) 6.94—7.52 (+8.36%) |12.64—14.39 (+13.84%) 8.18—8.95 (+9.41%)
SimGCL [2.72—3.09 (+13.60%) 6.40—7.02 (+9.69%) | 6.13—7.14 (+16.48%) 5.64—6.42 (+13.83%) | 8.69510.35 (+19.10%) 6.19—7.99 (+29.08%) |10.55—12.76 (+20.95%) 7.68—8.95 (+16.54%)
AMZ-Book| NCL 2.6352.97 (+7.53%) 6.49—7.18 (+4.81%) 6.30—7.32 (+8.40%) 5.81-6.61 (+6.79%) | 9.53—11.35 (+9.65%)  7.44—8.58 (+7.42%) |12.44—15.10 (+10.24%) 8.58—10.07 (+7.93%)
BUIR |1.4351.46 (+2.10%) 3.78—3.82 (+1.06%) | 3.95—4.00 (+1.27%)  3.60—3.63 (+0.83%) | 6.30—6.40 (+1.59%)  4.79—4.83 (+0.84%) | 8.45—8.55 (+1.18%)  5.66—5.70 (+0.71%)
DirectAU | 2.88—3.13 (+8.68%)  6.55—7.00 (+6.87%) | 6.88—7.63 (+10.90%)  6.12—6.68 (+9.15%) |10.48—11.80 (+12.60%) 7.89—8.70 (+10.27%) |13.68—15.54 (+13.60%) 9.16—10.17 (+11.03%)
14- .. .
1y [T feciias | _ n | T.O ad(‘iress this issue, we approach Fo agg.regat‘e layer-wise embed-
S ET :;ccalslg;‘w; = dings in Eqn.(7) to reduce the total dimensionality from S(L+1) to S.
S - NDCG@100)| —~ . . . From Table 3, we no-
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® 6- a tice that Sum surpris-
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N petitive performance
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Figure 4: Experimental results of altering S values.

o Furthermore, equipped with WSFE, contrastive-learning-based
models, e.g., SGL [46], SimGCL [51], and NCL [24], generally
have larger model improvements. This is because augmentation
techniques (either to original data or to the latent features) sub-
sequently provide the embedding enrichment for WSFE to exert.

3.2.2 Effectof Slicing Number S (RQ2A). Due to the renowned
and stable performance of LightGCN [13], we utilize it as the back-
bone on AMZ-Book dataset to exemplify the model analysis. We
alternatively change the value of S and plot the results in Figure 4.
We notice that, altering S from 4 to 64 is more influential to the
model performance, which is intuitive as this produces a more ac-
curate and fine-grained cumulative approximation. However, on
the other hand, consistently increasing S will also put more com-
putation and memory strains. Thus, setting S as 64 is the balanced
spot with positive momentum that presents a practical trade-off
between model performance and resource consumption.

3.2.3 Dimension Reduction (RQ2B). During evaluation, we
notice that some models encounter the “out-of-memory” problem.

cat operation. This in-
dicates that, while Concat has a more complete representation
encoding with theoretical supports, Sum is suitable for dimension
reduction in scenarios with limited computational resources.

4 Conclusion and Future Extension

In this work, we propose WSFE to encode representations for ef-
fective user segmentation in collaborative filtering. The extensive
experiments demonstrate the effectiveness of our proposed method
and its generality to a variety of model deployments. As for future
work, we point out three major directions as follows:

(1) In light of the empirical findings in § 3.2.1, it is interesting to
explore contrastive learning techniques [28, 30, 54, 56] in the
sub-graph feature domain for further model improvement.

(2) It is worth investigating adapting our training-free model to
other scenarios of information retreival and autonomous data-
base management [14-16, 26, 27, 34, 38].

(3) We plan to design unsupervised regularization mechanisms
such that WSFE and the backbone model can be jointly optimized
or even rmutually enhanced for multi-task learning.
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