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A refined version of the texture potential mapping algorithm is introduced in which a
one-dimensional MIP map is incorporated. This has the effect of controlling the maximum
number of texture samples required. The new technique is compared to existing texture
antialiasing methods in terms of quality and sample count. The new method is shown to
compare favorably with existing techniques for producing high quality antialiased, texture-
mapped images.
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1. INTRODUCTION

In recent years perspective texture mapping has become a standard feature
of high end 3-D graphics systems, and is becoming increasingly popular as
a feature of lower cost systems and games. Until comparatively recently, in
low cost systems little or no effort has been made to alleviate the problems
of aliasing that occur when the texture pattern becomes comparable in
scale to the raster grid.
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Fig. 1. The general form of a pixel once projected into texture space.

In high quality real-time systems the usual approach to the problem is
MIP mapping [Williams 1983]. In all MIP mapping techniques the texture
pattern is stored at a number of resolutions, the coarser ones being derived
from the finer by a process of filtering and decimation that eliminates
aliasing. When each pixel is drawn a suitable version of the texture pattern
is selected, based on the size of the pixel’s “footprint” on the texture map.

To make the most efficient use possible of the MIP map tables it is
necessary for them to include frequencies right up to the Nyquist limit for
their resolution. This in turn makes it desirable to bilinearly interpolate
between the four nearest texels to the projected pixel in order that sharp
transitions (which can reintroduce a form of aliasing) are avoided. A
similar problem can arise with transitions between one resolution of
texture map and the next. In this case the solution is to interpolate
between the two layers. Hence, trilinear MIP mapping is the standard
highest quality algorithm.

Unfortunately this algorithm is not a perfect solution because it has a
significant flaw. It only allows for a variation in the pixel’s overall size yet
the process of perspective projection allows the pixel’s footprint to be
distorted into a general quadrilateral as shown in Figure 1. When the
surface being displayed is at a shallow angle to the line of sight this
quadrilateral will be long and thin. A possible example of this is shown in
Figure 2. To prevent aliasing in the direction corresponding to the long axis
of the pixel a coarse (heavily filtered) MIP map must be used. However,
this will suppress the texture in the perpendicular direction, resulting in a
premature fading or blurring of the pattern.

A solution to this problem which is commonly implemented in commer-
cially available hardware is a pixel-based supersampling approach. While
this can solve the problem in principle, it does so at an enormous cost. In
high-end graphics workstations and flight simulator systems up to 16
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Fig. 2. A projected pixel that cannot be satisfactorily sampled using MIP mapping.

samples are commonly used, each of which requires in turn eight texels to
allow for trilinear interpolation. The total is nearly 100 accesses to texture
memory per pixel. Even at this cost, angles will sometimes occur that are
sufficiently shallow to defeat the system.

In the early days of texture mapping several other methods of antialias-
ing were proposed. Some, such as the narrowband noise model [Schachter
1980] restricted the range of texture patterns that could be used, while
others [Feibush et al. 1980] involved brute force integration over the pixel
footprint in texture space, imposing an unacceptable computational cost for
real-time systems.

A method that does not suffer from either of these problems was proposed
by Crow [1984]. This method is based on the idea of storing the two-
dimensional indefinite integral of the texture pattern, rather than the
pattern itself. For any given pixel footprint the required definite integral
can be obtained simply by looking up the value of the indefinite integral at
the upper and lower bounds. This only works exactly if the pixel footprint is
rectangular and aligned to the axes in texture space. Nonetheless, it still
accurately covers many more situations than can be dealt with directly by
using MIP mapping. The configuration shown in Figure 2 is one where this
method is successful. However, Figure 3 will not be handled well because
the algorithm must include contributions from a rectangular region sur-
rounding the projected pixel. In this case all of the texels shown on the
diagram will contribute and unnecessary blurring will be introduced by the
large areas that lie outside the shaded region.

Refinements to MIP mapping [Schilling et al. 1996] and Crow’s method
[Glassner 1986] have been proposed to overcome this problem. The present
authors have proposed texture potential mapping (TPM) [Cant and Shrub-
sole 1996; 1997] for the same purpose. An extension of this method, which
substantially limits its computational cost, forms the subject of the present
article.
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Fig. 3. A projected pixel which cannot be satisfactorily sampled using Crow’s summed area
table technique.

2. REVIEW OF TEXTURE POTENTIAL MAPPING—PROBLEM OF LARGE
NUMBER OF SAMPLES FOR DISTANT PIXELS

Unlike the algorithms mentioned previously, TPM follows the form of each
projected pixel faithfully in order to overcome the problem of texture
“over-blurring” that is evident when approximate pixel footprints are
applied.

In order to produce antialiased texture, an average texture intensity (or
color) over all the texels that lie within the quadrilateral must be derived.
A brute force approach of looking at every texel value is too time-consum-
ing. TPM overcomes this by finding the average texture value within a
pixel footprint by integrating the texture within it using values that lie
around its edges only. This concept is analogous to Gauss’ theorem in
physics, in which the charge contained within a volume can be found by
examining the electric field on the surface of that volume. Thus, each
texture coordinate is forced to have a corresponding “field” value which is
stored as a running total of its previous intensities down a column in
texture space. The total texture intensity bounded by the quadrilateral
within that column is then found simply by the subtraction of the upper
and lower “field” values. If we integrate this over all the columns within the
quadrilateral, an average intensity value can be deduced. Since the “field”
values only need to be calculated once, they can be precomputed and stored,
leaving only one subtraction per texture column and only one division per
transformed screen pixel.

This algorithm produces excellent qualitative results, as shown on the
left-hand side of Figure 4, when compared with trilinear MIP mapping of
an identical image shown on the right-hand side of the figure. For the
majority of angles the speed overhead of TPM is only a factor of two to four
relative to trilinear MIP mapping. However, unlike that method, or the
summed area table, the time taken per pixel by TPM will vary according to
the scale and orientation of the texture. This is due to the fact that
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Fig. 4. Texture potential mapping of a pattern at an extremely shallow angle compared to
trilinear MIP mapping of the same pattern at the same angle.

integration occurs in one direction only, leading to an unpredictable varia-
tion in the number of samples that need to be taken in the other direction.
TPM thus has a weakness when the projected pixels are very wide. In this
situation the number of samples required, although smaller than needed by
the brute force method, is still excessive. In many of these cases quite
adequate results can be produced by the summed area table, or even
conventional MIP mapping.

This suggests that there should be a way to reduce the overhead of TPM
in these cases while retaining most of the quality improvement when it is
needed.

3. COMBINING TEXTURE POTENTIAL MAPPING AND MIP MAPPING —
PRINCIPLES

To overcome this problem we propose the combination of TPM with a MIP
map approach in the nonsummed direction. The resulting algorithm is
referred to as texture potential MIP mapping (TPMM). We work with a set
of potential maps, each one-half the size of the preceding one in the x
direction only. The summation principle is used in the y direction. The
resulting table is twice the size of the original potential map. The genera-
tion of this table from the original texture pattern can be done in either
order but it is more efficient to filter and decimate for the MIP map before
constructing the potential since it means that the filtering process can be
done with a lower resolution number format.

In our experimental programs the filtering has been done by Fourier
transforming the original texture, deleting frequency components above the
Nyquist frequency for each MIP map, and then transforming back to the x
space representation. This method of filtering is time-consuming but has
the advantage of guaranteeing optimal results. To achieve similar results
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with an FIR filter would require a convolution window as large as the
texture pattern.

To generate an antialiased textured pixel we first apply the texture
transformation to the corners of the pixel. In an optimized implementation
this would be done incrementally and the results from corners that are
shared between pixels can be reused. The workload for this operation is
thus only marginally greater than it would be for a nonantialiased texture
implementation.

Next we determine the position of the extremes of the pixel in the x
direction of texture space. This information is helpful later in the process of
edge tracing but its immediate purpose is to determine the width of the
pixel. From the logarithm of the pixel width we can determine which of the
MIP maps to use. The logarithm need not be computed exactly and so all
we need to do is to find the most significant bit that is set. This would be
easy in a hardware implementation, while in software, if the width of the
pixel were expressed in floating point format, the exponent would contain
the information required.

At this point the procedure varies from that employed by normal MIP
mapping, because in the present case there is no unique “correct” choice of
table to use. The decision must be based on a trade-off between the
accuracy with which we follow the edge of the pixel and the number of
samples that we take. The intuitive answer to this would probably be to
choose the table so that the number of pairs of samples taken lies between,
say, 4 and 8 or 8 and 16. This can be done using a parameter n with the
maximum number of sample pairs being limited to 2n. Clearly if we were to
allow fewer than 4 pairs of samples there would not be much chance of
following an angled pixel footprint with any accuracy, while a number
much greater than 16 implies an excessive amount of work.

In order to choose the best compromise we need to understand how the
image will be degraded if too few samples are chosen. There are two
possible effects that could arise, aliasing or blurring of the texture. Clearly
blurring is more acceptable than aliasing but unfortunately a naive imple-
mentation of our algorithm gives rise to aliasing in the middle distance at
critical angles as shown in Figure 5.

To understand why this is so, consider the way in which the tracing
process is affected by going to one of the coarser maps and taking just a few
samples as shown in Figure 6.

Where the traced pixel lies outside the ideal pixel the result will be
blurring because the sampling footprint is too large and hence the fre-
quency cut-off too low. These areas are shown shaded on the diagram. The
hashed areas show where the ideal pixel outline is outside the traced pixel.
This is much more significant because in this case the footprint is too small
and hence the frequency cut-off too high, potentially allowing in frequen-
cies above the Nyquist frequency and causing aliasing.

The left-hand side of the diagram shows what happens if we use the
original (basic) resolution of the potential map. In this case the errors are
very small and the resulting image shows neither aliasing nor blurring.
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Fig. 5. Illustration of the aliasing effect in a naive implementation of texture potential MIP
mapping (left-hand image) compared to the more acceptable blurring effect (right-hand image)
that replaces it when the traced footprint is enlarged to guarantee the inclusion of the whole of
the pixel. Both images were created using a very low sample count to illustrate the effect
clearly.

The right-hand side shows the situation when the texture value for the
same pixel is calculated using one of the coarser MIP maps. The errors are
much larger now and the size of the striped areas is significant. The striped
regions cause aliasing because they reduce the filter kernel width so that it
passes frequencies above the Nyquist frequency. This has been marked in
Figure 6.

To correct this situation we must expand the traced pixel to guarantee
that it includes all of the ideal pixel. This arrangement is shown in Figure
7. The total sample footprint is increased in the vertical direction. When
this is done, the aliasing that was evident in the left-hand side of Figure 5
is replaced by blurring as seen on the right.

The coordinates that are used to access the table can be derived by any
line-drawing technique following the edges of the pixel. Either the DDA
algorithm or Bressenham’s algorithm can be used, depending on available
hardware and bearing in mind that the slope calculation can be shared
along a raster line. To expand the footprint to include the whole of the ideal
footprint we calculate the positions of the intercepts at both edges of each
column in the potential map and choose the largest value at the top and the
smallest value at the bottom. Note that these intercept calculations are
shared between neighboring columns of texels.

At this point it would seem that only one task remains—to find the
optimal value of n for a given application. This is not the best way to
proceed however because there is an observed relationship between the
ideal value of n for a given image and the angle that the pixels’ long axis
makes to the grid of the texture map. Very steep and very shallow angles
allow a much smaller value of n to be used while near-45 degree angles
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Fig. 6. The effect of different MIP map resolutions in the naive implementation of texture
potential MIP mapping.

require a larger value. The reason for this is that in the former situations
the ratio between the area of the ideal projected pixel footprint and that of
the expanded footprint is close to 1. A fatter pixel footprint also allows n to
be smaller because the errors, although they have the same absolute
values, are reduced as a proportion of the total pixel area. Figure 8
illustrates this point.

There are thus many situations in which a smaller value of n can be
chosen than that which is required to cope with the most awkward cases.
This is not surprising because these are the configurations where Crow’s
method or (in the fat pixel case only) traditional MIP mapping also work
quite adequately.

5. CHOOSING THE BEST NUMBER OF SAMPLES

From the above we see that the system would be most efficient if we could
control the number of samples as a function of the size, shape, and angle of
the pixel footprint, rather than just keep it constant using the width. To do
this we need a simple shape dependent parameter that can be easily
calculated and that reflects the way in which the number of samples
needed changes with all of these factors.
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Fig. 7. Expanding the sampled pixel to cover the actual pixel.

The ratio of area of ideal pixel to that of actual sampled pixel would be
suitable but requires far too much calculation to be usable in the present
situation. It is possible, however, to find a simple parameter that behaves
in an equivalent way. To make this calculation we consider the pixel to be a
thin parallelogram and ignore what happens at the ends. This assumption
is certainly accurate in those cases where a large number of samples need
to be taken and so it follows that we will never misclassify such a case. If
we make a mistake that causes too many samples to be taken, then the
consequence is only a slight decrease in efficiency, which is outweighed by
the time saved in making the test itself.

If we consider an individual column in the pixel footprint in Figure 7
then the area of the ideal slice is [k and that of the sample actually taken is
[(h + d). For the pixel as a whole these values become Lh and L(h + d),
respectively. The ratio of the areas is thus:

(h +d) d
:T:]_"‘Z (1)

Now if there are n columns in the pixel it follows that d = (H — h)/n
and so we have:

H 1
R=1+——-—— (2)
nh n
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Fig. 8. The effect of pixel angle on choice of MIP map.

so we can choose an acceptable value for R and then derive n by the

equation:
1 (H )
n=————1 (3)
R —1D\A

which is reasonably tractable since it only requires the total height of the
pixel and a sample of its “thickness” in the middle. If the equation is used
in this form then there is a problem where H ~ h since a value of n = 0
can result (or even a negative value of n, given the possibility of rounding
errors). To prevent this happening, with a margin of safety, we have
modified the equation to read:
1 (H )
+1 (4)

n=—— |{=
R —1\h

This modification has the advantage that it allows the minimum value of
n to be controlled by R and it introduces no extra computation compared to
the original form (Equation (3)). To save computational time this quantity
could be estimated on a per-polygon basis. However it is most effective to
calculate it for each pixel as we have done in our experimental programs.
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Fig. 9. Comparison between the effect of a fixed value for n (left-hand image) and individual
calculation for each pixel (right-hand image). The average number of samples per pixel is 12 in
both images.

We have found that it gives very good discrimination when used in this
way. Quite large values of R can be chosen to give qualitatively excellent
results without compromising speed. The improvement obtained by calcu-
lating n on a per-pixel basis compared with simply choosing a value for the
polygon is shown in Figure 9. To illustrate this effect clearly it is necessary
to use a rather lower number of samples than normal. The left-hand side of
the image uses a fixed n value of 2 whereas the right-hand side has been
created using a similar average number of samples but with n being
derived individually for each pixel from an R value of 6. The average
number of samples per pixel is 12 in both cases.

No doubt those who wish to optimize the algorithm will find ways to
allow the number of calculations of n to be reduced without affecting
quality significantly.

6. PERFORMANCE COMPARISONS

There are two algorithms that have been put forward as solutions to the
problems that we address here. These are a modification of Crow’s algo-
rithm [Crow 1984] which was proposed by Glassner [1986] which is known
as the adaptive precision method and an algorithm proposed by Schilling et
al. [1996] which they call the footprint assembly method.

In estimating the performance likely to be achieved by any of these
methods a number of different cost factors need to be considered. The true
performance in a given situation (hardware and software environment
together with the user requirement) can then be estimated by taking
appropriate account of each of them as the situation demands.

We can identify these different performance criteria for texture antialias-
ing systems:
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(i) computational cost,

(i) number of samples needed per pixel,
(ii1) bandwidth to texture memory, and
(iv) table size.

A comparison based on computational cost at the level of individual
arithmetic operations would require an optimal implementation of each
algorithm. Since all the algorithms in question are quite complicated, this
would be difficult to do with any certainty. The result would also be
machine dependent and, given the rate of technological change, time
dependent. In contrast, the slowest moving performance factor in recent
years has been from chip communication. For example, PC main memory
bus speed has improved by only a factor of 3 between 1989 and 1999, while
processor speeds have gone up by a factor of 12. This makes the number of
texture samples required to generate a pixel a significant performance
factor since it determines the number of independent memory accesses that
will be required. It will also give an estimate of computational cost, since
all the algorithms have a processing requirement that is proportional to the
number of samples.

Of course the number of accesses is not the only factor to be considered.
The size of each data item is also important because that will determine the
total bandwidth that will be needed for this traffic. Bandwidth is both a
better and a worse measure than number of samples. It is a better measure
because it is clearly incorrect to equate the retrieval of a 64-bit word with
that of an 8 bit byte. It is also a worse measure because a byte that is
retrieved as part of a 64-bit word clearly costs less than one read individu-
ally. Consequently, although we have presented our results in terms of the
number of samples taken, we have included bandwidth information also.

The effect of both of these numbers will, in turn, be modified by any
caching of samples that is taking place, but this effect is very sensitive to
the cache size relative to the size of the texture map.

COMPARISON WITH GLASSNER’S ADAPTIVE PRECISION ALGORITHM

Glassner’s paper [Glassner 1986] explores a number of different techniques
for refining Crow’s summed area table algorithm. Many of these proposals
are not particularly practical since they require multiples of the full
summed area tables to be stored. Glassner’s most practical method is
similar to TPMM in its sampling patterns for long thin pixels (although the
number and size of samples differs). It is therefore possible to directly
compare the two at a theoretical level, without the need to compare results
visually.

Glassner’s idea is to improve on the rectangular approximation of the
pixel footprint used in Crow’s technique by subtracting further rectangular
pieces from it. Because each piece is a rectangle its contribution can also be
evaluated using the same summed area table.
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Both our method and Glassner’s require a rather larger version of the
texture map than MIP mapping or basic (nonantialiased) texture mapping,
although the summed maps do not need to be quite as large as some have
suggested [Schilling et al. 1996]. For a 256 x 256 x 8 bits per color texture
pattern a texture potential map could theoretically require 16 bits per color
and a summed area table as many as 24. However this worst case is rarely
met with practical textures and provided the color values are calculated
relative to an average value (which can be calculated separately for each
column in TPM with little extra cost) 13 bits will almost always suffice.
Indeed, if a small amount of compression of dynamic range is accepted this
can be reduced to 12. The required table sizes for each of the techniques are
summarized in Table I.

When comparing sample count and bandwidth, the range of possible pixel
footprint configurations makes a direct discussion of the general case quite
difficult. Because of this we first examine first the simple cases when small
values of n suffice and then the limit of large n, in which simplifying
approximations may be made. The behavior between these two points can
then be inferred. In the simplest case, Glassner’s method reverts to the
basic summed area technique and simply requires four samples per pixel.
TPMM also requires a minimum of four samples in general since each pixel
will span two columns. However, the summed area table samples require
16 to 24 bits per color each while TPMM needs only 12 to 16 bits per color.
In addition the TPMM approach is, at this stage, already able to follow a
diagonally oriented pixel to some extent since the two pairs of samples can
be vertically displaced relative to one another. In the horizontal direction
the sampling methods are rather different and hence a direct comparison is
difficult.

Superficially it might seem that the summed area method has an
advantage in that its sampling window can be positioned at the resolution
of the original texture map whereas TPMM is limited by the fixed sampling
points of the current MIP map. However, this only helps when the texture
pattern contains a frequency component with a particular phase relation-
ship to the display pixel grid. This frequency component will then exhibit
aliasing if the image moves.

For large numbers of samples the same simplifying assumptions can be
made about the pixel ends as were used in the discussion of the R
parameter above. For TPMM the number of samples required for a given
factor is double the value of n as given by:

Sl
n=——-J -1
R - D\h

For Glassner’s method consider a section from the middle of a diagonal
pixel as shown in Figure 10.

The variables H, h, and d have the same meanings as in the TPMM case.
Glassner’s method requires samples to be taken at the points marked A
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Fig. 10. The sampling of a pixel using Glassner’s adaptive precision technique.

and, naively, two at each point marked B also. However these multiple
samplings will cancel, leaving a total of eight samples. These samples are
of course shared between two columns, so the final result is four samples
per column. This means that for a given R the number of samples will be
four times the value of n given by

ol
n= —1
(R—D\A

Each of these samples will require 54 bits to be retrieved for a 24-bit
color texture. TPM needs 39 bits per sample on the same assumptions.T-
PMM thus has an asymptotic advantage of a factor 2 for number of samples
and better than 2.5 for bandwidth when compared with Glassner’s method
for similar image quality. For the less critical pixels this will fall away
progressively to equality for sample count and an advantage of 18:13 for
bandwidth.

The above analysis was based on the situation for individual pixels.
However the existence of a discrete set of MIP maps in TPMM means that
a demanded value of R and n will not normally be achieved exactly.
Consequently, if a given maximum value for R is requested then, on
average, the value of n actually used will be 50% larger than that given by
the equation. This will result in a 50% reduction in the advantage of TPMM
over the adaptive precision method if a “worst-case” performance criterion
is used.

COMPARISION WITH FOOTPRINT ASSEMBLY

The idea of footprint assembly [Schilling et al. 1996] is to use a standard
MIP-map table but instead of allowing the scale to be determined by the
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Fig. 11. Comparison of texture potential mapping with R = 5.76 and footprint assembly
with Nmax = 4.

largest dimension of the projected pixel the smallest dimension is used and
multiple samples are taken to avoid aliasing. This technique can be used
with single sample, bilinear, or trilinear MIP mapping. We have compared
these techniques with TPMM in terms of image quality, number of samples
taken, and memory bandwidth.

Experiments were done using TPMM and our own implementation of
footprint assembly mapping. The texture pattern chosen was selected
because it contains a range of frequencies but is still intelligible to the
human eye. Patterns such as checkerboards can display certain problems
very clearly but only contain a limited set of frequencies and hence do not
exercise the algorithms fully. The optimum pattern from the point of view
of frequency coverage would be a noise texture, but this cannot be used for
visual comparison for obvious reasons. In each case the image created was
of a complete “ground plane” of texture. The view of this ground plane was
varied in certain ways. First, the angle of the plane itself relative to the
line of sight was varied between 0 (looking straight down at the surface)
and 1.5 radians. This angle is henceforth referred to as «. It corresponds to
a rotation about the x axis in most conventional viewing coordinate
systems. Since the angle of view chosen was 0.14 radians, 1.5 radians is the
angle at which the point at infinity becomes just visible at the top of the
screen. Any further rotation would simply add extra empty space at the top
of the image. An « value of 1.5 is thus the most demanding test for any
texture antialiasing system. The second angle is that of the texture pattern
itself, rotating in its own plane. We have referred to this as g . When B is
close to 0 or a multiple of 7/2 the texture grid is aligned with the pixel
grid. In this situation Crow’s method will work well and TPMM will require
fewer samples. In contrast, a 8 value near to a multiple of /4 will be the
most demanding case. The example images in Figures 4, 5, 9, and 11 come
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from this set. They used « = 1.5 radians and B = w/4 radians. All the
images were originally created at a resolution of 768 x 768, but the figures
as shown here comprise only the top, central 256 x 256 pixel portion of each
image so that the aliasing and blurring effects can be seen clearly. The
sample counts and bandwidth requirements have been calculated using the
full 768 x 768 image to make the results more representative of real world
requirements. While the image quality of the methods needs to be assessed
in those domains where significant differences can be detected, the speed
must be evaluated as an average over a representative range of different
configurations.

The critical set of angles described previously creates long thin projected
pixels that lie diagonally across the texture map. To make visual compari-
sons between the two methods unambiguous we have implemented both of
them without interpolation between the different MIP maps. This creates
clear discontinuities in the image in both techniques. Comparisons can be
made between the methods by matching the positions of these discontinui-
ties. It would not be practical to include all the images that were used in
this process within the present article. However we have included a
particular example in Figure 11 to make the objective nature of the process
clear. The left-hand side of Figure 11 shows the results of TPMM using an
R value of 5.76 at the angle specified above. For comparison the right-hand
side shows the results of footprint assembly mapping using bilinear inter-
polation and a maximum MIP map sample count of 4 at the same set of
angles. In the foreground of each half of the image there is a region where
the texture is clear and well defined. At some point in the distance this
gives way to a more blurred effect and finally the texture fades out
altogether. These features are annotated in Figure 11 and are present in all
the images created. Two sets of comparisons were done. One set is based on
the matching between the two algorithms of the point of transition to the
initial blur. The other is the same except that it uses the final fadeout
point. The comparisons were performed by an observer who is not involved
in this program of research. The observer was presented with the images in
pairs. In each case one of the images was generated by TPMM and the
other by footprint assembly but the observer was unaware as to which was
which. The observer was asked to specify which of each pair of images had
its “fadeout point” and “transition point” farthest up the screen. The
meanings of these terms are as illustrated in Figure 11. For reference, the
“transition point” and “fadeout point” are both farthest up the screen on the
left-hand image of that figure. Different pairs of images were presented
with the object of finding pairs that were matched. We defined the quality
to be matched when the transition in question was at exactly the same
distance up the screen. Image magnification and a cursor with pixel
position readout were available to clarify this, so the process was one of
image measurement rather than subjective assessment. If an exact match
was not found then the nearest pair of images with the TPMM one having a
higher cut-off or transition point was used.
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Fig. 12. Comparison of the number of samples required for texture potential MIP mapping
and footprint assembly at varying levels of image quality.

Figure 12 shows the relative number of samples required for each of the
methods over a range of different levels of image quality but with the
quality matched in each case between the two methods as described above
and illustrated in Figure 11. Two sets of curves are shown, reflecting the
two comparisons made.

Overall, the results indicate that TPMM represents a better compromise
between image quality and sample number/bandwidth for this kind of
extreme situation. This advantage is most pronounced where footprint
assembly has a sample limit in the range 8 to 32, corresponding to an
average sample count in the range 10 to 100. This is also the most likely
region in which either technique might be used. In addition, it is important
to consider the performance over the range of possible angles. The results
in Figures 13 and 14 use the “quality point” represented by N = 16, R =
3.38. Figure 13 shows the number of samples required over a range of
values but at the critical « value. Footprint assembly requires 50 samples
throughout this range. The number of samples required by footprint
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Fig. 13. Number of samples required by texture potential MIP mapping versus angle of
rotation in the texture plane (8) R = 3.38.

assembly mapping is constant here because it is determined only by the
projected pixel’s shape. Conversely, that required by TPMM is reduced
away from the critical B value since here the relationship between the
projected pixel and the texel raster is taken into account. This can only
increase the advantage of TPMM over footprint assembly. Note that this
curve is not quite symmetrical about /4 because the pure TPM method
used for narrow pixels is slightly more efficient than the MIP mapping used
for wide ones. We have also plotted in Figure 14 the variation in sample
requirement against « while holding B fixed at its critical value. Here the
bandwidth required by footprint assembly mapping also reduces away from
the critical region—but less steeply than for TPMM.

These results clearly establish the greater efficiency of TPMM compared
to footprint assembly with bilinear interpolation for static images. How-
ever, it is necessary to consider whether footprint assembly with bilinear
interpolation is the most efficient form of footprint assembly that could be
used. It is important to note that Schilling et al. [1996] introduced footprint
assembly in the context of a special hardware accelerator for trilinear
interpolation and hence could hardly be expected to give a lot of consider-
ation to whether the interpolation was really necessary.

The bilinear interpolation within a layer in conventional (and footprint
assembly) MIP mapping is a measure that prevents aliasing phenomena
that would otherwise arise from the sharp transition between one texel and
the next. If the surface is very close this aliasing would manifest itself as a
patchwork of squares that, on close inspection, have jagged edges. There is
room for difference of opinion as to how this problem should be resolved
since clearly there is a lack of information in the texture map as to what
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Fig. 14. Number of samples required by texture potential MIP mapping (R = 3.38) and
footprint assembly (N = 16) versus angle of rotation of the texture plane «.

happens at scales finer than one texel. The naive interpretation of constant
color over each texel produces the result as described above but without the
jagged edges. The linear interpolation approach normally used in MIP
mapping gives rise to a texture function that is continuous (C°) but has
discontinuous derivatives (not C'). It is possible to demand a greater
degree of continuity—but the interpolation required is rarely implemented
at present since it is computationally expensive.

In conventional MIP mapping this aliasing problem can appear at all
scales, and is particularly prominent when texture patterns are used that
contain sharp edges (high frequencies). One situation in which this problem
shows up is when such a texture is presented at a shallow angle. In this
situation bilinear interpolation is essential with conventional MIP mapping
if aliasing is to be avoided. Footprint assembly MIP mapping allows the
possibility that the extra samples used for bilinear interpolation could be
used to increase the value of N, but with improved results for static images.
Unfortunately the problem can also appear in the form of a scintillation
effect with moving images and this happens irrespective of the angle of the
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textured plane. It seems therefore that the extra burden of interpolation
cannot be avoided with footprint assembly if good quality results are
desired.

These same problems also need to be addressed with TPMM. In this case,
because of the asymmetry of the algorithm, the two directions need
different treatment. In the MIP map direction this can be done by scaling
the contributions of the end columns of the pixel according to their width.
This approach has no effect on the number of samples or bandwidth
required. A completely general treatment requires the summed direction to
have the interpolation applied also. In the summed direction the problem
only occurs with nearby surfaces because the texture map is always used at
maximum resolution in this direction and so when the projected pixel is
large it is finely sampled. If this effect is considered a problem it can be
dealt with by sampling the two neighboring entries at each end of each
column and interpolating between them. This will double the number of
samples and bandwidth required but need only be done for certain nearby
surfaces—which are otherwise undemanding in terms of required sample
count. The impact on both average and worst-case performance for TPMM
will thus not be very great.

If we consider bandwidth rather than sample count then the results are
slightly less unfavorable to footprint assembly since it deals with 8-bit
samples rather than the 12 bits (or slightly more, depending on the texture
map size) required by TPMM. The sample count advantage of TPMM is
about a factor of two at the critical set of angles and is larger at many other
orientations so the situation should remain favorable when the bandwidth
measure is used instead.

There remains the question of texture map size and here it has to be
admitted that TPMM does require a larger amount of memory than either
Glassner’s method or footprint assembly. However, it does not require an
excessive amount as do, for example, the brute force approach of separate
MIP maps or summed area tables for each possible angle of the texture
pattern.

Typically each MIP map layer in TPMM requires 1.5 times the memory of
the original texture pattern. The multiple layers require a further factor of
two, resulting in a factor of about 3 overall. It may be possible to use a
factor 4 scaling between tables at some cost in sample count. In that case
the overall factor would be about 2. This compares with a factor of 1.33 for
conventional or footprint assembly MIP mapping and a factor of 2 to 3 for
Crow’s or Glassner’s method.

Table I shows the memory sizes needed for the various methods described
in the text. All the figures are based on a 256 x 256 texture map. The range
of values given in the first row reflects the differing requirements that can
occur with any of the summed area type methods depending on the content
of the texture map. In the case of TPMM there is a further variation that
comes from the possibility of utilizing MIP maps with a scaling factor of 4.
Glassner’s multiple table method allows a very wide range of possibilities
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Table I. Table of Texture Map Sizes Required by the Different Methods

Texture Mapping Relative Table Size Relative Table Size Relative Table Size

Method (Minimum) (Typical) (Maximum)
Basic and brute force 1 1 1
integration
MIP mapping and 1.333 1.333 1.333
footprint assembly
Potential map 1.5 1.625 2
Summed area and 2 2.25 3
Glassner’s adaptive
method
Potential MIP map 2 3.25 4
Glassner’s multiple 4 (2 tables) 4.5 (2 tables) 6 (2 tables)

table method

depending on the required quality. The figures given are for the most basic
version with just two tables.

7. CONCLUSIONS

We have shown how the texture potential mapping algorithm can be
modified to keep the required sample count within reasonable limits by
using the principles of MIP mapping in the nonsummed direction. The
resulting algorithm has a favorable combination of sample count, table size,
and quality compared with competing algorithms such as footprint assem-
bly [Schilling et al. 1996] or the adaptive precision method introduced by
Glassner [1986]. The results of the algorithm are intermediate in quality
between current real-time hardware systems and what can be generated
offline. As such it is a candidate for implementation in future real-time
hardware.
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