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ABSTRACT

ChatGPT and similar large language model (LLM) based conver-
sational agents have brought shock waves to the research world.
Although astonished by their human-like performance, we find they
share a significant weakness with many other existing conversa-
tional agents in that they all take a passive approach in responding
to user queries. This limits their capacity to understand the users
and the task better and to offer recommendations based on a broader
context than a given conversation. Proactiveness is still missing
in these agents, including their ability to initiate a conversation,
shift topics, or offer recommendations that take into account a
more extensive context. To address this limitation, this tutorial re-
views methods for equipping conversational agents with proactive
interaction abilities.

The full-day tutorial is divided into four parts, including mul-
tiple interactive exercises. We will begin the tutorial with an in-
teractive exercise and cover the design of existing conversational
systems architecture and challenges. The content includes coverage
of LLM-based recent advancements such as ChatGPT and Bard,
along with reinforcement learning with human feedback (RLHF)
technique. Then we will introduce the concept of proactive conver-
sation agents and preset recent advancements in proactiveness of
conversational agents, including actively driving conversations by
asking questions, topic shifting, and methods that support strategic
planning of conversation. Next, we will discuss important issues
in conversational responses’ quality control, including safety, ap-
propriateness, language detoxication, hallucination, and alignment.
Lastly, we will launch another interactive exercise and discussion
with the audience to arrive at concluding remarks, prospecting
open challenges and new directions. By exploring new techniques
for enhancing conversational agents’ proactive behavior to improve
user engagement, this tutorial aims to help researchers and practi-
tioners develop more effective conversational agents that can better
understand and respond to user needs proactively and safely.

CCS CONCEPTS

« Computing methodologies — Discourse, dialogue and prag-
matics; « Information systems — Users and interactive retrieval.
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1 MOTIVATION

The development of conversational agents that can comprehend
human language and provide appropriate responses has long been
a desired goal of Artificial Intelligence (AI). These agents can be
broadly classified into two categories: (1) Chit-chat systems, which
aim to engage users and offer emotional support by engaging in
open-ended discussions on various topics, and (2) Task-oriented
dialogue systems, which assist users in accomplishing specific tasks.
Many commercial personal assistants, including Amazon Alexa,
Apple Siri, Google Home, and large language model (LLM)-enabled
Microsoft Copilot, fall under the task-oriented category. These
systems are primarily designed to comprehend natural language
verbal commands, interpret them, and translate them into actions
to be executed by underlying application systems.

Recently, ChatGPT [1] and similar LLM-based conversational
agents have brought shock waves to the research community and
to the world. Astonished by their human-level performances, we
notice that they share a significant weakness with most other exist-
ing conversational agents in that they all take a passive approach
in responding to user queries. Their main research efforts are still
on performing pre-defined actions or providing factual information
in response to user commands or queries. This limits their capacity
to understand the users and the task better and to offer recom-
mendations based on a broader context than a given conversation.
The missing proactiveness includes lacking abilities to initiate a
conversation, shift topics, strategic plan with subgoals, or offer
recommendations that take into account a more extensive context
beyond the scope of a specific conversation.

Moreover, despite being widely adopted and receiving tremen-
dous attention, most current conversational agents, including LLM-
enabled ones, heavily rely on pre-existing training conversations,
datasets, and knowledge associated with them in order to exchange
information, provide recommendations, and complete tasks [1, 24,
26, 32, 53]. They typically generate responses to questions in a
passive manner rather than leading the conversation or asking
questions themselves [9, 45, 46]. This reactive, passive approach to
conversation limits the range of conversations that can take place,
particularly in situations that require active engagement from both
sides, such as exploratory search or complex decision-making.

In recent years, researchers from multiple fields, including nat-
ural language processing, dialogue systems, and machine learn-
ing [12, 16, 19, 33, 52, 54], have been working towards the goal of
enabling conversational agents to engage in two-way, proactive
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conversations with users [28, 30, 47, 51, 55]. They have proposed
various approaches to address this issue, such as:

e Learning to ask [5, 13, 22, 25, 36, 44, 50, 56, 57]

o Topic shifting [27, 39, 49]

e Strategy planning with reinforcement Learning, counterfac-
tual dialogue act, and label generation [2, 8, 22, 29, 40, 42].

In addition to response accuracy and effectiveness, other impor-
tant aspects about conversational agents have also started to attract
research attention in recent years. These aspects are particularly
relevant to proactive conversational agents because these agents
are taking more control over the conversation. They span topics on

e Conversational safety

e Response appropriateness

e Language detoxication

e Language model’s hallucination; and

e ATs alignment issues.

These matters can be viewed as under the umbrella of conversa-
tional responses quality control [3, 4, 15, 18, 31, 37, 40, 43].

Furthermore, there have been efforts to improve evaluation meth-
ods for conversational agents [21, 41].

In this tutorial, we provide a comprehensive review of the litera-
ture on this emerging research topic and discuss structured methods
to equip conversational agents with the ability to proactively inter-
act with users to perform various tasks. These methods are aimed at
overcoming the limitations of current conversational agents, which
can only respond reactively and passively to user commands and
queries. By enhancing conversational agents with the ability to
engage in proactive conversations, we can improve their utility and
effectiveness in a range of settings, including exploratory search
and complex decision-making.

2 OBJECTIVES
Content-wise, this tutorial aims to

o Offer a thorough review of the literature on this developing
research area and explore structured techniques for enabling
conversational agents to actively interact with users and
execute various tasks;

Address the constraints of existing conversational agents
that solely respond reactively and passively to user instruc-
tions and inquiries and enhance conversational agents with
proactive conversation capabilities;

Increase the proactiveness of conversational agents in di-
verse contexts, such as exploratory search and complex
decision-making processes

This full-day tutorial will be divided into four parts, including
two interactive exercises. The first part of the tutorial focuses on
introducing the paradigm of proactive conversation agents and dis-
cusses system architecture design, the differences and challenges in
realizing the proactive conversational Al paradigm. It includes an
interactive exercise to engage the audience while emphasizing the
important issues to address. In the second part, we present recent
advancements on the topic, focusing on how to drive conversa-
tion by asking questions actively and purposefully making topic
shifts. In the third part, we review and discuss methods that support
strategic planning by reinforcement learning-powered methods and
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retrospectively conducting response quality control. Important is-
sues, such as hallucination, language detoxication, and the agents’
potential to be power-seeking, arising from the popularity of con-
versational agents and especially LLM-based conversational agents
will be reviewed and discussed. The latest proposed solutions to
resolve these newly-arising issues will be the focus of this part of
the tutorial. At the end of the lectures, we arrange a session of inter-
active exercises for the attendees to chat with a few conversational
agents supported by major variations of the methods we show in
the tutorial and test their own fixes to solve some of the issues
that will be present. Finally, we conclude with a discussion on the
scopes for proactive conversational agents and present some open
challenges for future research.

Teaching-wise, the tutorial aims to provide vivid presentations
and hands-on experiences, which will include the use of conver-
sational devices such as Amazon Alexa and Apple Siri in some
of our examples and interactive exercises with attendees. These
devices will be installed in the tutorial room to demonstrate the
capabilities of conversational agents and to provide attendees with
an immersive learning experience. In addition, an online discussion
forum will be created concurrently with the tutorial. Attendees’
questions will be collected during and after the tutorial. We will
post answers to the questions and maintain the forum during the
entire conference.

3 RELEVANCE TO THE IR COMMUNITY

In recent years, there has been a growing interest in conversa-
tional agents within the fields of information retrieval (IR), artificial
intelligence (AI), and natural language processing (NLP). This is
evidenced by the inclusion of a Conversational Assistant Track in
the TREC conferences from 2019 to 2022, as well as the recognition
of "Dialogue and Interactive Systems" as a major research topic at
SIGIR, a leading IR conference.

Our tutorial aims to address the pressing need for post-ChatGPT
conversational agents that can engage in proactive conversations
and actively contribute to ongoing interactions. Given the wide-
spread use of conversational agents in customer service, task com-
pletion, and personal assistant applications, there is an urgent de-
mand to enhance their proactivity. As conversational interfaces
continue to gain traction in both commercial and personal contexts,
we believe that our tutorial will be of significant interest and benefit
to both IR researchers and practitioners.

Similar Tutorials in Related Conferences:

In recent related conferences, several tutorials on general dia-
logue systems and conversational recommendation have been given,
for example, Conversational Information Seeking [11] in SIGIR’22
and Conversational Recommendation Systems [17] in RecSys’20 and
in WSDM’21. However, these tutorials have not focused specifically
on the proactive aspect of conversational agents. Our tutorial pro-
vides a new perspective on conversational agents and expands the
current understanding of this field.

Our tutorial covers topics that are complementary to existing
mainstream approaches, including topic shifting, inappropriate dia-
logue management, and conservative reinforcement learning. To
the best of our knowledge, our tutorial is the first to specifically
focus on proactive conversational agents in SIGIR. This tutorial is
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particularly timely as it addresses an urgent need to improve con-
versational agents in commercial and daily use cases. The content
of this tutorial is expected to be of interest to both researchers and
practitioners in the field of information retrieval, artificial intelli-
gence, and natural language processing.

4 FORMAT AND DETAILED SCHEDULE

The tutorial will comprise primarily of didactic lectures, comple-
mented by interactive exercises designed for both in-person and
remote attendees. Additionally, we will facilitate a virtual forum to
facilitate interactive question-and-answer sessions and foster dis-
cussion among participants both during and following the tutorial.

Prior to the conference, we will engage in promotional activities
for our tutorial, including leveraging social media channels and
professional email lists such as the SIGIR mailing list. We will also
create and maintain a dedicated tutorial website to promote the con-
tent and share news with colleagues across various research areas,
including NLP, Al Speech, Dialogue Systems, ML, Recommender
systems, and IR.

During the tutorial, we plan to include multiple interactive ex-
ercises with attendees to enhance learning and engagement. To
facilitate communication and knowledge transfer, we will actively
encourage attendees to submit questions and participate in a fo-
rum that we will create specifically for the tutorial, which will be
maintained throughout the conference.

In the first interactive exercise that takes place during Part One,
we will instruct the participants to pair up. One of them in each
pair will act as a user and the other one will act as an agent. We
will then assign the users a task that requires gathering informa-
tion and making a decision. An example task would be planning
a trip to Taipei. The person acting as the agent can respond to a
question coming from the user by looking up relevant information
(e.g., from a search engine or a website) and constructing a short
answer, similar to a typical conversational assistant will do. We will
spend about 5 minutes setting up the exercise, 5 minutes having
the participants do the role-play, and 10 minutes to come back and
share what we discovered. This exercise will do two things: (1) it
will allow us to see some of the limitations of the current systems
that will set the stage for the next part of the tutorial; and (2) it will
set up a baseline for the next interactive exercise.

The second interactive exercise will take place in Part Four,
almost toward the end. By this time, the participants will have
learned various methods that can allow a conversational agent to be
proactive. We will now repeat the exercise from before, but this time
asking the persons playing the agent to use appropriate technique
(e.g., ontology expansion, topic shifting) while constructing their
responses. Once again, we will come back and share our experiences.
This will allow everyone to not only practice what they learned
in the tutorial, albeit in a pseudo-system fashion, but also start
thinking beyond the specific techniques to also account for human
experiences in a proactive conversation.
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Table 1: Schedule of the Tutorial [6 hrs].

Part One [90 min]

1) Introduction

1.1) Motivation & Aim of this tutorial

2) Interactive Exercise [20 min]

3) Proactive Conv. Agents: Overview

3.1) Existing conversational agents

3.1.1) Non-LLM conversational agents

3.1.2) LLM conversational agents [30 min] [6, 32, 34, 35]
3.2) Applications: Search, recommend, and more [20, 48]

3.3) Evaluation: Metrics, procedures, and challenges [21, 41]

Coffee break

Part Two [90 min]

4) Learning to Ask

4.1) Mixed initiatives [22, 44]

4.2) Learning to ask [25, 36, 56, 57]

4.3) Question selection and generation [5, 13, 50]
5) Topic Shifting

5.1) Target-guided open chitchat

5.2) Target-guided conversational recommendation [27, 39, 49]

Lunch break

Part Three [90 min]

6) Strategy Planning

6.1) Reinforcement Learning with subgoals

6.2) Counterfactual dialogue act augmentation [8, 22, 40, 42]
6.3) Out-of-distribution label generation [2, 29]

7) Response Quality Control

7.1) Types of inappropriate responses [14]

7.2) Language detoxification [3, 15, 31]

7.3) Conservative reinforcement learning [8, 10, 23, 38, 40, 43]
7.4) Combat power-seeking Al [7]

Coffee break

Part Four: [90 min]

8) Interactive Exercise-2 [20 min]
9) Conclusion
9.1) Interactive & Future directions

9.2) Challenges & Future directions
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