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ABSTRACT
Convolutional neural networks (CNNs) are important in a wide

variety of machine learning tasks and applications, so optimizing

their performance is essential. Moving words of data between lev-

els of a memory hierarchy or between processors on a network is

much more expensive than the cost of arithmetic, so minimizing

communication is critical to optimizing performance. In this pa-

per, we present new lower bounds on data movement for mixed

precision convolutions in both single-processor and parallel dis-

tributed memory models, as well as algorithms that outperform

current implementations such as Im2Col. We obtain performance

figures using GEMMINI, a machine learning accelerator, where our

tiling provides improvements between 13% and 150% over a vendor

supplied algorithm.
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1 INTRODUCTION
Convolutional neural networks (CNNs) are important in many

machine learning applications and their computational intensity

makes their computation a major bottleneck, requiring efficient

implementations on modern architectures. To do so, it is important
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to recognize that most of the time and energy spent during the exe-

cution of a CNN often goes towards communication, the movement

of data between different levels of the memory hierarchy (RAM to

L3 cache) or between processors operating in parallel. The cost of

moving one word of data is frequently orders of magnitude larger

than the cost of performing one arithmetic operation both in terms

of time and power consumption. This disparity is only increasing

as time passes [4]. Minimizing communication has driven optimiza-

tion efforts in numerical linear algebra, giving rise to the highly

tuned implementations seen in BLAS and LAPACK which attain a

high fraction of a machine’s maximum possible performance.

In this paper, we consider the problem of computing a single

convolution layer of a CNN, which can be written as seven nested

loops. Our model is described in Section 2.1. In our theoretical work,

we consider various ways of organizing this computation, and we

ask which order minimizes the amount of communication between

main memory and cache in the single processor case, or between

the network of processors in the parallel case. We describe our CNN

and memory model in detail in 2.1.

Our first contribution is to provide new communication lower

bounds in both single processor and parallel architectures including

precise constants and allowing for mixed precision data. These

bounds are presented in Section 2.2 with proofs in Sections 3.1 and

4.1. Our second contribution is to provide algorithms which meet

these bounds in the parallel case for large parameters, and which

approach themmore closely than previously attainable in the single

processor case. These results are described in Sections 3.2 and 4.2.

The rest of the paper is organized as follows. Section 2 describes

our CNN model before we briefly discuss our results, and intro-

duces the main theoretical tool for computing lower bounds, the

Hölder-Brascamp-Lieb inequalities. Sections 3 and 4 present lower

bounds for the single processor and parallel cases respectively with

discussions of attainability. In Section 5, we discuss performance

results obtained using GEMMINI, a machine learning accelerator.

2 PRELIMINARIES
2.1 CNN and Memory Model
We consider the following loop nest for directly computing a con-

volution layer of a CNN. Since it has 7 nested loops surrounding a

simple update instruction, we call it 7NL CNN:

for{𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6, 𝑖7} = 0 : {𝑁, 𝑐𝐼 , 𝑐𝑂 ,𝑤𝑂 , ℎ𝑂 ,𝑤𝐹 , ℎ𝐹 } − 1

Output(𝑖1, 𝑖3, 𝑖4, 𝑖5) + = Input(𝑖1, 𝑖2, 𝜎𝑤𝑖4 + 𝑖6, 𝜎ℎ𝑖5 + 𝑖7)×
Filter(𝑖2, 𝑖3, 𝑖6, 𝑖7) (1)
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where the Input has dimensions𝑁 ×𝑐𝐼 ×(𝑤𝐹 +𝜎𝑤𝑤𝑂 )×(ℎ𝐹 +𝜎ℎℎ𝑂 ),
the Output has dimensions 𝑁 × 𝑐𝑂 ×𝑤𝑂 × ℎ𝑂 , and the Filter has

dimensions 𝑐𝐼 × 𝑐𝑂 × 𝑤𝐹 × ℎ𝐹 . 𝑁 is the number of images, 𝑐𝐼
is the number of channels of the input image, 𝑐𝑂 is the number

of channels of the output image, 𝑤𝑂 and ℎ𝑂 are the width and

height of the output image, 𝑤𝐹 and ℎ𝐹 are the width and height

of one convolution filter, and 𝜎𝑤 and 𝜎ℎ are the stride sizes in the

horizontal and vertical dimensions respectively. We assume that the

filter sizes are smaller than the input image sizes, and in practice,

they are usually much smaller. This gives us the assumptions𝑤𝐹 ≤
𝜎𝑤𝑤𝑂 and ℎ𝐹 ≤ 𝜎ℎℎ𝐹 . We also assume that 𝜎𝑤 ≤ 𝑤𝐹 and 𝜎ℎ ≤ ℎ𝐹
so that all elements of the image are used. Then, the input has

size |𝐼 | = 𝑁𝑐𝐼 (𝜎𝑤𝑤𝑂 +𝑤𝐹 ) (𝜎ℎℎ𝑂 + ℎ𝐹 ), the output has size |𝑂 | =
𝑁𝑐𝑂𝑤𝑂ℎ𝑂 , and the filter has size |𝐹 | = 𝑐𝐼𝑐𝑂𝑤𝐹ℎ𝐹 . The precisions

of the input, output, and filter are 𝑝𝐼 , 𝑝𝑂 , and 𝑝𝐹 respectively. These

are in units of words (32 bits). We define the sum of the precisions

as 𝑝𝑇 = 𝑝𝐼 + 𝑝𝑂 + 𝑝𝐹 .

Note that each iteration of the loop nest requires access to a

single element of both the Input and Filter arrays, and must make

a single update to the Output array. The order in which these

updates are made does not impact the result, so they may be reor-

ganized as desired to optimize for data movement. We consider a

computation of the 7NL CNN algorithm to be an execution of all

𝐺 := 𝑁𝑐𝐼𝑐𝑂𝑤𝑂ℎ𝑂𝑤𝐹ℎ𝐹 updates, performed in any order.

We consider computations of 7NL CNN within two different

architectures. The first is a single processor architecture with a

2-layer memory model: a cache which may hold𝑀 words of data

and may be accessed instantaneously by the processor, and a main

memory of arbitrary size. The movement of one word of data from

the main memory to the cache, or back, is counted as a single unit

of communication. Data begins in the main memory, and the output

of the computation must reside in the main memory before the

computation is complete.

The second architecture is a parallel processor architecture with

a distributed memory model. There are 𝑃 processors, each with

their own local instantaneously accessible memory of size𝑀 words.

Any one processor may communicate with any other processor,

and each word sent is counted as a single unit of communication.

Data may begin in any processor, and may end in any processor by

the completion of the computation.

2.2 Our Results
Before we discuss the mathematical tools involved in our analysis,

we first briefly summarize our results.We find results corresponding

both to the single and parallel architectures with mixed precision

data. Proofs are found in Sections 3.1 and 4.1.

We find the following lower bound for the number of words

communicated in a single-processor memory model with fast mem-

ory (cache) and slow memory, where the Input array takes entries

which are 𝑝𝐼 words in length, and similarly 𝑝𝐹 for the Filter and

𝑝𝑂 for the Output.

Theorem 2.1. If 𝑋 is the number of words communicated by 7NL

CNN within a single-processor memory model with𝑀 words of fast
memory, where Input, Filter, and Output are non-overlapping arrays
and𝐺 := 𝑁𝑐𝐼𝑐𝑂𝑤𝑂ℎ𝑂𝑤𝐹ℎ𝐹 is the total number of updates performed
during the computation, we have

𝑋 ≥ max

{
𝑝𝐼 |𝐼 | + 𝑝𝐹 |𝐹 | + 𝑝𝑂 |𝑂 |,𝐶𝑝𝐺𝑀

−1 −𝑀,

2(𝑝𝐼𝑝𝐹𝑝𝑂 )1/2 (𝜎𝑤𝜎ℎ)1/2𝐺 (𝑤𝐹ℎ𝐹𝑀)−1/2 − 2𝑀
}

where the value of 𝐶𝑝 = 𝐶𝑝 (𝑝𝐼 , 𝑝𝐹 , 𝑝𝑂 ) depends on the precisions
satisfying a triangle condition:

𝐶𝑝 =

{
1

4
𝑝2
𝑇

𝑝 𝑗 ≤ 𝑝𝑘 + 𝑝ℓ for all distinct 𝑗, 𝑘, ℓ
𝑝 𝑗 (𝑝𝑘 + 𝑝ℓ ) 𝑝 𝑗 > 𝑝𝑘 + 𝑝ℓ for some distinct 𝑗, 𝑘, ℓ

In the standard case when each matrix has precision 1,𝐶𝑝 = 9/4.
The first bound corresponds to accessing each memory location at

least once. The second bound dominates when individual𝑤𝐹 × ℎ𝐹
filters are large relative to the memory size𝑀 , and the third bound

dominates when filters are small relative to𝑀 . In all practical cases,

the precisions satisfy the triangle condition, so the first expression

for 𝐶𝑝 is more relevant.

We additionally discuss a blocking technique for evaluating 7NL

CNN which comes close to meeting this bound. Plots depicting this

attainability are found in Figure 2.

We also derive the following lower bounds for the number of

words communicated by some processor in a parallel-processor

distributed memory model. Again, these bounds accept mixed pre-

cision data. The first two bounds are similar to our bounds in The-

orem 2.1, decaying with the memory size.

Theorem 2.2. If 𝑋 is the number of words communicated by 7NL

CNN within a parallel processor memory model with 𝑃 processors
each with𝑀 words of memory, where Input, Filter, and Output are
nonoverlapping arrays with precisions 𝑝𝐼 , 𝑝𝐹 , 𝑝𝑂 respectively and
𝐺 := 𝑁𝑐𝐼𝑐𝑂𝑤𝑂ℎ𝑂𝑤𝐹ℎ𝐹 is the total number of updates performed
during the computation, we have

𝑋 ≥ max

{
𝐶𝑝𝐺

𝑃𝑀
−𝑀,

2(𝑝𝐼𝑝𝐹𝑝𝑂 )1/2 (𝜎𝑤𝜎ℎ)1/2𝐺
𝑃 (𝑤𝐹ℎ𝐹𝑀)1/2

− 2𝑀

}
with 𝐶𝑝 as in Theorem 2.1.

The above bounds are only nontrivial when𝑀 and 𝑃 are small

relative to 𝐺 . If there are many processors, or each processor has

access to more memory, then we require new lower bounds corre-

sponding in spirit to the 2.5D matrix multiplication data replication

algorithms presented in [5]. These two bounds are memory inde-

pendent and require a load-balancing assumption.

Theorem 2.3. Consider an execution of 7NL CNN within a par-
allel processor memory model with the setup of Theorem 2.2. Sup-
pose further that each array is initially load balanced and that and
𝐴𝑝 := max{𝑝𝐼 |𝐼 |, 𝑝𝐹 |𝐹 |, 𝑝𝑂 |𝑂 |} is the memory size of the largest
array. Some processor must communicate 𝑋 words, where

𝑋 ≥ (𝑝𝐼𝑝𝐹𝑝𝑂 )1/3max

{
𝐺1/2

𝑃1/2
,
(𝐺𝜎𝑤𝜎ℎ)2/3

(𝑃𝑤𝐹ℎ𝐹 )2/3

}
−
𝐴𝑝

𝑃
.

We introduce the machinery used to obtain these lower bounds,

and then present careful proofs.
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2.3 The Hölder-Brascamp-Lieb Inequality
One of the key mathematical tools for proving theoretical lower

bounds for the communication cost of nearly any numerical lin-

ear algebra computation is the collection of Hölder-Brascamp-Lieb

inequalities. These inequalities bound the sizes of sets in terms

of the sizes of their linear projections. Their simplest form, the

Loomis-Whitney inequality, is already useful for bounding the com-

munication cost of matrix multiplication [1]. When 𝐴 ⊂ Z3 is a
finite set of integer lattice points and 𝐴𝑥 , 𝐴𝑦 , and 𝐴𝑧 its 2D projec-

tions along each axis, the Loomis-Whitney inequality states

|𝐴| ≤
√︃
|𝐴𝑥 | |𝐴𝑦 | |𝐴𝑧 |.

In words, the size of𝐴 is bounded in terms of the sizes of its shadows.

Figure 1: Loomis-Whitney inequality |𝐴| ≤
√︁
|𝐴𝑥 | |𝐴𝑦 | |𝐴𝑧 |.

To perform 3-nested-loop matrix multiplication, the (𝑖, 𝑗, 𝑘)th
operation in computing 𝐶 = 𝐴𝐵 is setting 𝐶 [𝑖, 𝑘] = 𝐴[𝑖, 𝑗]𝐵 [ 𝑗, 𝑘].
But these locations are the projections. So one must access

|𝐴𝑥 | + |𝐴𝑦 | + |𝐴𝑧 | memory locations to perform all |𝐴| operations.
The Loomis-Whitney inequality tells us how many operations we

can perform when accessing a limited number of memory locations.

This idea can be generalized to loop nests of arbitrary size whose

array accesses are affine functions of the indices. The key tool

is a generalization of the Loomis-Whitney inequalities, a discrete

formulation of the Hölder-Brascamp-Lieb inequalities:

Theorem 2.4 (Discrete HBL [2]). Let 𝑑 and 𝑑 𝑗 be nonnegative
integers, and for 𝑗 = 1, . . . ,𝑚 let 𝜙 𝑗 : Z

𝑑 → Z𝑑 𝑗 be group homomor-
phisms. If 𝑠 𝑗 ∈ [0, 1] for 𝑗 = 1, . . . ,𝑚 satisfy the following collection
of linear constraints:

rank(𝐻 ) ≤
𝑚∑︁
𝑗=1

𝑠 𝑗 rank(𝜙 𝑗 (𝐻 )) for each subgroup 𝐻 ≤ Z𝑑

then we find the bound

|𝑉 | ≤
𝑚∏
𝑗=1

|𝜙 𝑗 (𝑉 ) |𝑠 𝑗 for each finite set 𝑉 ⊆ Z𝑑 .

This result is stated and proved in detail in Section 3 of [2]. We

call such a tuple (𝑠1, . . . , 𝑠𝑚) HBL exponents for the HBL datum
(Z𝑑 , (Z𝑑 𝑗 ), (𝜙 𝑗 )) and attempt to minimize the sum of the 𝑠 𝑗 subject

to the linear constraints.

These inequalities provide a powerful tool for understanding data

movement. For our purposes, they allow us to bound the number

of updates that an execution of the 7NL CNN algorithm is able to

complete if it is only allowed a certain number of accesses to each

array. More specifically, suppose we run 7NL CNN within a single-

processor one level memory model with cache size𝑀 . We allow the

updates to be executed in an arbitrary order. Consider a continuous

segment of updates during the execution which makes exactly 𝑇

communications with main memory, whether loads from Input or

Filter, or stores to Output. At the start of the segment, we have

access to no more than 𝑀 elements from any of the three arrays,

and we may load no more than 𝑇 elements during the segment. So

the number of elements accessible from each array is at most𝑀 +𝑇 .
Now define three array access homomorphisms which map any

tuple of loop indices (𝑖 𝑗 ) to each of the tuples of indices accessed in

each array. For example, 𝜙𝑂 : Z7 → Z4 defined by 𝜙𝑂 (𝑖1, . . . , 𝑖7) =
(𝑖1, 𝑖3, 𝑖4, 𝑖5) is the array access homomorphism for the Output array

as seen in the model presented in Section 2.1. Then any valid tuple

of HBL exponents (𝑠 𝑗 ) satisfying the constraints of Theorem 2.4

provides a bound on the size of 𝑉 , the set of updates the execution

may compute during this segment, in terms of the sizes of the

𝜙 𝑗 (𝑉 )’s, the number of elements which need to be accessed from

each array:

|𝑉 | ≤
𝑚∏
𝑗=1

|𝜙 𝑗 (𝑉 ) |𝑠 𝑗 ≤
𝑚∏
𝑗=1

(𝑀 +𝑇 )𝑠 𝑗 = (𝑀 +𝑇 )
∑

𝑗 𝑠 𝑗

Let 𝑠 =
∑

𝑗 𝑠 𝑗 . Now, if the entire execution must make 𝐺 updates,

then splitting the entire execution up into 𝐿 segments each with

about𝑇 communications, each segment may do no more than (𝑀 +
𝑇 )𝑠 updates and so there must be at least𝐺/(𝑀 +𝑇 )𝑠 − 1 segments.

Each has𝑇 communications, so the total number of communication

must be at least 𝐺𝑇 /(𝑀 + 𝑇 )𝑠 − 𝑇 . Choosing 𝑇 = 𝑀 for now, we

find the number of communications to be Ω(𝐺/𝑀𝑠−1). If one takes
the time to compute the optimal (𝑠 𝑗 ) for various choices of array
access homomorphisms, this exact same proof sketch results in the

well-known asymptotic communication lower bounds one finds for

many common linear algebra algorithms such as those tabulated in

[1]. We now discuss how to make practical use of Theorem 2.4. Note

that because each rank is an integer between 0 and 𝑑 , the number

of constraints that we need to check for a given tuple (𝑠1, . . . , 𝑠 𝑗 )
is finite. We can further reduce the workload by showing that the

only subgroups which need to be checked are those in the subgroup

lattice generated by the kernels of the 𝜙 𝑗 . The lattice generated by

a family of subgroups is the smallest collection of subgroups which

contains this family and which is closed under intersection and sum

of subgroups. We denote our lattice of interest by Lattice(ker𝜙 𝑗 ).
This is formalized in the following proposition:

Proposition 2.5. Let 𝜙 𝑗 be homomorphisms and 𝑠 𝑗 exponents as
in Theorem 2.4, and consider Lattice(ker𝜙 𝑗 ), the lattice generated by
the subgroups ker𝜙 𝑗 . If

rank(𝐻 ) ≤
𝑚∑︁
𝑗=1

𝑠 𝑗 rank(𝜙 𝑗 (𝐻 )) for each 𝐻 ∈ Lattice(ker𝜙 𝑗 )

then

rank(𝐻 ) ≤
𝑚∑︁
𝑗=1

𝑠 𝑗 rank(𝜙 𝑗 (𝐻 )) for each subgroup 𝐻 ≤ Z𝑑

and the conclusion of HBL follows.
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Proof. Let Φ𝑗 : Q𝑑 → Q𝑑 𝑗
extend 𝜙 𝑗 to a Q-linear map. In

Section 2.2 of [3], it is proved that the polytope of (𝑠 𝑗 ) satisfying
the linear constraints in Theorem 2.4 is exactly equal to the polytope

of (𝑠 𝑗 ) satisfying, for each subspace 𝑉 ≤ Q𝑑 ,

dim𝑉 ≤
𝑚∑︁
𝑗=1

𝑠 𝑗 dimΦ𝑗 (𝑉 ) .

In [15], Theorem 8 states that it suffices to check only these inequal-

ities from subspaces in Lattice(kerΦ𝑗 ). To check these, it suffices

to check the original inequalities from Theorem 2.4 on the sub-

groups in Lattice(ker𝜙 𝑗 ) and then to take Q-linear spans of these
subgroups. This completes the proof. □

We can reduce the number of subgroups to check even further.

We do this by splitting Lattice(ker𝜙 𝑗 ) into several independent

sublattices. We call two collections of subgroups {𝐴𝑖 } and {𝐵𝑘 }
independent if

∑
𝑖 𝐴𝑖 ∩

∑
𝑘 𝐵𝑘 = {0}. If 𝐴 = {𝐴𝑖 } and 𝐵 = {𝐵𝑘 } are

independent collections, it quickly follows that

Lattice(𝐴 ∪ 𝐵) = Lattice(𝐴) + Lattice(𝐵)
rank(𝐴𝑖 + 𝐵𝑘 ) = rank(𝐴𝑖 ) + rank(𝐵𝑘 )

rank(𝜙 𝑗 (𝐴𝑖 + 𝐵𝑘 )) = rank(𝜙 𝑗 (𝐴𝑖 )) + rank(𝜙 𝑗 (𝐵𝑘 )) .

Then if Lattice(ker𝜙 𝑗 ) =
∑
𝑘 Lattice(𝐴𝑘 ) where the 𝐴𝑘

’s are pair-

wise independent collections of subgroups, it suffices to check the

constraints in Theorem 2.4 on the subgroups in each Lattice(𝐴𝑘 ).
As we will see, these reductions are capable of reducing the number

of linear constraints we need to check from hundreds to only a few.

We will leverage this to compute optimal exponent tuples (𝑠 𝑗 ) for
the array access homomorphisms in 7NL CNN.

3 SINGLE PROCESSOR COMMUNICATION
BOUNDS

3.1 Derivation of New Bounds
In this section, we prove Theorem 2.1. Performing an analysis with

the HBL inequalities, we derive precise lower bounds, taking care

to optimize constants. For example, in the standard precision case

𝑝𝐼 = 𝑝𝐹 = 𝑝𝑂 = 1, the bound becomes

𝑋 ≥ max

{
|𝐼 | + |𝐹 | + |𝑂 |, 9𝐺

4𝑀
−𝑀,

2𝐺 (𝜎𝑤𝜎ℎ)1/2

(𝑤𝐹ℎ𝐹𝑀)1/2
− 2𝑀

}
The first bound doesn’t depend on the memory size. The sec-

ond bound exhibits Ω(1/𝑀) decay, while the third bound exhibits

Ω(1/𝑀1/2) decay. However, it is important to note that the third

bound only eclipses the second bound when𝑤𝐹ℎ𝐹 <
64𝑀𝜎𝑤𝜎ℎ

81
, i.e.

when the filters are small relative to the memory size.

We prove each of the three bounds below. For the second and

third bound, we will make use of the HBL theory discussed in

Section 2.3. First, we have a trivial memory-independent bound:

Lemma 3.1. With the setup in Theorem 2.1, the number of words
communicated 𝑋 satisfies

𝑋 ≥ 𝑝𝐼 |𝐼 | + 𝑝𝐹 |𝐹 | + 𝑝𝑂 |𝑂 |

Proof. Every entry of Input and Filter must be accessed at least

once, and every entry in Output must be filled by the computation.

All three arrays reside in slow memory, so at minimum 𝑝 𝑗 words

must be communicated for every entry in the 𝑗th array, for 𝑗 ∈
{𝐼 , 𝐹 ,𝑂}. So the number of words communicated 𝑋 satisfies

𝑋 ≥ 𝑝𝐼 |𝐼 | + 𝑝𝐹 |𝐹 | + 𝑝𝑂 |𝑂 | □

Before proving the second bound, we perform an HBL analysis

on the array-access homomorphisms corresponding to 7NL CNN.

First, we define the homomorphisms 𝜙𝐼 , 𝜙𝐹 , 𝜙𝑂 : Z7 → Z4:

𝜙𝐼 (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6, 𝑖7) = (𝑖1, 𝑖2, 𝑖6 + 𝜎𝑤𝑖4, 𝑖7 + 𝜎ℎ𝑖5)
𝜙𝐹 (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6, 𝑖7) = (𝑖2, 𝑖3, 𝑖6, 𝑖7)
𝜙𝑂 (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6, 𝑖7) = (𝑖1, 𝑖3, 𝑖4, 𝑖5)

Note that in Section 2.1 the iteration of 7NL CNN correspond-

ing to the loop indices (𝑖 𝑗 ) uses the data at Input(𝜙𝐼 (𝑖 𝑗 )) and

Filter(𝜙𝐹 (𝑖 𝑗 )) to update the data at Output(𝜙𝑂 (𝑖 𝑗 )). The discussion
in Section 2.3 suggests that we analyze the lattice generated by

the kernels of these homomorphisms. Using the indices 𝑖 𝑗 as free

variables in Z, we can write the kernels as follows:

ker𝜙𝐼 = (0, 0, 𝑖3, 𝑖4, 𝑖5,−𝜎𝑤𝑖4,−𝜎ℎ𝑖5)
ker𝜙𝐹 = (𝑖1, 0, 0, 𝑖4, 𝑖5, 0, 0)
ker𝜙𝑂 = (0, 𝑖2, 0, 0, 0, 𝑖6, 𝑖7)

We can identify the following independent families of indices: {𝑖1},
{𝑖2}, {𝑖3}, {𝑖4, 𝑖6}, and {𝑖5, 𝑖7}. We call these independent because

they give rise to the following pairwise independent collections

of subgroups which generate the kernels we want, and hence the

lattice we want:

𝐶1 = {(𝑖1, 0, 0, 0, 0, 0, 0)} = {𝐶1,1}
𝐶2 = {(0, 𝑖2, 0, 0, 0, 0, 0)} = {𝐶2,1}
𝐶3 = {(0, 0, 𝑖3, 0, 0, 0, 0)} = {𝐶3,1}
𝐶4 = {(0, 0, 0, 𝑖4, 0, 0, 0), (0, 0, 0, 0, 0, 𝑖6, 0), (0, 0, 0, 𝑖4, 0,−𝜎𝑤𝑖4, 0)}

= {𝐶4,1,𝐶4,2,𝐶4,3}
𝐶5 = {(0, 0, 0, 0, 𝑖5, 0, 0), (0, 0, 0, 0, 0, 0, 𝑖7), (0, 0, 0, 0, 𝑖5, 0,−𝜎ℎ𝑖5)}

= {𝐶5,1,𝐶5,2,𝐶5,3}

These subgroups give the following breakdown of the kernels:

ker𝜙𝐼 = 𝐶3,1 +𝐶4,3 +𝐶5,3

ker𝜙𝐹 = 𝐶1,1 +𝐶4,1 +𝐶5,1

ker𝜙𝑂 = 𝐶2,1 +𝐶4,2 +𝐶5,2

In order to apply Theorem 2.4, the discussion in Section 2.3 con-

cludes that it suffices to check the constraints only on subgroups

in the five lattices, Lattice(𝐶 𝑗 ). Fortunately, Lattice(𝐶 𝑗 ) = 𝐶 𝑗 for

𝑗 = 1, 2, 3. For 𝐶4 and 𝐶5 we have:

Lattice(𝐶4) = 𝐶4 ∪ {(0, 0, 0, 𝑖4, 0, 𝑖6, 0)} = 𝐶4 ∪ {𝐶4,4}
Lattice(𝐶5) = 𝐶5 ∪ {(0, 0, 0, 0, 𝑖5, 0, 𝑖7)} = 𝐶5 ∪ {𝐶5,4}

Now suppose 𝑠𝐼 , 𝑠𝐹 , 𝑠𝑂 ∈ [0, 1]. Then to apply Theorem 2.4, we need

to satisfy the following inequality for each 𝐻 in some Lattice(𝐶 𝑗 ):

rank(𝐻 ) ≤ 𝑠𝐼 rank(𝜙𝐼 (𝐻 )) + 𝑠𝐹 rank(𝜙𝐹 (𝐻 )) + 𝑠𝑂 rank(𝜙𝑂 (𝐻 )).

We enumerate these inequalities in the table below:
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𝐻 rk rk ◦ 𝜙𝐼 rk ◦ 𝜙𝐹 rk ◦ 𝜙𝑂 Constraint

𝐶1,1 1 1 0 1 1 ≤ 𝑠𝐼 + 𝑠𝑂
𝐶2,1 1 1 1 0 1 ≤ 𝑠𝐼 + 𝑠𝐹
𝐶3,1 1 0 1 1 1 ≤ 𝑠𝐹 + 𝑠𝑂
𝐶4,1 1 1 0 1 1 ≤ 𝑠𝐼 + 𝑠𝑂
𝐶4,2 1 1 1 0 1 ≤ 𝑠𝐼 + 𝑠𝐹
𝐶4,3 1 0 1 1 1 ≤ 𝑠𝐹 + 𝑠𝑂
𝐶4,4 2 1 1 1 2 ≤ 𝑠𝐼 + 𝑠𝐹 + 𝑠𝑂
𝐶5,1 1 1 0 1 1 ≤ 𝑠𝐼 + 𝑠𝑂
𝐶5,2 1 1 1 0 1 ≤ 𝑠𝐼 + 𝑠𝐹
𝐶5,3 1 0 1 1 1 ≤ 𝑠𝐹 + 𝑠𝑂
𝐶5,4 2 1 1 1 2 ≤ 𝑠𝐼 + 𝑠𝐹 + 𝑠𝑂

Removing repeated inequalities, Theorem 2.4 states that as long as

1 ≤ 𝑠𝐼 + 𝑠𝐹 , 1 ≤ 𝑠𝐼 + 𝑠𝑂 , 1 ≤ 𝑠𝐹 + 𝑠𝑂 , and 2 ≤ 𝑠𝐼 + 𝑠𝐹 + 𝑠𝑂 , then for

any finite set 𝑉 ⊆ Z7 we have:
|𝑉 | ≤ |𝜙𝐼 (𝑉 ) |𝑠𝐼 |𝜙𝐹 (𝑉 ) |𝑠𝐹 |𝜙𝑂 (𝑉 ) |𝑠𝑂 .

We can now begin the proof of the second bound. First, we handle

the case when the triangle condition is met.

Lemma 3.2. With the setup in Theorem 2.1, as long as 𝑝𝐼 ≤ 𝑝𝐹 +𝑝𝑂 ,
𝑝𝐹 ≤ 𝑝𝐼 +𝑝𝑂 , and 𝑝𝑂 ≤ 𝑝𝐼 +𝑝𝐹 , the number of words communicated
𝑋 satisfies

𝑋 ≥ (𝑝𝐼 + 𝑝𝐹 + 𝑝𝑂 )2𝐺
4𝑀

−𝑀

Proof. We split the execution of the 7NL CNN computation

into 𝐿 segments of contiguous updates. In each segment, we allow

exactly 𝑇 words to be loaded/stored, except for possibly the last

segment which may have ≤ 𝑇 words.

We fix our attention to a single segment. Let 𝑉 be the set of

indices of updates computed during the current segment.𝑉 contains

tuples (𝑖 𝑗 ) ∈ Z7. Then 𝜙𝐼 (𝑉 ) is the set of indices of Input whose
data must be accessed during the segment, 𝜙𝐹 (𝑉 ) the set of indices
of Filter, and 𝜙𝑂 (𝑉 ) the set of indices of Output. We have at most𝑀

words of data in fast memory before the segment begins, and may

load at most 𝑇 more during the segment. The number of words we

access from the 𝑗th array during the segment is 𝑝 𝑗 |𝜙 𝑗 (𝑉 ) |. Then
the number of words we access during this segment is

𝑝𝐼 |𝜙𝐼 (𝑉 ) | + 𝑝𝐹 |𝜙𝐹 (𝑉 ) | + 𝑝𝑂 |𝜙𝑂 (𝑉 ) | ≤ 𝑀 +𝑇 .
Let 𝑠𝐼 , 𝑠𝐹 , and 𝑠𝑂 satisfy 1 ≤ 𝑠𝐼 + 𝑠𝐹 , 1 ≤ 𝑠𝐼 + 𝑠𝑂 , 1 ≤ 𝑠𝐹 + 𝑠𝑂 , and

2 ≤ 𝑠𝐼 + 𝑠𝐹 + 𝑠𝑂 . The discussion in Section 2.3 suggests that we

require 𝑠𝐼 + 𝑠𝐹 + 𝑠𝑂 = 2 in order to obtain the best asymptotic lower

bound. Then by the HBL inequality proved above, we find

|𝑉 | ≤ |𝜙𝐼 (𝑉 ) |𝑠𝐼 |𝜙𝐹 (𝑉 ) |𝑠𝐹 |𝜙𝑂 (𝑉 ) |𝑠𝑂 .
Let 𝑣 𝑗 := 2𝑝 𝑗 |𝜙 𝑗 (𝑉 ) |/(𝑀 +𝑇 ). The inequality becomes

|𝑉 | ≤ (𝑀 +𝑇 )2
4

(𝑣𝐼 /𝑝𝐼 )𝑠𝐼 (𝑣𝐹 /𝑝𝐹 )𝑠𝐹 (𝑣𝑂/𝑝𝑂 )𝑠𝑂 .

The number of updates |𝑉 | possible during this segment is bounded

by 𝐶 max 𝑣
𝑠𝐼
𝐼
𝑣
𝑠𝐹
𝐹
𝑣
𝑠𝑂
𝑂

subject to the constraint 𝑣1 + 𝑣2 + 𝑣3 ≤ 2.

We assume 𝑣𝐼 + 𝑣𝐹 + 𝑣𝑂 = 2 and apply Lagrange multipliers:

𝑣𝐼 + 𝑣𝐹 + 𝑣𝑂 = 2

𝑠𝐼 𝑣
𝑠𝐼−1
𝐼

𝑣
𝑠𝐹
𝐹
𝑣
𝑠𝑂
𝑂

= 𝑠𝐹 𝑣
𝑠𝐹−1
𝐹

𝑣
𝑠𝐼
𝐼
𝑣
𝑠𝑂
𝑂

= 𝑠𝑂𝑣
𝑠𝑂−1
𝑂

𝑣
𝑠𝐼
𝐼
𝑣
𝑠𝐹
𝐹

= 𝜆

Taking an inner product with (𝑣𝐼 , 𝑣𝐹 , 𝑣𝑂 ) we find:
(𝑠𝐼 + 𝑠𝐹 + 𝑠𝑂 )𝑣𝑠𝐼𝐼 𝑣

𝑠𝐹
𝐹
𝑣
𝑠𝑂
𝑂

= 𝜆(𝑣𝐼 + 𝑣𝐹 + 𝑣𝑂 ) =⇒ 𝑣
𝑠𝐼
𝐼
𝑣
𝑠𝐹
𝐹
𝑣
𝑠𝑂
𝑂

= 𝜆

since 𝑠𝐼 +𝑠𝐹 +𝑠𝑂 = 2 = 𝑣𝐼 +𝑣𝐹 +𝑣𝑂 . Substituting into each equation

and dividing, we find 𝑠𝐼 = 𝑣𝐼 , 𝑠𝐹 = 𝑣𝐹 , 𝑠𝑂 = 𝑣𝑂 . Then we have

shown that the maximum number of updates during the current

segment is

|𝑉 | ≤ 1

4

(𝑀 +𝑇 )2 (𝑠𝐼 /𝑝𝐼 )𝑠𝐼 (𝑠𝐹 /𝑝𝐹 )𝑠𝐹 (𝑠𝑂/𝑝𝑂 )𝑠𝑂

This holds for all triples (𝑠 𝑗 ) with 𝑠𝐼 +𝑠𝐹 +𝑠𝑂 = 2 and 𝑠𝐼 , 𝑠𝐹 , 𝑠𝑂 ≤ 1.

In particular, it holds for the triple (𝑠 𝑗 ) which minimize the right

hand side. We apply Lagrange multipliers again ignoring the last

three constraints on the 𝑠 𝑗 :

𝑠𝐼 + 𝑠𝐹 + 𝑠𝑂 = 2

(1 + log(𝑠𝐼 /𝑝𝐼 )) (𝑠𝐼 /𝑝𝐼 )𝑠𝐼 (𝑠𝐹 /𝑝𝐹 )𝑠𝐹 (𝑠𝑂/𝑝𝑂 )𝑠𝑂 = 𝜆

(1 + log(𝑠𝐹 /𝑝𝐹 )) (𝑠𝐼 /𝑝𝐼 )𝑠𝐼 (𝑠𝐹 /𝑝𝐹 )𝑠𝐹 (𝑠𝑂/𝑝𝑂 )𝑠𝑂 = 𝜆

(1 + log(𝑠𝑂/𝑝𝑂 )) (𝑠𝐼 /𝑝𝐼 )𝑠𝐼 (𝑠𝐹 /𝑝𝐹 )𝑠𝐹 (𝑠𝑂/𝑝𝑂 )𝑠𝑂 = 𝜆

Equating and dividing by (𝑠𝐼 /𝑝𝐼 )𝑠𝐼 (𝑠𝐹 /𝑝𝐹 )𝑠𝐹 (𝑠𝑂/𝑝𝑂 )𝑠𝑂 we find

𝑠𝐼 /𝑝𝐼 = 𝑠𝐹 /𝑝𝐹 = 𝑠𝑂/𝑝𝑂 . This leads to 𝑠 𝑗 = 2𝑝 𝑗/(𝑝𝐼 + 𝑝𝐹 + 𝑝𝑂 ).
Note that these minimizers always satisfy 𝑠 𝑗 ≤ 1 for all 𝑗 . Indeed,

the triangle condition guarantees 2𝑝 𝑗 ≤ 𝑝𝐼 +𝑝𝐹 +𝑝𝑂 for all 𝑗 . Then

we have shown that the maximum number of computations during

any segment is

|𝑉 | ≤ 1

4

(𝑀 +𝑇 )2 (𝑠𝐼 /𝑝𝐼 )𝑠𝐼 (𝑠𝐹 /𝑝𝐹 )𝑠𝐹 (𝑠𝑂/𝑝𝑂 )𝑠𝑂

=
1

4

(𝑀 +𝑇 )2
(

2

𝑝𝐼 + 𝑝𝐹 + 𝑝𝑂

)
2

=
(𝑀 +𝑇 )2

(𝑝𝐼 + 𝑝𝐹 + 𝑝𝑂 )2

Since we must do 𝐺 updates in total, the total number of segments

is bounded below:

𝐿 ≥
⌊
𝐺

|𝑉 |

⌋
≥ (𝑝𝐼 + 𝑝𝐹 + 𝑝𝑂 )2𝐺

(𝑀 +𝑇 )2
− 1

Each segment besides the last has 𝑇 loads/stores, so the total

number of words moved is:

𝑋 ≥ 𝑇

(
(𝑝𝐼 + 𝑝𝐹 + 𝑝𝑂 )2𝐺

(𝑀 +𝑇 )2
− 1

)
=

(𝑝𝐼 + 𝑝𝐹 + 𝑝𝑂 )2𝑇𝐺
(𝑀 +𝑇 )2

−𝑇

To choose optimal segment length, we note that 𝑇 /(𝑀 + 𝑇 )2 is

maximized when 𝑇 = 𝑀 and we find the following lower bound on

the communication cost:

𝑋 ≥ (𝑝𝐼 + 𝑝𝐹 + 𝑝𝑂 )2𝐺
4𝑀

−𝑀 □

Should the triangle condition fail, we slightly modify the last

proof by finding a valid set of minimizers. Note that only one of the

three constraints may fail at once: if 𝑝 𝑗 > 𝑝𝑘 +𝑝ℓ , then 𝑝𝑘 +𝑝 𝑗 > 𝑝ℓ .

Lemma 3.3. With the setup in Theorem 2.1, if 𝑝 𝑗 > 𝑝𝑘 + 𝑝ℓ for
some distinct 𝑗, 𝑘, ℓ ∈ {𝐼 , 𝐹 ,𝑂}, the number of words communicated
𝑋 satisfies

𝑋 ≥
𝑝 𝑗 (𝑝𝑘 + 𝑝ℓ )𝐺

𝑀
−𝑀

Proof. The proof is the same as the proof of Lemma 3.2, except

now we prescribe 𝑠 𝑗 = 1 and 𝑠𝑘 + 𝑠ℓ = 1. This guarantees that all

conditions for HBL are met. We maximize (𝑠𝑘/𝑝𝑘 )𝑠𝑘 (𝑠ℓ/𝑝ℓ )𝑠ℓ with
respect to 𝑠𝑘 and 𝑠ℓ as before, and find 𝑠𝑘/𝑝𝑘 = 𝑠ℓ/𝑝ℓ . This leads to
𝑠𝑘 = 𝑝𝑘/(𝑝𝑘 +𝑝ℓ ) and 𝑠ℓ = 𝑝ℓ/(𝑝𝑘 +𝑝ℓ ). All constraints are satisfied.
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Pick 𝑇 = 𝑀 . Then we have shown that the maximum number of

computations during any segment is

|𝑉 | ≤ 1

4

(2𝑀)2 (𝑠 𝑗/𝑝 𝑗 )𝑠 𝑗 (𝑠𝑘/𝑝𝑘 )𝑠𝑘 (𝑠ℓ/𝑝ℓ )𝑠ℓ

=
1

4

(2𝑀)2 1

𝑝 𝑗

(
1

𝑝𝑘 + 𝑝ℓ

)𝑠 𝑗+𝑠𝑘
=

(𝑀 +𝑇 )2
4𝑝 𝑗 (𝑝𝑘 + 𝑝ℓ )

We convert this into a communication bound as in Lemma 3.2:

𝑋 ≥
𝑝 𝑗 (𝑝𝑘 + 𝑝ℓ )𝐺

𝑀
−𝑀 □

When𝑀 > (𝐶𝑝𝐺)1/2, the previous bounds become trivial. When

the filter size 𝑤𝐹ℎ𝐹 is small relative to 𝑀 , we are able to reduce

the decay in our bounds from 1/𝑀 to 1/𝑀1/2
and extend them to

larger memory sizes. To show this third “small filter" bound, we

rewrite the problem and exploit new array access homomorphisms.

In particular, we rewrite the loops over 𝑖6 and 𝑖7 as loops over

𝑞6, 𝑟6, 𝑞7, 𝑟7. We have 𝑖6 = 𝜎𝑤𝑞6 + 𝑟6 for 𝑟6 ∈ [0, 𝜎𝑤 − 1] and

𝑞6 ∈ [0,𝑤𝐹 /𝜎𝑤 − 1], and we similarly divide 𝑖7 by 𝜎ℎ for 𝑞7 and 𝑟7.

This has the effect of lifting 𝐼𝑛𝑝𝑢𝑡 and 𝐹𝑖𝑙𝑡𝑒𝑟 to higher dimensional

arrays, with 6 indices instead of 4. Under the lift, we make the

following accesses to each array during an update:

Input(𝑖1, 𝑖2, 𝑖4 + 𝑞6, 𝑟6, 𝑖5 + 𝑞7, 𝑟7)
Filter(𝑖2, 𝑖3, 𝑞6, 𝑟6, 𝑞7, 𝑟7)
Output(𝑖1, 𝑖3, 𝑖4, 𝑖5)

In our proof, we will find it valuable to fix the indices 𝑞6 and 𝑞7.

A new collection of array access homomorphisms ignores these.

With an implicit translation by ®𝑞 = (𝑞6, 𝑞7), we define the homo-

morphisms 𝜙 ′
𝐼
, 𝜙 ′

𝑂
: Z7 → Z4, 𝜙 ′

𝐹
: Z7 → Z6:

𝜙 ′
𝐼 (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑟6, 𝑟7) = (𝑖1, 𝑖2, 𝑖4, 𝑟6, 𝑖5, 𝑟7)

𝜙 ′
𝐹 (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑟6, 𝑟7) = (𝑖2, 𝑖3, 𝑟6, 𝑟7)

𝜙 ′
𝑂 (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑟6, 𝑟7) = (𝑖1, 𝑖3, 𝑖4, 𝑖5)

Each homomorphism selects a subset of the indices, and every index

appears in exactly two of the homomorphisms. This is the case of

a tensor contraction analyzed in Section 6.3 of [2]. They find the

optimal HBL exponents to be 𝑠𝐼 = 𝑠𝐹 = 𝑆𝑂 = 1/2 and an HBL

inequality for finite subsets 𝑉 of Z7,

|𝑉 | ≤ |𝜙 ′
𝐼 (𝑉 ) |1/2 |𝜙 ′

𝐹 (𝑉 ) |1/2 |𝜙 ′
𝑂 (𝑉 ) |1/2 .

We can now begin the proof of the third bound.

Lemma 3.4. The number of words communicated 𝑋 satisfies

𝑋 ≥ 2(𝑝𝐼𝑝𝐹𝑝𝑂 )1/2 (𝜎𝑤𝜎ℎ)1/2𝐺
(𝑤𝐹ℎ𝐹𝑀)1/2

− 2𝑀

Proof. We split the 7NL CNN computation into 𝐿 segments

with𝑇 loads/stores as before. Let𝑉 be the set of updates computed

during a given segment. For fixed indices ®𝑞 = (𝑞6, 𝑞7), let 𝑉 ( ®𝑞) be
the slice of 𝑉 with those two coordinates held constant: 𝑉 ( ®𝑞) =

𝜋−1 ( ®𝑞) where 𝜋 is the projection of Z9 onto the ®𝑞 coordinates.

Then to compute every update in 𝑉 ( ®𝑞) we must access the entries

of Input corresponding to indices 𝜙 ′
𝐼
(𝑉 ( ®𝑞)), and similarly for Filter

and Output (we embed 𝑉 ( ®𝑞) in the domain of 𝜙 ′
𝐼
by ignoring the

constant ®𝑞 coordinates). We apply our HBL inequality to 𝑉 ( ®𝑞),

|𝑉 ( ®𝑞) | ≤ |𝜙 ′
𝐼 (𝑉 ( ®𝑞)) |1/2 |𝜙 ′

𝐹 (𝑉 ( ®𝑞)) |1/2 |𝜙 ′
𝑂 (𝑉 ( ®𝑞)) |1/2

Note that 𝑉 is the disjoint union of the 𝑉 ( ®𝑞)’s. Also, the set of

indices of 𝐹𝑖𝑙𝑡𝑒𝑟 accessed is the disjoint union of the 𝜙 ′
𝐹
(𝑉 ( ®𝑞))’s.

Let𝑢 be the number of indices of 𝐼𝑛𝑝𝑢𝑡 accessed during the segment,

𝑣 the number of indices of 𝑂𝑢𝑡𝑝𝑢𝑡 accessed during the segment,

and𝑤 ( ®𝑞) = |𝜙 ′
𝐹
(𝑉 ( ®𝑞)) | the number of indices of Filter accessed by

each slice. We have:

|𝜙 ′
𝐼 (𝑉 ( ®𝑞)) | ≤ 𝑢,

��𝜙 ′
𝑂 (𝑉 ( ®𝑞))

�� ≤ 𝑣 ∀®𝑞���⋃®𝑞𝑉 ( ®𝑞)}
��� = ∑

®𝑞𝑤 ( ®𝑞)

We have at most𝑀 words in memory before the segment begins,

and may load at most 𝑇 more:

𝑝𝐼𝑢 + 𝑝𝑂𝑣 + 𝑝𝐹
∑

®𝑞𝑤 ( ®𝑞) ≤ 𝑀 +𝑇

Using our HBL inequality,

|𝑉 | = ∑
®𝑞 |𝑉 ( ®𝑞) | ≤ 𝑢1/2𝑣1/2

∑
®𝑞𝑤 ( ®𝑞)1/2

The max of 𝑢1/2𝑣1/2
∑

®𝑞 𝑤 ( ®𝑞)1/2 over 𝑝𝐼𝑢 + 𝑝𝑂𝑣 + 𝑝𝐹
∑

®𝑞 𝑤 ( ®𝑞) ≤
𝑀 + 𝑇 bounds the number of updates during our segment. We

assume equality and apply Lagrange multipliers:

𝑝𝐼𝑢 + 𝑝𝑂𝑣 + 𝑝𝐹
∑

®𝑞𝑤 ( ®𝑞) = 𝑀 +𝑇 (2)

1

2

𝑣1/2

𝑢1/2
∑

®𝑞𝑤 ( ®𝑞)1/2 = 𝑝𝐼𝜆 (3)

1

2

𝑢1/2

𝑣1/2
∑

®𝑞𝑤 ( ®𝑞)1/2 = 𝑝𝑂𝜆 (4)

1

2

𝑢1/2𝑣1/2𝑤 ( ®𝑞)−1/2 = 𝑝𝐹𝜆 ∀®𝑞 (5)

Then by dividing (3) and (4), 𝑝𝐼𝑢 = 𝑝𝑂𝑣 . Equating instances of

(5), all the 𝑤 ( ®𝑞) =: 𝑤 are equal. There are
𝑤𝐹ℎ𝐹

𝜎𝑤𝜎ℎ
pairs of ( ®𝑞), so

equating (3) and (5),

1

𝑝𝐼

∑
®𝑞𝑤 ( ®𝑞)1/2 = 1

𝑝𝐼

𝑤𝐹ℎ𝐹

𝜎𝑤𝜎ℎ
𝑤1/2 =

𝑢

𝑝𝐹𝑤
1/2

so that 𝑝𝐹𝑤 =
𝜎𝑤𝜎ℎ
𝑤𝐹ℎ𝐹

𝑝𝐼𝑢. Then by (1), the maximizing values are

𝑢 = 𝑀+𝑇
3𝑝𝐼

, 𝑣 = 𝑀+𝑇
3𝑝𝑂

, and 𝑤 ( ®𝑞) = 𝜎𝑤𝜎ℎ
𝑤𝐹ℎ𝐹

𝑀+𝑇
3𝑝𝐹

for all ®𝑞. Using these

values, the maximum number of updates during this segment is

|𝑉 | ≤ 𝑢1/2𝑣1/2
∑

®𝑞𝑤 ( ®𝑞)1/2 ≤ (𝑀 +𝑇 )3/2

3
3/2 (𝑝𝐼𝑝𝐹𝑝𝑂 )1/2

(𝑤𝐹ℎ𝐹 )1/2

(𝜎𝑤𝜎ℎ)1/2

and the number of segments 𝐿 is bounded below by

𝐿 ≥
⌊
𝐺

|𝑉 |

⌋
≥ 3

3/2 (𝑝𝐼𝑝𝐹𝑝𝑂 )1/2 (𝜎𝑤𝜎ℎ)1/2𝐺
(𝑤𝐹ℎ𝐹 )1/2 (𝑀 +𝑇 )3/2

− 1

Each segment besides the last has at most 𝑇 loads/stores, so the

communication cost is

𝑋 ≥ 3
3/2 (𝑝𝐼𝑝𝐹𝑝𝑂 )1/2 (𝜎𝑤𝜎ℎ)1/2𝑇𝐺

(𝑤𝐹ℎ𝐹 )1/2 (𝑀 +𝑇 )3/2
−𝑇

To choose optimal segment length, we note that 𝑇 /(𝑀 +𝑇 )3/2 is
maximized when 𝑇 = 2𝑀 and we find the communication cost

𝑋 ≥ 2(𝑝𝐼𝑝𝐹𝑝𝑂 )1/2 (𝜎𝑤𝜎ℎ)1/2𝐺
(𝑤𝐹ℎ𝐹𝑀)1/2

− 2𝑀 □

Taken together, Lemmas 3.1, 3.2, 3.3, and 3.4 complete the proof

of Theorem 2.1.
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3.2 Attainability
We now discuss practical algorithms for attaining the previously

presented communication bounds. We will focus on four algorithms

in particular: im2col, blocking, Winograd convolutions, and FFT

convolutions. im2col [14], Winograd [13], and FFT techniques [17]

for performing convolutions are all well documented in the liter-

ature. We will focus on designing improved blocking algorithms.

For loop bounds (𝑁, 𝑐𝐼 , 𝑐𝑂 ,𝑤𝑂 , ℎ𝑂 ,𝑤𝐹 , ℎ𝐹 ) we call
𝐵 = (𝑏𝑁 , 𝑏𝑐𝐼 , 𝑏𝑐𝑂 , 𝑏𝑤𝑂

, 𝑏ℎ𝑂 , 𝑏𝑤′
𝐹
, 𝑏ℎ′

𝐹
, 𝑏𝑤′′

𝐹
, 𝑏ℎ′

𝐹
)

a blocking. Note that we are using a small filter trick in the style of

[6]. To obtain a communication-optimal blocking, we use a linear

program. For each bound variable, we have a lower bound of 1 and

an appropriate upper bound, being the corresponding array sizes

for most indices, and an expression of the filter size and strides for

the filter indices 𝑞6, 𝑞7, 𝑟6, and 𝑟7. Additionally, we know that the

three blocks of the output, image, and filter must all simultaneously

fit in memory. We thus have that

𝑝𝑂𝑏𝑁𝑏𝑐𝑂𝑏𝑤𝑂
𝑏ℎ𝑂 ≤ 𝑝𝑂𝑀

𝑝𝑇

𝑝𝐹𝑏𝑐𝐼𝑏𝑐𝑂𝑏𝑤𝐹 ′𝑏𝑤𝐹 ′′𝑏ℎ𝐹 ′𝑏ℎ𝐹 ′′ ≤
𝑝𝐹𝑀

𝑝𝑇
(6)

𝑝𝐼𝑏𝑁𝑏𝑐𝐼 (𝑏𝑤𝑂
+ 𝑏𝑤𝐹 ′ ) (𝑏ℎ𝑂 + 𝑏ℎ𝐹 ′ )𝑏𝑤𝐹 ′′𝑏ℎ𝐹 ′′ ≤

𝑝𝐼𝑀

𝑝𝑇

We expand the last term into four terms, each bounded by
𝑀
12
. Then,

taking logarithms and setting up the linear program, we have for

our vector 𝑥 = log𝐵 elementwise, the problem of maximizing 𝑐𝑇 𝑥

where

𝑐𝑇 =
[
1 1 1 1 1 1 1 1 1

]
subject to the constraints 𝐴𝑥 ≤ 𝑏 where

𝐴 =



1 0 1 1 1 0 0 0 0

0 1 1 0 0 1 1 1 1

1 1 0 1 1 0 1 0 1

1 1 0 1 0 0 1 1 1

1 1 0 0 1 1 1 0 1

1 1 0 0 0 1 1 1 1


and 𝑏 =



1 − log𝑀 𝑝𝑇
1 − log𝑀 𝑝𝑇
1 − log𝑀 4𝑝𝑇
1 − log𝑀 4𝑝𝑇
1 − log𝑀 4𝑝𝑇
1 − log𝑀 4𝑝𝑇


We solve this linear program and take exponentials to find our block-

ing. Using a linear program, we can asymptotically meet the lower

bounds we have derived. To compare the various algorithms for per-

forming the convolution, we symbolically calculate the amount of

communication each one requires. We use the FFT communication

bound provided in [7] and the matrix multiplication communication

bound provided in [12] to compute the relevant communication

volumes. We compute communication volumes using parameters

taken from AlexNet. We compare these four with the bounds de-

rived in 3.1 and the communication for a naive convolution. The

parameters used are taken from [9]. The results are presented in

Figure 1.

We observe several trends. Blocking and im2col scale better than

FFT andWinograd in thememory size, and the relative performance

of blocking and im2col is dependent on the ratio
𝜎𝑤𝜎ℎ
𝑤𝐹ℎ𝐹

. This is

expected because of how the small filter blocking is used. We note

that in all cases, the communication bound is not attained precisely.

Work remains to either strengthen the communication bound or

devise better algorithms to meet the bound.

Figure 2: Theoretically computed communication volumes
for mixed precision ResNet50 layers 1 and 2, relative to the
communication bound. We take 𝜎𝐼 = 𝜎𝐹 = 1 and 𝜎𝑂 = 2.
Layer 1 refers to conv1 and layer 2 refers to conv2_x as spec-
ified in [9]. We use a batch size of 1000. We see that in gen-
eral, communication volumes are a constant multiple of the
communication bound. However, we do see scaling in block-
ing, and for conv2_x, the strides of 1 are more favorable to
the blocking, and blocking beats im2col for sufficiently large
memory sizes. Convolutional layers conv3_x, conv4_x, and
conv5_x, which are not depicted, resemble conv2_x.

4 PARALLEL COMMUNICATION BOUNDS
4.1 Derivation of New Bounds
In this section, we prove Theorems 2.2 and 2.3. These provide lower

bounds for the number of words communicated in a distributed

memory parallel processor memory model, with 𝑃 processors each

with local memory size 𝑀 . We assume that all the data is non-

overlapping. A single word of communication corresponds to the

transmission of one word of data from any one processor to any

other. Each array has its own precision.

We now prove Theorem 2.2. For this result, the input data may

begin distributed among the local memories in any configuration

and the output data may reside anywhere in memory at the end of

the execution. In the case 𝑝𝐼 = 𝑝𝐹 = 𝑝𝑂 = 1, Theorem 2.2 becomes

𝑋 ≥ max

{
9𝐺

4𝑃𝑀
−𝑀,

2𝐺 (𝜎𝑤𝜎ℎ)1/2

𝑃 (𝑤𝐹ℎ𝐹𝑀)1/2
− 2𝑀

}
.

Proof of Theorem 2.2. Some processor must perform at least

𝐺/𝑃 of the updates. Splitting the computations executed by this

processor into segments, each having a total of𝑀 words communi-

cated into and out of the processor, we need to bound the number

of computations possible in a segment. By the same technique as

in Lemmas 3.2 and 3.3, we find that the number of calculations |𝑉 |
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possible in a segment is |𝑉 | ≤ 𝑀2/𝐶𝑝 . Since we must do at least

𝐺/𝑃 updates, the total number of segments is bounded below:

𝐿 ≥ 𝐺

𝑃 |𝑉 | − 1 ≥
𝐶𝑝𝐺

𝑃𝑀2
− 1

and the number of words communicated by this processor is

𝑋 ≥ 𝑀𝐿 ≥
𝐶𝑝𝐺

𝑃𝑀
−𝑀

This is the first term in the desired lower bound. Now, instead

splitting into segments with 2𝑀 communications and using the

technique in Lemma 3.4, we find that the number of calculations

|𝑉 | possible in a segment is

|𝑉 | ≤ 𝑀3/2

(𝑝𝐼𝑝𝐹𝑝𝑂 )1/2

(
𝑤𝐹ℎ𝐹

𝜎𝑤𝜎ℎ

)
1/2

Since we must do at least 𝐺/𝑃 updates, and as before the number

of words communicated by this processor is

𝑋 ≥ 2𝑀

(
𝐺

𝑃 |𝑉 | − 1

)
≥ 2(𝑝𝐼𝑝𝐹𝑝𝑂 )1/2 (𝜎𝑤𝜎ℎ)1/2𝐺

𝑃 (𝑤𝐹ℎ𝐹𝑀)1/2
− 2𝑀

This is the second term in the desired lower bound. □

When 𝑀 > 3𝐺1/2

2𝑃1/2 and 𝑀 >
𝐺2/3 (𝜎𝑤𝜎ℎ)1/3
𝑃2/3 (𝑤𝐹ℎ𝐹 )1/3

, both of the above

lower bounds are trivial. This becomes a concern if the memory

size per processor or the number of processors is large relative to

the size of the computation. Taking inspiration from the methods in

[5] which introduce lower bounds for parallel matrix multiplication

corresponding to 2.5D algorithms, we find memory independent

lower bounds in Theorem 2.3. Now we make a load balancing

assumption on each of the three arrays: image, filter, and output

data are all evenly distributed across the processors. When 𝑝𝐼 =

𝑝𝐹 = 𝑝𝑂 = 1, the bound is

𝑋 ≥ max

{
𝐺1/2

𝑃1/2
−
𝐴𝑝

𝑃
,
(𝐺𝜎𝑤𝜎ℎ)2/3

(𝑃𝑤𝐹ℎ𝐹 )2/3
−
𝐴𝑝

𝑃

}
.

Proof. Recall that in Lemma 3.2 we show that if𝑉 is any subset

of indices of updates of 7NL CNN, then we can bound the size of𝑉 :

|𝑉 | ≤ |𝜙𝐼 (𝑉 ) |2/3 |𝜙𝐹 (𝑉 ) |2/3 |𝜙𝑂 (𝑉 ) |2/3

=
1

(𝑝𝐼𝑝𝐹𝑝𝑂 )2/3
(𝑝𝐼 |𝜙𝐼 (𝑉 ) |)2/3 (𝑝𝐹 |𝜙𝐹 (𝑉 ) |)2/3 (𝑝𝑂 |𝜙𝑂 (𝑉 ) |)2/3

Because the total number of updates is𝐺 , one processor must do at

least 𝐺/𝑃 updates. Let 𝑉 be the set of all iterations performed by

this processor. Then for at least one 𝑗 ∈ {𝐼 , 𝐹 ,𝑂}, we must have

𝐺1/3

𝑃1/3
= |𝑉 |1/3 ≤ 1

(𝑝𝐼𝑝𝐹𝑝𝑂 )2/9
(𝑝 𝑗 |𝜙 𝑗 (𝑉 ) |)2/3 .

So the processor must access at least (𝑝𝐼𝑝𝐹𝑝𝑂 )1/3𝐺1/2/𝑃1/2 words
from some array during the full computation. Recall that

𝐴𝑝 := max{𝑝𝐼 |𝐼 |, 𝑝𝐹 |𝐹 |, 𝑝𝑂 |𝑂 |}. At most 𝐴𝑝/𝑃 words from this

array are accessible to the processor at the beginning of the compu-

tation by the load balancing assumption, therefore this processor

must receive at least 𝑋 words of data from other processors, where

𝑋 ≥ (𝑝𝐼𝑝𝐹𝑝𝑂 )1/3𝐺1/2

𝑃1/2
−
𝐴𝑝

𝑃
.

Similarly, in Lemma 3.4 we show that 𝑉 has size:

|𝑉 | ≤ ∑
®𝑞 |𝜙 ′

𝐼 (𝑉 ( ®𝑞)) |1/2 |𝜙 ′
𝐹 (𝑉 ( ®𝑞)) |1/2 |𝜙 ′

𝑂 (𝑉 ( ®𝑞)) |1/2

≤ 𝑤𝐹ℎ𝐹

𝜎𝑤𝜎ℎ
|𝜙𝐼 (𝑉 ) |1/2 |𝜙𝐹 (𝑉 ) |1/2 |𝜙𝑂 (𝑉 ) |1/2

Then for at least one 𝑗 ∈ {𝐼 , 𝐹 ,𝑂}, it must be true that

𝐺1/3

𝑃1/3
= |𝑉 |1/3 ≤

(
𝑤𝐹ℎ𝐹

𝜎𝑤𝜎ℎ

)
1/3

1

(𝑝𝐼𝑝𝐹𝑝𝑂 )1/6
(𝑝 𝑗 |𝜙 𝑗 (𝑉 ) |)1/2 .

So the processor accesses (𝑝𝐼𝑝𝐹𝑝𝑂 )1/3 (𝐺𝜎𝑤𝜎ℎ)2/3/(𝑃𝑤𝐹ℎ𝐹 )2/3
words from some array during the full computation. At most 𝐴𝑝/𝑃
words from this array are accessible to the processor at the begin-

ning of the computation, so the processor must receive at least 𝑋

words of data from other processors, where

𝑋 ≥ (𝑝𝐼𝑝𝐹𝑝𝑂 )1/3 (𝐺𝜎𝑤𝜎ℎ)2/3

(𝑃𝑤𝐹ℎ𝐹 )2/3
−
𝐴𝑝

𝑃
.

Combining the two lower bounds proves the theorem. □

Note that as in the single processor case, the lower bounds come

in pairs, the second eclipsing the first when the filter is sufficiently

small. We now discuss the attainability of these results.

4.2 Attainability
We now discuss algorithms for attaining the previously presented

communication bounds, focusing once again on im2col, blocking,

Winograd, and FFT. For blocking, instead of blocking in the memory

size, we block in the number of processors. For each loop variable,

we have a corresponding parallel blocking variable𝑎 ( ·) representing
the segment of the loop variable being assigned to each processor.

We then have the blocking

𝐵 = (𝑎𝑁 , 𝑎𝑐𝐼 , 𝑎𝑐𝑂 , 𝑎𝑤𝑂
, 𝑎ℎ𝑂 , 𝑎𝑤𝐹

, 𝑎ℎ𝐹
)

and each processor then does 𝑎𝑁𝑎𝑐𝐼 𝑎𝑐𝑂𝑎𝑤𝑂
𝑎ℎ𝑂𝑎𝑤𝐹

𝑎ℎ𝐹
computa-

tions. We do not use an additional small filter blocking in this

instance. To find the blocking, we once again take logarithms, giv-

ing us the following linear program: for a variable 𝑥 = log{𝐵} we
maximize 𝑐𝑇 𝑥 for

𝑐𝑇 =
[
1 1 1 1 1 1 1

]
subject to 𝐴𝑥 ≤ 𝑏 where

𝐴 =



−1 0 −1 −1 −1 0 0

0 −1 −1 0 0 −1 −1
−1 −1 0 −1 −1 0 0

−1 −1 0 −1 0 0 −1
−1 −1 0 0 −1 −1 0

−1 −1 0 0 0 −1 −1
−1 −1 −1 −1 −1 −1 −1


and

𝑏 =



1 − log𝑃 𝑝𝑇 − log𝑃 𝑁𝑐𝑂𝑤𝐹ℎ𝐹
1 − log𝑃 𝑝𝑇 − log𝑃 𝑐𝐼𝑐𝑂𝑤𝑂ℎ𝑂
1 − log𝑃 4𝑝𝑇 − log𝑃 𝑁𝑐𝐼𝑤𝐹ℎ𝐹
1 − log𝑃 4𝑝𝑇 − log𝑃 𝑁𝑐𝐼𝑤𝐹ℎ𝑂
1 − log𝑃 4𝑝𝑇 − log𝑃 𝑁𝑐𝐼ℎ𝐶𝑤𝐹

1 − log𝑃 4𝑝𝑇 − log𝑃 𝑁𝑐𝐼𝑤𝑂ℎ𝑂
1 − log𝑃 𝑁𝑐𝐼𝑐𝑂𝑤𝑂ℎ𝑂𝑤𝐹ℎ𝐹


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Figure 3: Theoretically computed communication volumes
for parallel ResNet layers 1 and 2, with 𝑝𝐼 = 𝑝𝐹 = 1 and
𝑝𝑂 = 2, as a multiple of the communication bound, as the
number of processors increases. Layer 1 refers to conv2 and
layer 2 refers to conv2_x. We use a batch size of 1000. We
see that blocking outperforms im2col considerably, espe-
cially for layer 2. Convolutional layers conv3_x, conv4_x,
and conv5_x, which are not depicted, resemble conv2_x. The
dashes lines for conv2_x do not begin at the smallest num-
ber of processors because of assumptions on the memory
model. We see that blocking performs better than im2col in
almost all cases, with significant improvements in conv2_x
when 𝜎𝑥 = 𝜎𝑦 = 1 is more favorable to blocking.

To compare the four algorithms, we once again symbolically com-

pute the amount of communication each one requires, and we

compare it with the bounds given in 4.1. One should note that the

communication models used in the three different bounds for our

work, [12] for matrix multiplication, and [7] for FFT are not quite

the same. However, there is a straightforward conversion between

them. The difference between thememorymodels is the assumption

as to whether the data initially resides outside of the distributed

network or inside of it. To convert between these, we simply add or

subtract the total size of the problem |Image| + |Filter| + |Output|.
The results are presented in Figure 2.

In both cases, we note that the communication bound goes to 0

very quickly as the number of processors increases. Additionally,

we note that for blocking, we have the additional hypothesis that

all of the inputs/filter/output elements can reside in the distributed

memory, so this method of blocking is not immediately feasible

for smaller numbers of processors. However, we see that when

blocking is applicable, it rapidly reaches the communication bound

as the number of processors increases. We note that Winograd and

FFT remain quite far from the communication bound, and that FFT

and Winograd have comparable performances, which is validated

by the experimental results of [17], while im2col performs orders

of magnitude better.

5 PERFORMANCE RESULTS
To show real-world applicability of this tiling, we benchmark our

results on a GEMMINI [8] machine learning accelerator running

on Firesim [11], a cycle-accurate hardware simulator.

GEMMINI’s memory architecture consists of two separate mem-

ory buffers: a scratchpad, which holds the input and the filter, and

an accumulator buffer, which holds the output at a higher precision

(to prevent floating-point rounding issues) and performs additions

to it. At each tile, the input and the filter are reloaded from off-chip

memory, but the partially summed output is held in the accumu-

lator until it is fully summed (the loop ordering is fixed to ensure

that the innermost loop axes in the outer loops correspond to re-

duction axes), at which point it is rounded and written off-chip in

low precision.

We use the default GEMMINI chip configuration, in which, the

scratchpad is 256KiB, holding 8-bit words, while the accumulator

is 64KiB and holds 32-bit words. However, memory accesses are

interleaved with computation using double-buffering, in which only

half of the scratchpad and the accumulator are accessible to the

processor at any one time (with the other half pulling in data from

main memory). As a result, for tiling calculations, our memory

sizes are halved: the scratchpad can hold 128K words, while the

accumulator can hold 8K words.

As a result, we modify the optimization problem (6) to account

for buffer sharing between the input and the filter and to enforce

integral tile sizes. Although this introduces nonlinearity (and an

integrality constraint), the built-in numerical optimization routine

NMaximize on Mathematica is still able to find a tile in around 400

iterations, or about five seconds on our test laptop.

We compare the performance of the five standard ResNet con-

volution sizes [9] evaluated on GEMMINI using both our tiling

and the vendor-supplied tiling system included with GEMMINI. In

the vendor implementation, each ResNet convolution size takes

roughly the same number of cycles, roughly 500M for batch size

1000.

We measure both the estimated communication complexity (the

number of scratchpad and accumulator rows allocated by chip’s

memory controller per tile, multiplied by the total number of oper-

ations divided by the size of a tile) and the counted number of clock

cycles taken by each computation. As shown in Figure 4, our system

consistently uses between 45% and 85% as much estimated commu-

nication compared to the vendor tiling on all ResNet layers; this can

be used as a proxy for energy consumption, which is dominated

by communication costs ([16] attributes over 80% of energy costs

to communication). Furthermore, for convs 1, 2, and 3 (together

comprising roughly half of the workload of a standard ResNet50

instance) where the vendor tiling was unable to take full advantage

of the buffer (indicated by low scratchpad utilization per-tile), our

tiling reduces clock cycle count (i.e. runtime) by 2.5× for conv1

and 13% for conv2 and conv3. However, for layers 4 and 5, where

the vendor tiling already achieves scratchpad utilizations of 99%

and 93% respectively, there is little room for improvement; in these

cases, our tiling, which does not take into account non-memory
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Figure 4: Experimentally measured Resnet50 layer perfor-
mance (both total clock cycles and communication) onGEM-
MINI accelerator. Our optimization-generated tiling consis-
tently uses less communication than the vendor-supplied
tiling, which leads to performance increases for layers
where vendor tiling has poor scratchpad utilization (convs
1 through 3).

related, hardware-specific factors such as optimal microkernel size

and memory coalescing, performs worse with respect to clock cy-

cles. In such cases, additional constraints may be added to encode

these factors, as in [10]. For instance, for conv5, simply adding a

single constraint forbidding the 7 × 7 image from being tiled (as

an entire row will fit in a line of scratchpad) reduces cycles count

from 124% to 104% of the vendor figure.

6 CONCLUSION
In this work, we have reduced the gap between theoretical commu-

nication lower bounds and practical implementations for convolu-

tion layers of CNNs. We addressed both a single processor memory

model with one cache layer, and a parallel processor distributed

memory model. The lower bounds presented in Theorems 2.1, 2.2,

and 2.3 contain constants and allow for the relative precisions of the

data to vary. The single processor lower bound is asymptotically

optimal. In Sections 3.2 and 4.2 we analyzed the attainability of

these lower bounds across popular convolution algorithms such as

Im2Col, and found in some cases that a blocking strategy inspired

by [2] communicates less. We included results comparing the per-

formance of our blocking strategy with Im2Col, FFT, and Winograd

in Section 5.

While our lower bounds are nearly attained, there is more work

to be done to close the gap. Future directions of work include

determining whether further optimization techniques can tighten

the constants in the bounds, and investigating other algorithms to

attempt to meet the existing lower bounds. It is also possible that

pebbling methods could be used to remove lower order terms from

our lower bounds. Finally, it is of interest to extend our results to

other memory models, such as single processors with more levels

of cache or parallel processors with shared memory.
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