
55

ID-Based Multireceiver Homomorphic Proxy Re-Encryption
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Data privacy has become a growing concern with advances in machine learning. Federated learning (FL)

is a type of machine learning invented by Google in 2016. In FL, the main aim is to train a high-accuracy

global model by aggregating the local models uploaded by participants, and all data in the process are kept

locally. However, compromises to security in the cloud server or among participants render this process

insufficiently secure. To solve the problem, this article presents an identity-based multireceiver homomorphic

proxy re-encryption (IMHPRE) scheme that utilizes homomorphism operations and re-encryption to provide

improved encrypted-data processing and access control. When this scheme is employed, participants can

directly use public identities for encryption. The IMHPRE scheme is also secure against the chosen-plaintext

attacks. Comparison results indicated that the IMHPRE outperforms its counterparts because it allows a cloud

server to perform model aggregation on re-encrypted models for multiple receivers.
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1 INTRODUCTION

Privacy in the cloud is of great scholarly and practical interest [36]. In recent years, computing
processes such as deep learning and data mining have been offloaded to the cloud because they are
becoming too onerous for local hardware to handle. However, privacy may be compromised in the
cloud because cloud environments are usually beyond the control of users. To protect privacy, users
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Fig. 1. Federated learning.

tend to upload ciphertext rather than plaintext or may even be unwilling to upload data; however,
this impedes industrial operations or scholarly research (e.g., in clinical research involving large
datasets).

Federated learning (FL) [23] is a novel machine learning architecture that relies on cloud
servers to aggregate information from each entity to produce a highly accurate model. As shown
in Figure 1, consider n participants in FL whose sensitive data are in a local dataset (Figure 1). Each
participant trains local models m1,m2, . . . ,mn based on the local datasets and uploads these mod-
els to the cloud server for aggregation. By summing the gradients of the local model from each
participant, the cloud server produces and returns a more accurate global model. Finally, partici-
pants update the local model with the received global model. This improved local model is then
uploaded to the cloud for aggregation, and this cycle iterates until model convergence. Two privacy
concerns in FL should be addressed. First, although FL ensures the local storage of data, participant
privacy may be compromised when participants upload local models to the untrusted cloud server
in plaintext form. Second, local models may leak information to each other. Correspondingly, FL
must achieve the following to ensure privacy:

— Except for the data providers, no one should know any information about the uploaded
model without permission, even information regarding the cloud server or other partici-
pants.

— The cloud server without the corresponding private key can only be allowed to aggregate
the uploaded local model in ciphertext form.

— Participants can decrypt the returned global model, but no participant should be able to
decrypt the local model of anyone else.

1.1 Methods for Attack and Defense in Federated Learning

Although client privacy is preserved in FL because the local dataset is not uploaded, many stud-
ies have indicated that classical FL has several weaknesses with regard to privacy. Specifically,
members in an FL system typically use authentication and secure channels to ensure user secrecy.
However, in FL training, the participants and aggregators in FL may become sources of data leak-
age. The following sections discuss the two primary attacks based on FL and the corresponding
defense skills.
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1.1.1 Poisoning/Backdoor Attack. The FL model relies on the gradient parameter generated
from training on the participants’ data to update the global model. If the uploaded gradient from
the participant is not verified and aggregated, the accuracy of the public model may be compro-
mised or a backdoor may be embedded. Cao et al. [8] presented a poisoning attack method for FL
systems and demonstrated that the number of poisoned data points and the number of attackers
affect the performance of the poisoning attack. Under the poisoning attacks, since the model loss
does not decrease and the model cannot converge, the accuracy of the global model cannot be
improved. The poisoning attack of Cao et al. [8] greatly affects training in FL systems. In addition,
Chen et al. [10] presented a backdoor attack method for FL systems. Unlike the method of Cao
et al. [8], when a specific input is encountered, the FL model that is embedding the backdoor will
output an incorrect answer.

1.1.2 Privacy Attack. A privacy attack occurs when information about the participants is dis-
closed. Aggregators are often assumed to be trustworthy, but this strong assumption often fails to
hold in practice. Therefore, the next most realistic assumption that one can make is of a curious
but honest aggregator. Under this assumption, the aggregator honestly aggregates the gradient
parameters from the participants into the public model. However, as noted by many studies, par-
ticipants may pass information on model gradient parameters instead of local data. For example,
Zhu et al. [44] formulated their deep leakage from gradient (DLG) method that can obtain the
local training data from public shared gradients without relying on extra information. Studies,
such as that of Zhu et al. [44], have demonstrated that the attacker can still obtain some informa-
tion through model gradient parameters, which leads to privacy leakage problems. Privacy attacks
take one of three forms depending on the attacker’s objectives: feature inference attacks, property
inference attacks, and membership inference attacks. DLG [44] is a type of feature inference at-
tack where the aim is to recover the dataset of the participants. By contrast, in property inference
attacks, the aim is to extract the attributes. Wang et al. [39] formulated a property inference attack
model that can infer the existence of an objective attribute, such as brown eyes in a face recog-
nition dataset, that corresponds to some property or population of participants. Truex et al. [37]
also presented a black-box membership inference attack method to infer the membership of an
individual model by an application programming interface (API; such as Google Prediction
API or Amazon ML) without any model parameter.

1.1.3 Methods for Defending Against Poisoning or Backdoor Attacks. Poisoning and backdoor
attacks work primarily because malicious participants upload the modified gradients for aggrega-
tion; this leads to an updated global model that is inaccurate or that deliberately outputs incorrect
results. Methods for defense thus focus on the gradient. For example, Yin et al. [43] proposed
two robust distributed gradient descent algorithms based on median and trimmed mean opera-
tions. Naseri et al. [30] demonstrated that local differential privacy and central differential privacy
methods can effectively defend against backdoor attacks in FL. The local differential privacy is
usually processed to protect the local gradient at the client side. The central differential privacy
is processed after aggregation at the server side, which prevents inference attacks from global
model attacks. Another approach to defense is based on the fact that only a small proportion of
the model’s weight is affected by the poisoning attack. Inspired by the aforementioned ideas, Wu
et al. [40] formulated a federated pruning method in which a portion of neurons of the global
model are removed, and their experimental results demonstrated that the method led to a low loss
of accuracy and backdoor attack rate.

1.1.4 Methods for Defending Against Privacy Attacks. Another type of defense guards against
privacy attacks, leakages with regard to gradient information, or black-box inference attacks
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against the global model. Therefore, defense methods are usually designed to work on the local
dataset or both the gradient and global model. Many studies have formulated differential privacy-
based defenses for preventing poisoning attacks and backdoor attacks. Abadi et al. [1] presented
local differential privacy defense methods that are based on a differentially private stochastic-
gradient-descent algorithm, by adding noise to the gradient to prevent leakage of gradient infor-
mation. Other defense methods in the literature are not based on differential privacy. For example,
Zhu et al. [44] proposed a defense method based on gradient compression that prunes the gradi-
ent to be below a threshold magnitude to prevent feature inference attacks. Defense methods with
pruning and differential privacy can resist most poison or backdoor attacks and privacy attacks.
However, these two defense methods require the removal of a few neurons or the injection of
noise, which decrease the accuracy.

Note that FL is a form of multiparty computation (MPC). Therefore, privacy can be preserved
in FL through a redefinition of its protocol or components with secure MPC (SMPC) methods.
FL has been applied in different scenarios such as pneumonia detection [2] and Android malware
detection [18] to perform machine learning with privacy protection. Primarily, SMPC relies on
homomorphic encryption (HE) [17] as an essential component to ensure that computation is
secure in the absence of decryption. The secure computations in HE can cover the operator used
in FL aggregation, but SMPC becomes more complex with more participants in the computation.
However, HE provides FL with the most secure solution that FL then takes as the basis for com-
putation on the encrypted data; this happens without any risk of knowledge leakage or loss of
accuracy in the FL model.

However, HE in FL requires sharing a key for different local sides to perform computations on
its encrypted data. A mere usage of HE may not be enough to deal with the privacy issues in FL.
Therefore, in our work, we combine HE with proxy re-encryption skill, which can reduce the com-
munication cost of keys agreement. Furthermore, although HE cannot solve poisoning or backdoor
attacks, the malicious model’s provider can be tracked from the certificate or certificateless pub-
lic key and be disqualified from participating. Section 1.2 will show the discussions of different
mechanisms with homomorphism appropriate to FL.

1.2 Homomorphic Encryption in FL

HE can be considered the ideal solution for aggregating local models in ciphertext form. The pro-
cessing of encrypted data is called homomorphic evaluation. Because the value of a decrypted
result is the same as that calculated directly from the plaintext, some studies have used HE to de-
velop secure applications. For example, in 2017, Aono et al. [3] proposed a secure deep learning
scheme with HE. However, in this scheme, homomorphic evaluations can only be performed on
the ciphertext encrypted under the same key. Participants must establish a common HE key and
use it for encryption. In such a situation, privacy can be compromised at the input because each
participant can also use the same key to reveal the local model of the other party. Therefore, HE
maintains input data confidentiality only if the additional secure channel assumption is satisfied,
which makes HE impracticable for FL systems.

Different from HE, multi-key fully homomorphic encryption (MKFHE) [24] supports ho-
momorphic evaluation performed on the ciphertext encrypted under different keys. However,
MKFHE requires all secret keys involved in the input ciphertext of homomorphic evaluation to
decrypt the final result. In other words, the data provider who has the corresponding private
key should either share its key with others or interactively decrypt the evaluated ciphertext us-
ing SMPC. However, this results in considerable communication overhead among users. Further-
more, the sharing of secret keys with other receivers is undesirable because it enables receivers to

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 55. Publication date: November 2022.



ID-Based Multireceiver Homomorphic Proxy Re-Encryption in Federated Learning 55:5

decrypt the input ciphertexts before homomorphic evaluation. Accordingly, MKFHE methods with
these properties are also unsuited to being directly applied to FL systems.

Homomorphic proxy re-encryption (HPRE) methods that simultaneously support the pro-
cessing of encrypted data and provide access control are another option for FL systems. Specifically,
proxy re-encryption (PRE) [4] enables a third party to re-encrypt the ciphertext of one key to the
ciphertext of another key without decrypting the ciphertext. Some studies have leveraged HPRE to
improve security in cloud applications. For example, in 2017, Shafagh et al. [35] proposed an HPRE
scheme for Internet of Things applications that allows for query processing over encrypted data.
In 2019, Kawai et al. [21] enhanced the security level of the HPRE scheme to protect the cloud data
processes. And in 2020, Ma et al. [26] used HPRE and aggregate signature techniques to secure
the multiparty learning. In HPRE, with the re-encryption process, no user, including the receivers
who can decrypt the result with their private keys, can obtain any information about the original
data. Furthermore, participants are not required to establish a common key or communicate with
each other for decryption. Therefore, compared with HE and MKFHE, HPRE is a more suitable
cryptosystem for privacy protection in FL.

HPRE can be implemented through various approaches. In 1998, Blaze et al. [4] proposed the
first PRE scheme based on the ElGamal cryptosystem, but the scheme’s inherently bidirectional
property makes it unsuitable for many applications. In 2015, Samanthula et al. [34] proposed a
privacy-preserving data-sharing framework. In 2019, Gao et al. [16] proposed a secure profile-
matching scheme under multiple keys. They utilized an ElGamal-like PRE algorithm to simulta-
neously provide additive homomorphism and re-encryption. In 2017, Ding et al. [13] proposed an
HPRE scheme for secure data processing based on the BCP cryptosystem [7]. However, the pro-
posed scheme allows two noncolluding servers to decrypt or re-encrypt the uploaded data without
the permission of the data providers. Therefore, in 2019, Nateghizad et al. [31] proposed a Homo-

morphic One-Direction Proxy Re-Encryption (HOPE) scheme to solve this problem. In 2020,
Luo et al. [25] proposed an identity-based HPRE scheme; this scheme differs from the aforemen-
tioned methods in that it is more flexible and does away with the need for certificate verification in
the Public-Key Encryption system. On the other hand, an FL system needs to submit a new global
model to multiple receivers after updating the gradients. Hence, a multireceiver setting, such as
that in [14, 15, 38], should be also considered in HPRE.

1.3 Contributions

Although existing HPRE systems have become more practical, they can only re-encrypt cipher-
text for one receiver at a time, making them inflexible in FL applications. For example, the cloud
server must re-encrypt the uploaded models of all participants and perform homomorphic eval-
uations on the re-encrypted models for the same receiver separately during model aggregation.
The process incurs a large computational cost and communication overhead. To address these
limitations, we formulated an identity-based multireceiver HPRE (IMHPRE) scheme. In the
proposed IMHPRE scheme, re-encryption and homomorphic evaluations are only performed once
for multiple participants. Furthermore, different from traditional HPRE methods, participants in
the IMHPRE scheme can use their private keys and other users’ public identities directly to con-
struct re-encryption keys, which affords greater convenience.

The proposed IMHPRE scheme is also more practicable than other methods for FL. Note that in
the IMHPRE scheme, participants can also directly encrypt data for others. However, this results in
large local overheads because encryption for multiple receivers is more computationally intensive
than encryption for one receiver. Crucially, FL requires participants to repeatedly upload their local
model for training aggregation, which increases the computational cost. By contrast, in IMHPRE
with a re-encryption key, the overhead from encrypting data for others can be offloaded to a cloud
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server. Similar to a data backup to the cloud, users can upload data encrypted only with its identity.
Furthermore, the cloud server without the re-encryption key can neither re-encrypt the ciphertext
nor perform homomorphic evaluations on them. Consequently, with these properties, IMHPRE can
provide a more flexible and privacy preserving for FL systems.

To meet the requirements in privacy-preserving FL, the proposed IMHPRE scheme provides the
following features.

(1) The proposed scheme avoids the need for certificate verification in the PKE system.
(2) An individual cannot obtain any information about an uploaded model without the corre-

sponding private key.
(3) The proposed scheme supports homomorphic addition performed on re-encrypted local

models for multiple receivers.
(4) Participants can decrypt the aggregated model using their private keys, but no participant

can decrypt the local model of anyone else.
(5) The proposed scheme outperforms its counterparts in terms of ciphertext length and com-

putation cost.

2 PRELIMINARIES

This section introduces the technological and cryptographic preliminaries underlying the pro-
posed IMHPRE scheme. The mathematical assumptions used in the security proofs and the def-
inition of IMHPRE are also presented in this section.

2.1 FL

In FL, a global model is trained on the basis of all the data from different entities, enabling each
entity to maintain its data securely. The Federated Averaging Algorithm [28] is one of many algo-
rithms for FL. Let S denote a fixed set of participants. Each participant k holds nk data points, and
nσ denotes the sum of the data points from S . Moreover, the index t represents the t-th commu-
nication round of the cloud server, which aggregates the local models from the set of participants.
In general, and as illustrated in Figure 2, FL proceeds per the following steps.

(1) Each participant downloads the current global model wt from the cloud server.

(2) Each participant updates its local model w
(k)
t with wt .

(3) Each participant uses its local data to train its local model based on the stochastic gradient

descent algorithm and generates the new local model w
(k)
t+1 .

(4) Each participant uploads w
(k)
t+1 to the cloud server.

(5) The cloud server aggregates the received local models and updates the global model as

wt+1 = ∑
k∈S

nk

nσ

w
(k)
t+1 , nσ = ∑

k∈S

nk . (1)

The aforementioned steps are iterated until the global model converges. Note that each local
model comprises a set of weights, and the cloud server aggregates all received local models by
calculating the weighted sum. Thus, FL requires the ability to execute addition operations on the
server side.

2.2 Bilinear Map

Let G and GT be source multiplicative and target multiplicative cyclic groups, respectively, and let
p be their prime order. A function e ∶ G × G → GT satisfying the following properties is called a
bilinear map where д1, д2 are two generators of G, and α , ν ∈ Zp .
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Fig. 2. Federated learning.

— Bilinearity: e(д1
α ,д2

ν ) = e(д1,д2)αν
.

— Non-Degeneracy: SinceG andGT are two groups of the same order, e(д1,д2) is a generator
of GT .

— Computability: There exists an efficient algorithm to compute e(д1,д2).

2.3 Computing Discrete Logarithm

The proposed scheme encrypts the plaintext m in the form of zm to provide additive homomor-
phism. Accordingly, users must solve the discrete logarithm problem to reveal the plaintext m
during decryption. Gao et al. [16] indicated that Pollard’s kangaroo method [33] can compute a
discrete logarithm efficiently when the plaintext is less than 40 bits. And its time complexity is

O(
√
M), whereM is the message space ofm. In Section 4, the process for solving the problem is

denoted as DLP().

2.4 The q-SP-DBDHG,e Assumption

The q-SP-DBDHG,e problem provides a stronger variant of the Successive-Power (SP) version De-

cision Bilinear Diffie-Hellman (DBDH) problem [5] for giving access to a sequence of powers.
First, let e ∶ G×G→ GT be a bilinear map with two multiplicative groupsG andGT of prime order
p. The definitions are as follows.

Definition 2.1. The q-SP-DBDHG,e problem [19] is that given {G,GT ,e, μ, μ
a , μb ,

μc , μc/a , μc/a2

, . . . , μc/aq

,V} where generators μ, μa , μb , μc , μc/a , μc/a2

, . . . , μc/aq ∈ G, q is

an integer, and V ∈ GT , decide whether V = e(μ, μ)abc
for a,b,c ∈ Z∗p .

Definition 2.2. Define that an algorithm A with an output β ∈ {0, 1} has advantage ϵ in solving
the q-SP-DBDHG,e problem if

∣ Pr[A(μ, μa , μb , μc , μc/a , . . . , μc/aq

,e(μ, μ)abc) = 1]
− Pr[A(μ, μa , μb , μc , μc/a , . . . , μc/aq

,V) = 1] ∣ ≥ ϵ, (2)
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where a,b,c
R← Z∗p and V R← GT . The q-SP-DBDHG,e assumption holds if no polynomial-time

algorithm has non-negligible advantage in solving the q-SP-DBDHG,e problem.

2.5 IMHPRE

Some definitions for the security model of the proposed IMHPRE scheme are presented in this
subsection. Notably, the scheme contains eight algorithms that are suitable for FL applications.

2.5.1 Algorithms. The proposed IMHPRE scheme has eight algorithms—Setup, KeyGen, Enc,
DecO, ReKeyGen, ReEnc, DecR, and Add as follows.

— Setup(φ,M):
The algorithm takes the security parameter φ and the maximum numberM of receivers as
inputs. Then it outputs the master public keyMPK and the master secret keyMSK.

— KeyGen(MSK, IDi):
The algorithm takes MSK and the i-th user’s identity IDi as inputs. Then it outputs the
user’s private key skI Di

.
— Enc(MPK, IDi , si ,m):

The algorithm takesMPK, IDi , the secret value used for re-encryption si , and a plaintext
m as inputs. It then outputs the original ciphertext CT .

— DecO(MPK, skI Di
,CT ):

The algorithm takesMPK, skI Di
, and CT as inputs, and then outputs the plaintextm.

— ReKeyGen(MPK, IDi , skI Di
, si ,S):

The algorithm takesMPK, IDi , skI Di
, si , and a receiver set S as inputs. Then it outputs a

re-encryption key RKI Di→S .
— ReEnc(MPK,RKI Di→S ,CT ):

The algorithm takesMPK, RKI Di→S , and CT as inputs. Then it outputs the re-encrypted
ciphertext CTr .

— DecR(MPK, skI D j
,CTr ):

The algorithm takesMPK, the private key skI D j
of receiver ID j ∈ S , and CTr as inputs. It

then outputs the plaintextm.
— Add(CTr1 ,CTr2 , . . . ,CTrt

):
The algorithm takes re-encrypted ciphertexts CTr1 , CTr2 , . . . , and CTrt

, respectively, from
users 1, 2, . . . , and r , respectively, as inputs, and then outputs the aggregated ciphertext
CTAdd .

2.5.2 Algorithms Applied in FL. As illustrated in Figure 3, the aforementioned algorithms can
be applied to an FL system. In practice, a trusted entity, key generation center (KGC), first exe-
cutes Setup to initialize the system and establish the private key via KeyGen for each participant.
Subsequently, participants can use Enc to protect the uploaded local models. Furthermore, each
participant sends the re-encryption key generated by ReKeyGen to the cloud service provider

(CSP), which allows the CSP to re-encrypt their local models for all participants and perform
model aggregation by executing ReEnc and Add, respectively. Finally, each participant can exe-
cute DecR to directly decrypt the aggregated global model using its private key. Through these
algorithms, IMHPRE can provide the correct aggregated model to the participants while protecting
their privacy at the local models.

2.5.3 Security Model. With the following INDistinguishability against selective IDentity

under Chosen-Plaintext Attack (IND-sID-CPA) game, the security model of the proposed
IMHPRE scheme is defined in Definition 2.3 based on the IND-sID-CPA security defined by Boneh
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Fig. 3. Algorithms applied in federated learning.

and Boyen [6] where no adversary can know any information about a plaintext from its ciphertext
without the corresponding private key.

Definition 2.3 (The IND-sID-CPA Game). Let A be a probabilistic polynomial time (PPT) ad-
versary and S be a simulator that simulates the following game.

— Initialization: Adversary A chooses a challenge identity ID∗ and sends it to simulator S .
— Setup: S sets up the system, generates {MPK,MSK} key pair, and sendsMPK to A.
— Phase 1: A makes the following queries.

- Private key query Qsk(IDA): A sends an identity IDA to S . If IDA ≠ ID∗, S returns the
private key of IDA to A.

- Re-encryption key query Qrk(IDA,R): A sends an identity IDA and a receiver set R to S .
If IDA ≠ ID∗, S returns the re-encryption key to A.

— Challenge: A sends two different plaintexts m0 and m1 to S . Then, S randomly chooses
β ∈ {0, 1} and a string s∗, and then returns C∗ = Enc(MPK, ID∗, s∗,mβ ) to A.

— Phase 2: A continuously makes queries defined in Phase 1.
— Guess: A guesses β ′ ∈ {0, 1} and sends it to S . A wins the game if β ′ = β .

The advantage of A to win the game is defined as

Adv I N D-sI D-CPA(A) = ∣Pr[β = β ′] − 1

2
∣. (3)

One can observe that the event β = β ′ happening means the adversary learning the information
about the encrypted message. Note that the event happens with probability at least 1

2
. This is why

the advantage of the adversary in winning the game is defined as formula (3). We illustrate the
game in Figure 4. A scheme is said to be IND-sID-CPA secure if there is no PPT adversary that can
win the IND-sID-CPA game with non-negligible advantage.

3 RELATED WORKS

This section introduces three HPRE schemes and two multireceiver PRE schemes. In addition,
Section 6 compares them against the proposed IMHPRE scheme with respect to various properties,
particularly ciphertext length and computation cost.
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Fig. 4. The IND-sID-CPA game.

3.1 Homomorphic Proxy Re-Encryption

In 2018, Nayak and Tripathy proposed an HPRE scheme called SEMKC [32]. The scheme utilizes
two noncolluding servers for secure homomorphic evaluations. In addition, the used re-encryption
key is bidirectional, allowing for the conversion of the user’s ciphertext to the server’s ciphertext
and vice versa. However, the presence of two servers and two instances of ciphertext conversion
result in a greater system overhead.

In 2019, Kawai et al. proposed an HPRE scheme called G-HPRE [21]. The scheme can achieve
CCA2 security for the original ciphertext and CPA security for the re-encrypted ciphertext in the
standard model. G-HPRE also supports homomorphic evaluations performed on the ciphertext
encrypted under the same receiver’s public key. However, when multiple receivers are present,
separate ciphertext conversion and homomorphic evaluation are required for each receiver.
This results in considerable computational and communication overhead, making it inflexible in
practice.

In 2019, Nateghizad et al. proposed an HPRE scheme called HOPE [31]. The scheme is based on
PRE cryptography and the BCP cryptosystem [7]. Although the scheme can efficiently perform
homomorphic evaluations on the ciphertext re-encrypted from multiple data sources, it has the
same drawback as the scheme of Kawai et al. [21]. Furthermore, the size of the evaluated ciphertext
increases with the number of ciphertext instances involved in the homomorphic evaluation. This
results in greater communication overhead in the system and complicates the decryption of the
receivers, making it impractical.

3.2 One-to-Many Proxy Re-Encryption

In 2015, Xu et al. proposed a multireceiver PRE scheme called CIBPRE [41]. The scheme can re-
encrypt the ciphertext of a set of receivers to the ciphertext of another set of receivers. Although
the scheme has some advantages, such as a constant re-encrypted ciphertext size, it requires extra
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modular exponentiation operations for decryption. Since modular exponentiation is a computa-
tionally expensive algebraic operation, decryption can be a costly process for the receivers.

In 2020, Maiti and Misra proposed a multireceiver PRE scheme called P2B [27]. The scheme can
convert one user’s ciphertext to a set of users’ ciphertext. In practice, P2B utilizes the Lagrange
interpolation polynomial to satisfy the multireceiver requirements. Taking advantage of the La-
grange interpolation polynomial, receivers in the proposed scheme can decrypt the ciphertext
without knowing who a receiver is, which reduces some overhead. However, the authors con-
structed a polynomial by incorrectly multiplying elements in G and Z∗p , which made the scheme
unworkable. Furthermore, similar to the CIBPRE scheme of Xu et al. [41], P2B does not allow for
homomorphism for the re-encrypted ciphertext from different data providers. Note that although
the proposed IMHPRE scheme is based on these one-to-many PRE schemes, it avoids the afore-
mentioned problems mentioned and also allows for homomorphism.

4 THE PROPOSED IMHPRE SCHEME

This section introduces the proposed IMHPRE and applies it to FL. The IMHPRE can execute
additive homomorphic operations and one-to-many re-encryption. Specifically, it can directly
perform homomorphic addition on the re-encrypted ciphertexts for multiple receivers. IMHPRE
can thus greatly benefit an FL system by providing both secure model aggregation and improved
access control.

4.1 System Model

The proposed system comprises the following four components.

— Key Generation Center (KGC): The KGC is a trusted entity that sets up the system and
owns the master public–secret key pair. It generates the private key for each user according
to the master secret key and given identity.

— Cloud Service Provider (CSP): The CSP possesses large storage space and computational
resources. Thus, the CSP can re-encrypt the ciphertext by using the re-encryption key and
perform homomorphic computations according to the specific requests. Note that we assume
that the CSP is honest-but-curious, which means that it follows the scheme honestly but is
curious about more information than it is allowed.

— Data Provider (DP): A DP uploads its private data to the CSP. It can also upload a re-
encryption key, allowing the CSP to re-encrypt its data to a specific group of users.

— Data Requester (DR): A DR requests the re-encrypted data or specific calculation results.
After receiving the responses from the CSP, the DR can decrypt them with its private key.
Furthermore, in the FL system, a DP must update the local model from the latest global
model, which is generated by aggregating the local models from all participants. The afore-
mentioned process is iterated until the global model converges. Therefore, a DP must also
receive the global model to update its local model, and it is thus also a DR.

4.2 The IMHPRE Scheme

In this subsection, the proposed IMHPRE scheme is described in detail. It contains eight algorithms:
Setup, KeyGen, Enc, DecO, ReKeyGen, ReEnc, DecR, and Add. And the notations used in the
scheme are defined in Table 1.

4.2.1 Setup(φ,M). For system initialization, KGC executes the algorithm Setup(φ,M) as
follows.
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Table 1. The Notations

Notation Meaning

φ a security parameter
M the maximum number of DRs
p a large prime number of length φ
G, GT two multiplicative groups of prime order p
e a bilinear map, where e ∶ G ×G→ GT

д,h,u three generators of group G
α a secret value chosen by KGC
H1 a one-way hash function
MPK the master public key
MSK the master secret key
IDi the identity of the i-th user
skI Di

the private key of IDi

DLP() the process of solving the discrete logarithm problem
m a plaintext
si the secret value chosen by IDi for re-encryption
CT an original ciphertext
CTr a re-encrypted ciphertext

CTAdd an aggregated ciphertext
S a chosen group of DRs
X an element randomly chosen from group GT

RKI Di→S the re-encryption key for re-encryption from user IDi to S
r1, r2, r3 three randomly chosen numbers

(1) Determine the security parameter φ ∈ N and the maximum numberM of DRs.
(2) Construct a bilinear map e ∶ G ×G → GT where G and GT are two multiplicative groups of

prime order p, and ∣ p ∣= φ.
(3) Choose three generators д,h,u ∈ G and one secret value α ∈ Z∗p .

(4) Compute v = e(д,h) and z = e(u,h).
(5) Compute hα and uα .
(6) Choose a one-way hash function H1: {0, 1}∗→ Z∗p .

(7) Output the master public keyMPK = {G,GT ,e, v,z,д,h,h
α ,u,uα ,H1} and the master se-

cret keyMSK = α .

Afterward, KGC broadcastsMPK to all participants and storesMSK secretly.

4.2.2 KeyGen(MSK, IDi). As mentioned in Section 4.1, KGC with the master public/secret
key pair can generate the private key for a given identity. It executes algorithm KeyGen as follows.

(1) InputMSK and the i-th user’s identity IDi .

(2) Output the private key skI Di
= д

1
α+H1(I Di ) .

Next, KGC sends skI Di
to the user IDi so that the user can apply it for decryption.

4.2.3 Enc(MPK, IDi , si ,m). Taking advantage of the cloud server’s storage and computation
capability, a DP, say IDi , usually uploads data to CSP. To protect data confidentiality, IDi can
encrypt data in advance by executing Enc as follows.

(1) InputMPK, IDi , the secret value si , and a plaintextm.
(2) Randomly choose a number r1 ∈ Z∗p .
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(3) Compute c1 = (hα ⋅hH1(I Di))r1 = hr1(α+H1(I Di)).
(4) Compute c2 = vr1 ⋅ zm .

(5) Compute c3 = (uα ⋅uH1(I Di))r1 ⋅usi = ur1(α+H1(I Di)) ⋅usi .
(6) Output the original ciphertext CT = {c1,c2,c3}.
Note that the values of si and usi are stored as secrets used for re-encryption.

4.2.4 DecO(MPK, skI Di
, CT ). A DP IDi with the corresponding private key can execute

DecO to decrypt its uploaded ciphertext CT as follows.

(1) InputMPK, skI Di
, and CT = {c1,c2,c3}.

(2) Compute w = e(skI Di
,c1).

(3) Output the plaintextm′ = DLP(c2 ⋅w−1) by performing Pollard’s method [33].

4.2.5 ReKeyGen(MPK, IDi , skI Di
, si ,S). For sharing data with other users, a DP IDi can estab-

lish a re-encryption key by executing ReKeyGen as follows. Specifically, the key is built based on
the DP’s private key and DRs’ public identities. And it can transform the DP’s ciphertext into
DRs’ ciphertext without leaking any information about data content and the involved private
key.

(1) InputMPK, IDi , skI Di
, si , and DRs’ identities S = {ID∗1 , ID∗2 , . . . , ID∗n }.

(2) Choose r2, r3 ∈ Z∗p , and X ∈ GT at random.

(3) For each ID∗i ∈ S , compute yi = (hα ⋅hH1(I D∗i ))
r2 = hr2(α+H1(I D∗i )).

(4) Compute rk1 = vr2 ⋅X .
(5) Compute rk2 = skI Di

⋅ur3 .
(6) Compute rk3 = hr3 .
(7) Compute rk4 = z−si r3 ⋅X .
(8) Set rk5 = {y1,y2, . . . ,yn}.
(9) Output the re-encryption key RKI Di→S = {rk1, rk2, rk3, rk4, rk5}.
Finally, DP IDi sends RKI Di→S to CSP so that CSP can convert the DP’s ciphertext to the cipher-

text of the receivers included in the set S .

4.2.6 ReEnc(MPK, RKI Di→S , CT ). To meet the data-sharing requirements, CSP can execute
the algorithm ReEnc to re-encrypt the original ciphertext based on the re-encryption key received
from DP IDi as follows.

(1) InputMPK, RKI Di→S = {rk1, rk2, rk3, rk4, rk5}, and CT = {c1,c2,c3}.
(2) Let cr 1 = rk1.
(3) Compute cr 2 = c2 ⋅ e(rk2,c1

−1) ⋅ e(c3, rk3) ⋅ rk4.
(4) Let cr 3 = rk5.
(5) Output the re-encrypted ciphertext CTr = {cr 1,cr 2, cr 3}.
Afterward, CSP sends CTr to the DRs in S .

4.2.7 DecR(MPK, skI D j
,CTr ). As mentioned in Section 4.1, a DR, say ID j , requires the re-

encrypted data or specific calculation results for potential uses. After receiving the response CTr

from CSP, DR ID j can decrypt the content by executing DecR as follows. In particular, DR ID j

can directly perform the decryption using its private key without knowing the other receivers’
identities.

(1) Let ID j be the j-th receiver in S .
(2) InputMPK, skI D j

, and CTr = {cr 1,cr 2,cr 3}.
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(3) Retrieve yj from cr 3 = {y1,y2, . . . ,yn}.
(4) Compute w ′ = e(skI D j

,yj).
(5) Compute X ′ = cr 1 ⋅w ′−1

.

(6) Output the plaintextm′′ = DLP(cr 2 ⋅X ′−1) by performing Pollard’s method [33].

4.2.8 Add(CTr1 ,CTr2 , . . . ,CTrt
). CSP can execute Add to add up the data embedded in t cipher-

texts without decrypting them in advance by performing the following operations.

(1) Input the re-encrypted ciphertexts {CTr1 ,CTr2 , . . . ,CTrt
} from t different DPs.

(2) Parse each CTri
→ {cr 1i

,cr 2i
,cr 3i
}, for i = 1, 2, . . . , t .

(3) Compute cr 1
′ = ∏t

i=1 cr 1i
.

(4) Compute cr 2
′ = ∏t

i=1 cr 2i
.

(5) Set cr 3
′ = {y1

′,y2
′, . . . ,yn

′} = {∏t
i=1y1i ,∏

t
i=1y2i , . . . ,∏

t
i=1yni} where cr 3i

= {y1i ,y2i , . . . ,
yni} for i = 1, 2, . . . , t .

(6) After performing the homomorphic addition computation as above, output the ciphertext
CTAdd = {cr 1

′,cr 2
′,cr 3

′}.
Finally, CSP sends CTAdd to DRs in S . Note that each DR ID j can decrypt it by executing the

algorithm DecR(MPK, skI D j
,CTadd ) as it can always do decryption on a ciphertext with the for-

mat (vrX ,zmX ,{y1,y2, . . .yn}). In addition, although Pollard’s kangaroo method [33] can only
compute a discrete logarithm efficiently when the plaintext is less than 40 bits, the size is large
enough for actual data. Moreover, the proposed IMHPRE scheme can also provide multiplicative
homomorphism by replacing zm withm in the encryption algorithm.

4.3 Correctness

The correctness of the proposed IMHPRE scheme is shown as follows.

— The correctness of the original ciphertext decryption:

w = e(skI Di
,c1) = e(д

1
α+H1(I Di ) ,hr1(α+H1(I Di))) = e(д,h)r1 = vr1 .

m′ = DLP(c2 ⋅w−1) = DLP(vr1 ⋅ zm ⋅v−r1) =m. (4)

— The correctness of the re-encrypted ciphertext decryption:

cr 1 = rk1 = vr2 ⋅X ,
cr 2 = c2 ⋅ e(rk2,c1

−1) ⋅ e(c3, rk3) ⋅ rk4

= e(д,h)r1 ⋅ zm ⋅ e(skI Di
,h−r1(α+H1(I Di))) ⋅ e(ur3 ,h−r1(α+H1(I Di))) ⋅ e(c3, rk3) ⋅ rk4

= e(д,h)r1 ⋅ zm ⋅ e(д
1

α+H1(I Di ) ,h−r1(α+H1(I Di))) ⋅ e(ur3 ,h−r1(α+H1(I Di))) ⋅ e(c3, rk3) ⋅ rk4

= zm ⋅ e(ur3 ,h−r1(α+H1(I Di))) ⋅ e(ur1(α+H1(I Di)) ⋅usi ,hr3) ⋅ rk4

= zm ⋅ e(ur3 ,h−r1(α+H1(I Di))) ⋅ e(ur1(α+H1(I Di)),hr3) ⋅ e(usi ,hr3) ⋅ rk4

= zm ⋅ e(usi ,hr3) ⋅ e(u,h)−si r3 ⋅X
= zm ⋅X ,

cr 3 = rk5 = {y1,y2, . . . ,yn}, (5)
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yj = hr2(α+H1(I D j)),

w ′ = e(skI D j
,yj) = e(д

1
α+H1(I Dj ) ,hr2(α+H1(I D j))) = e(д,h)r2 = vr2 ,

X ′ = cr 1 ⋅w ′−1 = vr2 ⋅X ⋅v−r2 = X ,

m′′ = DLP(cr 2 ⋅X ′−1) = DLP(zm ⋅X ⋅X−1) =m. (6)

— The correctness of homomorphic addition:
Given the ciphertext CTAdd = {cr 1

′,cr 2
′,cr 3

′}, we have that

cr 1
′ =

t

∏
i=1

cr 1i
=

t

∏
i=1

(vr2i ⋅Xi) = v∑
t
i=1 r2i ⋅

t

∏
i=1

Xi ,

cr 2
′ =

t

∏
i=1

cr 2i
=

t

∏
i=1

(zmi ⋅Xi) = z∑
t
i=1 mi ⋅

t

∏
i=1

Xi ,

cr 3
′ = {y1

′,y2
′, . . . ,yn

′} = {
t

∏
i=1

y1i ,
t

∏
i=1

y2i , . . . ,
t

∏
i=1

yni}

= {h(∑
t
i=1 r2i)(α+H1(I D1)),h(∑

t
i=1 r2i)(α+H1(I D2)), . . . ,h(∑

t
i=1 r2i)(α+H1(I Dn))}. (7)

The decryption of CTAdd is successful due to the following.

yj = h(∑
t
i=1 r2i)(α+H1(I D j)),

w ′′ = e(skI D j
,yj) = e (д

1
α+H1(I Dj ) ,h(∑

t
i=1 r2i)(α+H1(I D j))) = e(д,h)∑

t
i=1 r2i = v∑

t
i=1 r2i ,

X ′′ = cr 1
′ ⋅w ′′−1 = v∑

t
i=1 r2i ⋅

t

∏
i=1

Xi ⋅v−∑
t
i=1 r2i =

t

∏
i=1

Xi ,

mr esult = DLP(cr 2
′ ⋅X ′′−1) = DLP (z∑

t
i=1 mi ⋅

t

∏
i=1

Xi ⋅ (
t

∏
i=1

Xi)−1) =
t

∑
i=1

mi . (8)

4.4 The IMHPRE Scheme in FL

The proposed IMHPRE scheme can be applied to implement the following four functions in an FL
system:

— Local Model Encryption: A participant in FL can first encrypt its uploaded local model
with algorithm Enc. Accordingly, information about the uploaded local model cannot be
obtained without the corresponding private key.

— Re-Encryption Key Establishment: To share local models with others, each participant
can execute algorithm ReKeyGen using its private key and all participants’ identities to
establish a re-encryption key and upload it to the cloud server. Crucially, because the key
with si can be used to re-encrypt all ciphertexts with the same si , the key can be re-used to
the end of the process.

— Model Aggregation: With the re-encryption keys from all participants, the cloud server
re-encrypts the received local models to all participants by executing the algorithm ReEnc.
The cloud server then performs model aggregation on the re-encrypted models through the
algorithm Add to produce a highly accurate global model.

— Global Model Revelation: Finally, leveraging PRE, each participant can execute DecR

to decrypt the aggregated model with its private key. Note that although the IMHPRE
scheme requires participants to solve the discrete logarithm problem during decryption, the
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aggregated result with a size smaller than 40 bits can still be revealed efficiently through the
use of Pollard’s kangaroo method [33].

In the IMHPRE scheme, DPs must have permission to obtain information about the local models.
Specifically, IMHPRE grants the FL system the ability to implement homomorphism operations
and re-encryption. Thus, the cloud server can aggregate local models from different parties cor-
rectly without decrypting them in advance. Furthermore, participants in FL can only decrypt the
aggregated result, which preserves model input privacy. Consequently, IMHPRE provides FL with
access control and a secure aggregation method, which satisfies the privacy-preserving require-
ments of FL stated in Section 1.

5 SECURITY PROOF

This section presents the security proof of the proposed IMHPRE scheme according to the security
model defined in Section 2. The result shows that the proposed scheme achieves IND-sID-CPA
security. It means that attackers cannot obtain any information about the plaintext from a given
ciphertext without the corresponding private key, which guarantees the data confidentiality.

Theorem 5.1. The proposed IMHPRE scheme is IND-sID-CPA secure in the random oracle model if

the q-SP-DBDHG,e assumption holds.

Proof. The proof below adopts contradiction, assuming that the proposed scheme is not IND-
sID-CPA secure. If there exists a PPT adversaryAwith a non-negligible advantage to win the IND-
sID-CPA game, we can construct a polynomial-time algorithm S that also has the non-negligible
advantage in solving the hard problem q-SP-DBDHG,e .

With given system parameters Params = {G,GT ,e, μ, μ
a , μb , μc , μc/a , . . . , μc/aq

,e(μ, μ)abc}, S
simulates the game for A as follows.

— Initialization: A targets a challenging identity ID∗ and sends it to S . In addition, to keep
the record, S prepares the following four tables:

(1) TH1 : This table stores the hash values that have been queried by A.
(2) Tsk : This table stores the private keys that have been queried by A.
(3) Trk : This table stores the re-encryption keys that have been queried by A.
(4) Tsec : This table stores the secret value used by IDi for re-encryption.

— Setup: S executes the algorithm Setup to build the system as follows.
(1) Choose random numbers t ,x∗,τ ,x1, . . . ,xq ∈ Z∗p and V ∈ GT .

(2) Set h = μa and compute hα = μt ⋅ μ−ax∗ , which implies α = t/a − x∗.

(3) Compute u = hτ = μaτ and uα = (μτ )t ⋅ (μaτ )−x∗
.

(4) Set γi = μc/ai

and compute Vi = e(μ, μ)bc/ai

, for i = 1, . . . ,q.

(5) Set L(x) = ∏(tx + xi) and д = μcL(1/a), which can be easily computed by using
γ1,γ2, . . . ,γq .

(6) Compute v = e(д,h) = e(μ, μ)acL(1/a)
and z = e(u,h) = e(μ, μ)a

2τ
.

(7) SetMSK = α andMPK = {G,GT ,e,v,z,д,h,h
α ,u,uα ,H1}, where H1 is modeled as a

random oracle.
Finally, S sendsMPK to A.

— Phase 1: A makes the following queries.
- Hash query QH1(IDA): The oracle takes an identity as input and outputs x∗ + xi or x∗.

If there is the tuple (IDA,hida) in TH1 , S returns hida to A. Otherwise, S performs the
operations below.
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(1) If IDA = ID∗, set hida = x∗.
(2) If IDA ≠ ID∗, set hida = x∗ + xa .
(3) Add (IDA,hida) to TH1 .
(4) Return hida to A.
- Private key queryQsk(IDA): The oracle takes an identity as input. If IDA = ID∗, S returns
⊥. And if there is the tuple (IDA, skI DA

) in Tsk , S returns skI DA
. Otherwise, S performs

the operations as follows.

(1) Compute skI DA
= μcLj(1/a) by using γ1,γ2, . . . ,γq−1.

(2) Add (IDA, skI DA
) to Tsk .

(3) Return skI DA
to A.

- Re-encryption key query Qrk(IDA,R): The oracle takes an identity and the receiver set as
inputs. If IDA = ID∗, S returns ⊥ and aborts. And if there is the triple (IDA, R,RKI DA→R)
in the tableTrk , S returns RKI DA→R toA. Otherwise, S performs the operations as follows.

(1) Choose two random numbers r2, r3 ∈ Z∗p and a random element X ∈ GT .

(2) Retrieve the tuple (IDA, sA) from Tsec .

(3) Compute yi = hr2(α+H1(I D∗i )) for each ID∗i ∈ R.
(4) Compute rk1 = vr2 ⋅X .

(5) Compute rk2 = skI DA
⋅ur3 = μcLj(1/a) ⋅ur3 .

(6) Compute rk3 = ur3 .
(7) Compute rk4 = z−sAr3 ⋅X .
(8) Set rk5 = {y1,y2, . . . ,yn} and RKI DA→R = {rk1, rk2, rk3, rk4, rk5}.
(9) Add the triple (IDA,R,RKI DA→R) to Trk .

(10) Return RKI DA→R to A.
— Challenge: A selects two different plaintexts m0 and m1, and then sends them to S . In

response to A, S randomly chooses β ∈ {0, 1} and executes the algorithm Enc(MPK, ID∗,
s∗,mβ ) as follows.

(1) Set a random number r1 as b/t .
(2) Choose a random number s∗ ∈ Z∗p and store the tuple (ID∗, s∗) to Tsec .

(3) Issue the query QH1(ID∗) and retrieve the random value x∗ from TH1 .

(4) Set c1 = μb = (μt ⋅ μ−ax∗ ⋅ μax∗)
b/t
= hr1(α+H1(I D∗)).

(5) As c2 = e(д,h)r1 ⋅mβ = e(μ, μ)abcL(1/a)/t ⋅mβ , expand L(x) = ∑q
i=1 piX

i and compute

c2 = e(μ, μ)abc ⋅p0/t ⋅
q

∏
i=1

e(μ, μ)bc/ai−1⋅pi /t ⋅mβ = Vp0/t ⋅
q

∏
i=1

Vpi /t
i ⋅mβ .

(6) Compute c3 = μbτ ⋅ μaτ s∗ = (μτ t ⋅ μ−τ ax∗ ⋅ μτ ax∗)
b/t
⋅ μaτ s∗ = ur1(α+H1(I D∗)) ⋅us∗ .

(7) Set and return C∗ = {c1,c2,c3} to A.
— Phase 2: A continuously makes queries as in Phase 1.
— Guess: A outputs β ′ ∈ {0, 1} to S . If β ′ = β , S outputs 1. Otherwise, S randomly chooses

β̂ ∈ {0, 1} and outputs β̂ .

If V = e(μ, μ)abc , A can obtain the correct ciphertext

C∗ = {μb , (e(μ, μ)abc)p0/t ⋅
q

∏
i=1

Vpi /t
i ⋅mβ , μ

bτ ⋅ μaτ s∗}.

Otherwise, V is an element randomly chosen from GT . S simulates the IND-sID-CPA game
correctly. If A wins the IND-sID-CPA game with non-negligible advantage ϵ , ∣Pr[β ′ = β] − 1

2
∣ ≥ ϵ
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under a correct simulation of the game. Let qH denote the number of hash queries issued by A.
And assume that A issues q times of QH1(IDA). Hence, we have

Pr[A(μ, μa , μb , μc , μc/a , . . . , μc/aq

,V = e(μ, μ)abc) = 1]

= Pr[Not Abort] ⋅ Pr[Awins ∣ Not Abort]

= (1 − 1

qH

)
q

⋅ (1

2
± ϵ) (9)

and

Pr[A(μ, μa , μb , μc , μc/a , . . . , μc/aq

,V ← GT ) = 1]

= Pr[Not Abort] ⋅ Pr[Awins ∣ Not Abort]

= (1 − 1

qH

)
q

⋅ 1
2
. (10)

Thus,

∣ Pr[A(μ, μa , μb , μc , μc/a , . . . , μc/aq

,e(μ, μ)abc) = 1] − Pr[A(μ, μa , μb , μc , μc/a , . . . , μc/aq

,V)

← GT = 1] ∣ ≥ ∣((1 − 1

qH

)
q

⋅ (1

2
± ϵ)) − ((1 − 1

qH

)
q

⋅ 1
2
)∣ = (1 − 1

qH

)
q

⋅ ϵ (11)

can be obtained. Note that when qH ≈ q, the value of (1 − 1
qH
)q ≃ e−1 which is non-negligible,

where e is the base of the natural logarithm function. Consequently, considering the probability
of the game aborting, S can still solve the q-SP-DBDHG,e problem with non-negligible advantage

at least (1 − 1
qH
)qϵ within polynomial time.

6 COMPARISON

This section shows the comparison among the proposed IMHPRE scheme with five other schemes
mentioned in Section 3 with respect to various properties, particularly ciphertext length and com-
putational cost.

6.1 Properties Comparison

The proposed scheme provides identity-based multireceiver PRE with homomorphic operations,
making it more functional than its counterparts. Table 2 details the properties of the various
schemes, where “Non-Interaction” means that the delegator and the delegatee do not communicate
with each other when constructing a re-encryption key.

6.2 Ciphertext Length Comparison

This subsection shows the comparison among SEMKC [32], G-HPRE [21], HOPE [31], CIBPRE [41],
P2B [27], and the proposed IMHPRE in terms of initial ciphertext length and aggregated ciphertext
length. Let G denote a group of order p where p is a 1,024-bit prime number. Therefore, the size
of an element in G, denoted by |G|, is 1,024 bits. Finally, t represents the number of participants in
FL. The schemes are compared in Table 3.

Note that since the proposed scheme can perform homomorphic additions on the re-encrypted
ciphertexts for multiple receivers directly, the cloud server can generate only one aggregated
ciphertext rather than t ciphertexts. Therefore, compared with SEMKC [32], G-HPRE [21] and
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Table 2. Properties Comparison

SEMKC [32] G-HPRE [21] HOPE [31] CIBPRE [41] P2B [27] IMHPRE

ID-Based Setting No No No Yes Yes Yes

Homomorphism Yes Yes Yes No No Yes

Re-Encryption Yes Yes Yes Yes Yes Yes

Multireceiver No No No Yes Yes Yes

Non-Interaction No Yes Yes Yes Yes Yes

Number of Servers Two One One One One One

Security * CPA CPA CPA CPA CPA

*Security was proved by using the “eal-world and ideal-world” paradigm.

Table 3. Ciphertext Length Comparison

SEMKC [32] G-HPRE [21] HOPE [31] CIBPRE [41] P2B [27] IMHPRE

Initial
Ciphertext

3∣G∣ 3∣G∣ + ∣p∣ 2∣p∣ 4∣G∣ 3∣G∣ 3∣G∣

Aggregated
Ciphertext

3t ∣G∣ 2t ∣G∣ t(3t + 2)∣p∣ NIL NIL (t + 2)∣G∣

Fig. 5. The space cost.

HOPE [31] and the proposed IMHPRE reduce the ciphertext space significantly. In addition,
CIBPRE [41] and P2B [27] do not support ciphertext aggregation because they are without the
property of homomorphism.

Figure 5(a) presents the space cost of the FL model for different numbers of gradient param-
eters when 10 participants are involved. The number of gradient parameters was initially set to
be 100,000 because a simple FL model on Modified National Institute of Standards and Tech-

nology database (MNIST) [42] has approximately this number of parameters. As illustrated in
Figure 5(a), the IMHPRE scheme has at least 50% lower space cost for 100,000 gradient parameters
as compared with SEMKC [32], G-HPRE [21], HOPE [31], CIBPRE [41], and P2B [27]. Furthermore,
compared with general FL, the space cost of the IMHPRE scheme increases from approximately
3 GB to 36 GB for 100,000 gradient parameters. However, since cloud storage is becoming cheaper,
36 GB is an acceptable size.
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Table 4. Execution Environment

Hardware Intel(R)Core(TM) i7-4650U CPU @ 1.70 GHz × 4

OS Linux Ubuntu 16.04 LTS 32 bit

Program Library MIRACL [29]

Parameter Tate pairing, Type-A curve

Table 5. The Computation Cost of Each Operation

Notation Meaning Cost

Tm the cost of a modular multiplication Tm ≈ 0.001 ms

Te the cost of a modular exponentiation ≈ 240Tm

Ti the cost of a modular inversion ≈ 11.6Tm

Thm the cost of a map-to-point hash operation ≈ 29Tm

Tp the cost of a pairing operation ≈ 87Tm

Ts
the cost of a scalar multiplication in an additive group or an ≈ 29Tmexponentiation in a multiplicative group

Ta
the cost of an addition in an additive group or a multiplication ≈ 0.12Tmin a multiplicative group

The results on the space required for different numbers of participants for 100,000 gradient
parameters are shown in Figure 5(b). The proposed IMHPRE scheme has 143 GB space cost for 45
participants. Moreover, the space cost of the general FL scheme, in relation to gradient parameter
numbers, is approximately 3 GB. Although the proposed IMHPRE scheme has approximately 12
times larger space cost against the general FL scheme, HOPE [31] is with approximately 122 times
larger space cost relative to the general FL scheme for 10 participants.

In conclusion, the proposed IMHPRE scheme can provide secure FL for honest-but-curious third-
party aggregators, and its space cost is reasonable for real-world applications.

6.3 Computation Cost Comparison

6.3.1 Experimental Setup. Table 4 details the experimental setup, including the hardware, op-
erating system, program library, and parameters. The computation time for a modular multiplica-
tion Tm is approximately 0.001 ms. Specifically, Koblitz et al. [22] demonstrated that Te ≈ 240Tm ,
Ts ≈ 29Tm , and Ta ≈ 0.12Tm . Furthermore, Chung et al. [11] and James et al. [20] found that
Thm ≈ 29Tm andTi ≈ 11.6Tm . Moreover, according to the experimental results of Cao et al. [9] and
Debiao et al. [12], Tp ≈ 3Ts , which means that Tp ≈ 87Tm can be obtained. This subsection com-
pares the schemes with respect to computational cost from the execution of modular multiplication
conversions in various cryptographic operations (Table 5).

6.3.2 Computation Cost Comparison. Table 6 shows the computation cost of existing HPRE
schemes, including SEMKC [32], G-HPRE [21], HOPE [31], and one-to-many PRE schemes, includ-
ing CIBPRE [41], P2B [27], and the proposed IMHPRE scheme. Although the computational cost of
the algorithm ReKeyGen increases with the number of participants, it remains reasonably prac-
ticable because the algorithm only needs to be executed once. By contrast, the algorithms Enc,
ReEnc, AGG, and DeEval must be executed repeatedly because the FL steps iterate until model
convergence where AGG is Add and DeEval is DecR with the parameters replaced by the aggre-
gated ciphertext in the proposed scheme. In particular, Enc, ReKeyGen, DeEval, and ReDec are
executed locally where ReDec can also be performed by DecR of the proposed scheme. ReEnc

and AGG are executed in the cloud.
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Table 6. Computation Cost Comparison

Enc ReKeyGen

SEMKC [32]
4Te +Tm t(2Te)
≈ 961Tm ≈ (480t)Tm

G-HPRE [21]
6Ts + 3Ta t(Ti +Ts)
≈ 174.36Tm ≈ (40.6t)Tm

HOPE [31]
2Tm + 2Te t(2Tm + 2Te)
≈ 482Tm ≈ (482t)Tm

CIBPRE [41]
(3t + 4)Ts + 3Ta +Ti Ti + (t + 6)Ts + 3Ta

≈ (87t + 127.96)Tm ≈ (29t + 185.96)Tm

P2B [27]
5Ts + 2Ta (t2 + t + 1)Tm +Ti +Thm + (2t + 3)Ts + (t + 2)Ta

≈ 145.24Tm ≈ (t2 + 59.12t + 127.84)Tm

IMHPRE
5Ts + 4Ta Tm + (2t + 4)Ts + (t + 3)Ta

≈ 145.48Tm ≈ (58.12t + 117.36)Tm

ReEnc ReDec

SEMKC [32]
t(2Te) t(2Te)
≈ (480t)Tm ≈ (480t)Tm

G-HPRE [21]
t(3Tp + 2Ts + 2Ta) t(2Tm +Te)
≈ (319.24t)Tm ≈ (242t)Tm

HOPE [31]
tTe t(2Tm +Te)

≈ (240t)Tm ≈ (242t)Tm

CIBPRE [41]
(t − 1)Tm +Ti + 2Tp + tTs + 2Ta (t − 1)Tm + 2Ti +Thm + 3Tp + tTs + 3Ta

≈ (30t + 184.84)Tm ≈ (30t + 312.56)Tm

P2B [27]
Tp +Ta tTm +Ti +Thm + 2Tp + 2Ta

≈ 87.12Tm ≈ (t + 214.84)Tm

IMHPRE
2Tp + 3Ta 2Ti +Tp + 2Ta

≈ 174.36Tm ≈ 110.44Tm

AGG DeEval

SEMKC [32]
t(6Tm + 12Te) (2t)Te

≈ 2886Tm ≈ (480t)Tm

G-HPRE [21]
t(Tp + 2Ts + 2tTa) 2Ti +Ts +Ta

≈ (0.24t2 + 145t)Tm ≈ 52.32Tm

HOPE [31]
t(2tTm) (3t + 2)Tm + 2tTe + (2t + 2)Ti

≈ 2t2Tm ≈ (84.2t + 25.2)Tm

CIBPRE [41]
NIL NIL

P2B [27]
NIL NIL

IMHPRE
(t2 + 2t − 2)Ta 2Ti +Tp + 2Ta

≈ (0.12t2 + 0.24t − 0.24)Tm ≈ 110.44Tm

t: the number of participants.

NIL: nothing.

As the proposed scheme is based on the one-to-many PRE scheme, Table 6 lists the computa-
tion cost for CIBPRE [41], P2B [27], and IMHPRE. Specifically, CIBPRE [41] is inefficient because
expensive modular exponentiation operations are required to process ciphertext containing the in-
formation of all receivers. The Lagrange interpolation polynomial adopted in P2B [27] can also in-
cur considerable overhead. Furthermore, P2B [27] is unworkable because it incorrectly multiplies
elements in G and Z∗p when constructing the polynomial. Thus, the proposed IMHPRE scheme
is generally more efficient than both P2B [27] and CIBPRE [41]. Moreover, the proposed IMHPRE
scheme can provide homomorphism functionality to re-encrypted ciphertext for multiple receivers,
which is achieved in neither CIBPRE [41] nor P2B [27].
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Fig. 6. The computation cost of proxy re-encryption for participant and aggregator.

Fig. 7. The computation cost of homomorphic proxy re-encryption for participant and aggregator.

Figures 6 and 7 detail the results for local and cloud computational cost incurred by PRE and
HPRE for different numbers of participants. Compared with other methods, the proposed IMHPRE
incurs the least computational expense in a single FL learning iteration. These results are discussed
as follows.

Figure 6(a) indicates the total computational time taken at the local side of the execution of
Enc, ReKeyGen, and ReDec, and Figure 6(b) does so for ReEnc at the server side. The proposed
IMHPRE scheme, CIBPRE [41], and P2B [27] incurred a lower local-side and server-side computa-
tional expense than do SEMKC [32], G-HPRE [21], and HOPE [31]. Moreover, the computational
cost of the re-encryption schemes increases with the number of participants. CIBPRE [41] and
P2B [27] cannot execute homomorphism operations to merge the gradients in the ciphertexts.
Thus, Figure 7 only illustrates the computational cost of the PRE schemes with homomorphism.

Figure 7(a) illustrates the relationship between the number of participants and total computa-
tional time for Enc, ReKeyGen, and DeEval. The proposed IMHPRE scheme and G-HPRE [21]
have a much lower local-side computational cost than SEMKC [32] and HOPE [31]. In addition,
Figure 7(b) illustrates the proposed IMHPRE also has the lowest server-side computational cost
among the schemes.

In summary, as indicated in Figure 8, the proposed IMHPRE scheme is the most computationally
efficient at both the local and server sides when executing Enc, ReEnc, AGG, and DeEval over
one iteration even when the number of participants increases.
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Fig. 8. The computation cost of Enc+ReEnc+AGG+DeEval.

6.4 Summary

The proposed IMHPRE scheme outperforms five other schemes terms of ciphertext length, com-
putational cost, functionality, storage space, and computational efficiency. The proposed scheme
achieves this through the execution of homomorphic addition on the re-encrypted ciphertext for
multiple receivers. Hence, the IMHPRE scheme can be applied to FL systems that require numerous
iterations.

7 CONCLUSION

Many works in the literature indicated that classical FL may suffer from poisoning attacks or pri-
vacy leak attacks, and the primary solution may lead to performance degradation. The federated
learning methods based on HE will not degrade performance, and all computations are performed
over ciphertexts. Furthermore, the methods based on HE will be immune to statistical attacks and
other potential privacy leakages owing to the premise of security proofs. HE and MKFHE may ap-
pear to be suitable solutions, but they are inflexible. HPRE is another solution, but existing HPRE
schemes can only re-encrypt the uploaded model for one receiver at a time, which is inefficient in
FL because FL usually has multiple participants.

Thus, this study formulated the notion of IMHPRE, which can re-encrypt data for multiple re-
ceivers and perform homomorphic addition operations directly. Applied to FL, IMHPRE can ag-
gregate models from different participants without decrypting any local model encrypted by its
public key and the participants can obtain the global model using their private keys. Furthermore,
we propose an IMHPRE scheme which can be proven secure against chosen-plaintext attacks. We
also give a comparison to demonstrate the superiority of the proposed IMHPRE scheme relative to
existing schemes. Compared to other works, our scheme is more efficient because the FL training
does not stop aggregation until the global model converges.

In the future, we will focus on zero trust architectures. Note that the proposed scheme utilizes
a trusted authority KGC to generate private keys for users. However, this renders the KGC a high-
value target for attackers and raises some privacy concerns because both users and KGC know
the private keys. To overcome such problem would be an interesting and worth-studying issue for
privacy preservation in FL.
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