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ABSTRACT
Open source software (OSS) vulnerabilities threaten the security of
software systems that use OSS. Vulnerability databases provide valu-
able information (e.g., vulnerable version and patch) to mitigate OSS
vulnerabilities. There arises a growing concern about the informa-
tion quality of vulnerability databases. However, it is unclearwhat the
quality of patches in existing vulnerability databases is; and existing
manual or heuristic-based approaches for patch tracking are either
too expensive or too specific to apply to all OSS vulnerabilities.

To address these problems, we first conduct an empirical study to
understand the quality and characteristics of patches for OSS vul-
nerabilities in two industrial vulnerability databases. Inspired by our
study, we then propose the first automated approach, Tracer, to track
patches for OSS vulnerabilities frommultiple knowledge sources. Our
evaluation has demonstrated that i) Tracer can track patches for up
to 273.8%more vulnerabilities than heuristic-based approacheswhile
achieving a higher F1-score by up to 116.8%; and ii) Tracer can com-
plement industrial vulnerability databases. Our evaluation has also
indicated the generality and practical usefulness of Tracer.

CCS CONCEPTS
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1 INTRODUCTION
Open source software (OSS) provides the foundation for open source
and proprietary applications. It allows developers to reuse func-
tionalities instead of reinventing the wheel. As revealed by a recent
report [3], 98% of applications contain OSS. However, security risks
are also introduced with OSS. 84% of applications contain at least
an OSS vulnerability in 2020, a 9% increase from the 75% in 2019;
and each application contains an average of 158 OSS vulnerabilities
[3]. Even worse, OSS vulnerabilities are detected at an increas-
ing speed, nearly doubling in the last two years [54]. Hence, OSS
vulnerability management has become more and more urgent.

Great efforts have beenmade tomitigate security risks in OSS vul-
nerabilities. Vulnerability databases play a significant role in these ef-
forts by providing valuable information (e.g., description, vulnerable
versions, and patches) for different vulnerability analysis tasks. CVE
List [8] andNVD [41] arewell-known public vulnerability databases,
which even go beyondOSS vulnerabilities. They provide data feed of
the entire database, and often serve as the main vulnerability source
of industrial vulnerability databases, e.g., Black Duck [15], White-
Source [62], Veracode [60] and Snyk [55]. These industrial vulnera-
bility databases are specifically focused on OSS vulnerabilities.

Problem.While vulnerability databases are accumulating a mas-
sive collection of vulnerabilities, there arises an increasing concern
about information quality of vulnerability databases. Nguyen and
Massacci [39] and Dong et al. [13] revealed the unreliability of vul-
nerable version data in vulnerability databases. Chaparro et al. [4]
and Mu et al. [36] showed the prevalence of missing reproducing
steps in vulnerability descriptions. The missing or inaccurate infor-
mation of vulnerability entries in vulnerability databases makes it
challenging to timely mitigate OSS vulnerabilities in applications.

Patch is a valuable piece of information to capture a vulnerability.
It enables not only OSS vulnerability mitigation (e.g., software com-
position analysis [44, 45, 61]), but also other security tasks (e.g., hot
patch generation and deployment [14, 37, 66], patch presence test-
ing [9, 26, 69] and vulnerability detection [7, 24, 31, 33, 34, 63]). On
one hand, the accuracy of these tasks is affected if vulnerability
patches are missing or inaccurate. However, the problem is that it
is unclear what the quality of patches in vulnerability databases is.
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On the other hand, apart from leveraging patches in vulnerability
databases, these tasks track vulnerability patches by manual efforts
[6, 9, 26, 44, 45, 51, 63, 66, 71], by heuristic rules like looking for com-
mits in CVE references [14, 33, 34] and searching for CVE identifiers
in commits [61, 67], or from security advisories that list the vulner-
abilities and their patches for specific projects [24, 31, 37]. However,
the problem is that these patch tracking approaches are either too
expensive or too specific to apply to all OSS vulnerabilities.

Empirical Study.To address the first problem,we conduct an em-
pirical study to understand the quality and characteristics of patches
for OSS vulnerabilities in two industrial vulnerability databases (i.e.,
Veracode [60] and Snyk [55]). On the basis of a dataset of 10,070 vul-
nerabilities, we find that patches aremissing formore than half of the
vulnerabilities in the two databases; and patches are inconsistent across
the two databases for around 20% of the vulnerabilities. Further, based
on a dataset of 1,295 vulnerabilities, we manually locate their accu-
rate patches, and observe that patches are in the form of GitHub com-
mits for around 93% of the vulnerabilities; and multiple patches are
developed for about 41% of the vulnerabilities, for which the two
databases only have a patch recall of around 50%.

Our Approach. Inspired by our empirical study, we propose an
automated approach, Tracer, to address the second problem. Tracer
is designed to automatically track patches (in the form of commits)
for an OSS vulnerability frommultiple knowledge sources (i.e., NVD
[41], Debian [12], RedHat [22] andGitHub). Our key idea is that patch
commits are often frequently referenced during the reporting, dis-
cussion and resolution of anOSS vulnerability. Tracerworks in three
steps. First, given the CVE identifier of an OSS vulnerability, it con-
structs a reference network based onmultiple knowledge sources, to
model resource references during vulnerability reporting, discus-
sion and resolution. Second, it selects patch commits in the network
that have high connectivity and high confidence. Finally, it expands
the selected patch commits by searching relevant commits across
branches of a repository so as to track patches more completely.

Evaluation.To demonstrate the effectiveness of Tracer, we com-
pare it with three heuristic-based patch tracking approaches and two
industrial vulnerability databases on the 1,295 vulnerabilities used in
our empirical study. Our evaluation has indicated that i) Tracer can
find patches for 58.6% to 273.8% more vulnerabilities than heuristic-
based approaches; ii) for the vulnerabilities whose patches are found,
Tracer can have a higher patch accuracy by up to 116.8% in F1-score
than heuristic-based approaches; and iii) Tracer can complement
industrial databases by finding patches completely.

To demonstrate the generality of Tracer, we run it against 3,185
vulnerabilities for which only one of the two industrial vulnerability
databases provides their patches and 5,468 vulnerabilities for which
none of the two industrial vulnerability databases provides their
patches. Our evaluation has shown that Tracer can find patches for
67.7% and 51.5% of the vulnerabilities, and achieve a sampled patch
precision of 0.823 and 0.888 and a sampled patch recall of 0.845 and
0.899. Moreover, to evaluate the practical usefulness of Tracer, we
conduct a user studywith 10 participants. Our evaluation has shown
that Tracer can help track patches more accurately and quickly.

Contribution. This work makes the following contributions.

• We conducted a large-scale empirical study to understand the qual-
ity and characteristics of patches for OSS vulnerabilities.

• Weproposed the first automated approach, named Tracer, to track
patches of OSS vulnerabilities from multiple knowledge sources.

• We conducted extensive experiments to demonstrate the effec-
tiveness, generality and practical usefulness of Tracer.

2 AN EMPIRICAL STUDY
We design an empirical study to understand the quality and charac-
teristics of patches for OSS vulnerabilities in vulnerability databases
by answering the following research questions.
• RQ1 Coverage Analysis: how many OSS vulnerabilities have
patches included in vulnerability databases? (Sec. 2.2)

• RQ2ConsistencyAnalysis: howmanyOSS vulnerabilities have
consistent patches across vulnerability databases? (Sec. 2.3)

• RQ3 Type Analysis: what are the common patch types for OSS
vulnerabilities in vulnerability databases? (Sec. 2.4)

• RQ4 Cardinality Analysis: what are the mapping cardinalities
between OSS vulnerabilities and their patches? (Sec. 2.5)

• RQ5 Accuracy Analysis: how is the patch accuracy of OSS vul-
nerabilities in vulnerability databases? (Sec. 2.6)
We designRQ1 to measure the prevalence of missing patches for

OSS vulnerabilities in different vulnerability databases. We useRQ2
to quantify the prevalence of inconsistent patches for OSS vulnera-
bilities across different vulnerability databases.We leverageRQ3 and
RQ4 to capture the common patch types and mapping cardinalities
betweenOSS vulnerabilities and their patches.We developRQ5 to as-
sess the accuracy of patches for OSS vulnerabilities in different vul-
nerability databases. In summary, our results from RQ1, RQ2 and
RQ5 aim to assess patch quality from different perspectives and mo-
tivate the need for an automated approach to accurately find patches
for OSS vulnerabilities, and our results from RQ3 and RQ4 aim to
capture the characteristics of patches from different perspectives,
and inspire the design of our automated patch tracking approach.

2.1 Data Preparation
VulnerabilityDatabase Selection.Official vulnerability databases
(e.g., CVE List and NVD) do not provide a “patch” field for each col-
lected vulnerability entry. Industrial vulnerability databases lever-
age official vulnerability databases as the main vulnerability source,
and claim that they collect patches manually or semi-automatically.
Therefore, industrial vulnerability databases often provide a “patch”
field for their collected vulnerabilities. To enable large-scale empiri-
cal study of patches, we focus on industrial vulnerability databases.

Initially, we selected the vulnerability databases from four compa-
nies, BlackDuck [15],WhiteSource [62], Veracode [60] and Snyk [55].
They provide software composition analysis to identify OSS used in
an application and report any OSS vulnerabilities. Hence, we believe
they achieve good coverage of OSS vulnerabilities. However, Black
Duck does not make the vulnerability database publicly accessible,
and WhiteSource does not disclose patches for each vulnerability.
We finally selected Veracode’s and Snyk’s vulnerability databases.
Hereafter they are referred to as 𝐷𝐵𝐴 and 𝐷𝐵𝐵 . We also confirmed
with Veracode and Snyk that their public databases are complete.

Breadth Dataset Construction. To broadly quantify missing
patches in the two industrial vulnerability databases and inconsis-
tent patches across them (i.e., RQ1 and RQ2), we built a breadth
dataset of OSS vulnerabilities by crawling all the OSS vulnerabilities
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Figure 1: Overlap Between Two Databases

from 𝐷𝐵𝐴 and 𝐷𝐵𝐵 as of April 7, 2020 by their publicly available
interfaces. We obtained 8,630 and 5,858 CVEs from 𝐷𝐵𝐴 and 𝐷𝐵𝐵 .
𝐷𝐵𝐴 and 𝐷𝐵𝐵 contain a union of 10,070 CVEs.

Depth Dataset Construction. To accurately characterize patch
types, mapping cardinalities and patch accuracy (i.e.,RQ3,RQ4 and
RQ5), we built a depth dataset of OSS vulnerabilities, whose size is
smaller than the breadth dataset but whose patches are all manually
identified to ensure the completeness and accuracy. Specifically, to
balance the ease of patch accuracy analysis across two databases
and the effort of manual patch identification, we selected 1,417 CVEs
for which both databases reported their patches. For each CVE, two
of the authors separately found its patches by analyzing patches re-
ported by both databases, looking into CVE description and refer-
ences in NVD, and searching GitHub repositories and Internet re-
sources. When they had disagreements, a third author was involved
into the discussion for consensuses. Finally, they successfully found
patches for 1,295 CVEs, while they were still uncertain for 122 CVEs
due to limited disclosed information. These 1,295 CVEsmainly cover
seven programming languages. Therefore, we believe our depth
dataset is representative of OSS vulnerabilities.

2.2 Coverage Analysis (RQ1)
Fig. 1a shows the overlap of CVEs between𝐷𝐵𝐴 and𝐷𝐵𝐵 , and Fig. 1b
presents the overlap of CVEswith patches between them.We can see
that different vulnerability databases have different coverage of OSS
vulnerabilities. 𝐷𝐵𝐴 and 𝐷𝐵𝐵 have an overlap of 4,418 CVEs, while
respectively covering 4,212 and 1,440 unique CVEs. Moreover, 3,607
(41.8%) and 2,412 (41.2%) of the CVEs have their patches provided in
𝐷𝐵𝐴 and 𝐷𝐵𝐵 . Overall, of all the 10,070 CVEs, 4,602 (45.7%) CVEs
have patches provided by at least one vulnerability database. These
results indicate that both vulnerability databases have a moderately
low patch coverage, and missing patches are prevalent. Automated
patch tracking approaches are needed to help find missing patches.

2.3 Consistency Analysis (RQ2)
To analyze patch consistency across the two databases, we focus on
CVEs with patches (i.e., Fig. 1b). As a CVEmay have a set of patches,
we consider two databases as having consistent patches for a CVE if
their patch sets are the same.We distinguish patch inconsistency be-
tween existence and content inconsistency. The former refers to two
cases that one database provides patches for a CVE, but the other data-
base either does not cover the CVE, or covers the CVE but does not
provide patches. It reflects the incompleteness of collected OSS vul-
nerabilities and their patches. The latter refers to two cases that both
databases provide patches for a CVE, and their patch sets have an in-
clusion relationship, or do not have an inclusion relationship but are
different from each other. It shows the potential inaccuracy of patches.

Table 1: Patch Consistency and Inconsistency Results

Cons. Existence Inconsistency Content Inconsistency
Total No CVE No Patch Total Inclusion Difference

907
(19.7%)

3,185
(69.2%)

1,392
(30.2%)

1,793
(39.0%)

510
(11.1%)

176
(3.8%)

334
(7.3%)

Table 1 shows our patch consistency analysis results. The first col-
umn gives the number of CVEs with consistent patches. The second
to fourth columns report the number of CVEs with existence incon-
sistent patches, and last three columns list the number of CVEs with
content inconsistent patches. It can be seen that i) only 907 (19.7%)
of the 4,602 CVEs have consistent patches; ii) more than two-thirds
(i.e., 3,185 (69.2%)) of the CVEs have existence inconsistency, where
1,392 (30.2%) of the CVEs are not included in𝐷𝐵𝐴 or𝐷𝐵𝐵 , and 1,793
(39.0%) of the CVEs are included but do not have patches in 𝐷𝐵𝐴 or
𝐷𝐵𝐵 ; and iii) 510 (11.1%) of the CVEs incur content inconsistency,
where 176 (3.8%) of the CVEs’ patches from one database are in-
cluded in the patches from the other; and 334 (7.3%) of the CVEs have
different and non-inclusive patch sets across 𝐷𝐵𝐴 and 𝐷𝐵𝐵 . These
results indicate that these vulnerability databases often report incon-
sistent patches, the incompleteness of collected OSS vulnerabilities
and their patches is severe in these vulnerability databases.

2.4 Type Analysis (RQ3)
Wefind 3,043 patches for the 1,295 CVEs in our depth dataset byman-
ual analysis. Specifically, 2,852 (93.7%) patches are in the type of
GitHub commits potentially due to awide adoption of GitHub across
open source software. 136 (4.5%) patches are in the type of SVN
commits potentially due to the prevalence of SVN before the intro-
duction of GitHub, whereas only 55 (1.8%) patches are in the type of
commits from other Git platforms. Besides, from the perspective of
CVEs, 1,202 (92.8%) of the 1,295 CVEs have the patches in the type of
GitHub commits, 4 (0.3%) CVEs have their patches in the type of SVN
commits, and 48 (3.7%) CVEs have their patches in the type of both
GitHub and SVN commits due to the migration from SVN to GitHub.
Only 30 (2.3%) CVEs have some patches in the type of commits from
other Git platforms. These results demonstrate that patches for OSS
vulnerabilities aremostly in the type of GitHub commits. Thus, patch
tracking approaches can specifically focus on GitHub commits.

2.5 Cardinality Analysis (RQ4)
We categorize three types of mapping cardinalities between CVEs
and their patches. In detail, 567 (43.8%) of the CVEs have a one-to-one
mapping to their patch; i.e., they have only one single patch to fix the
vulnerability. Hereafter this category is referred to as SP.

195 (15.1%) of the CVEs have a one-to-somemapping to the patches,
meaning that they havemultiple equivalent patch sets and any one of
the patch sets is sufficient to patch the vulnerability. Hereafter we re-
fer to this category asMEP. Two patches are equivalent if they have
the same code differences. It is mainly caused by two reasons. First, a
CVE is patched by a pull request which is merged. Thus, the pull re-
quest commits andmerged commits are equivalent patch sets for the
CVE. Second, the repository of OSS is migrated from SVN to GitHub.
Thus, commits for patching a CVE can be in the repository on SVN
and GitHub, and SVN commits and GitHub commits are equivalent.

533 (41.2%) of the CVEs have a one-to-many mapping to patches,
which can be further classified into three types. First, a CVE is fixed
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Figure 2: Approach Overview of Tracer

Table 2: Patch Accuracy of Two Databases

Cardinality Number 𝐷𝐵𝐴 𝐷𝐵𝐵

Pre. Rec. F1 Pre. Rec. F1
1:1 (SP) 567 0.908 0.915 0.910 0.900 0.921 0.906
1:𝑖 (MEP) 195 0.935 0.898 0.902 0.924 0.909 0.906
1:𝑛 (MP) 101 0.923 0.483 0.616 0.911 0.520 0.638
1:𝑛 (MB) 372 0.941 0.510 0.620 0.932 0.436 0.555
1:𝑛 (MR) 60 0.913 0.610 0.695 0.964 0.526 0.636
Total 1,295 0.923 0.748 0.793 0.917 0.730 0.771

bymultiple separate commits in a branch. This is because the CVE is
difficult to fix or the initial patch is not complete. Hereafter we refer
to this type as MP, accounting for 101 (7.8%) of the CVEs. Second, a
CVE is fixed by multiple patch sets in multiple branches because the
CVE affects multiple versions of OSS and each version is maintained
on a separate branch. These multiple patch sets should be identified
because patches for different versions can be different. Hereafter
this type is referred to asMB, covering 372 (28.7%) of the CVEs. Third,
a CVE is fixed by multiple patch sets in multiple repositories. This is
because the CVE affectsmultiple OSS, ormultiple versions of OSS are
maintained in separate repositories. Hereafter we refer to this type
as MR, which covers 60 (4.6%) of the CVEs.

These results demonstrate various mapping cardinalities be-
tween CVEs and their patches. They should be considered to ensure
completeness when tracking patches for OSS vulnerabilities.

2.6 Accuracy Analysis (RQ5)
We use precision, recall and F1-score as the indicators of patch accu-
racy. For the CVEs having one-to-somemapping to their patches, we
consider reporting one of the multiple equivalent patches as correct.
For example, for a CVE that has two equivalent patches, a database
that reports one of the two equivalent patches has a full precision
and a full recall, while a database that reports one of the two equiv-
alent patches and another irrelevant patch achieves a half precision
and a full recall. Table 2 breaks down the accuracy results of the two
databases with respect to the mapping cardinalities. The second col-
umn reports the number of CVEs in each mapping cardinality, and
the next six columns report patch accuracy in the two databases.

𝐷𝐵𝐴 and𝐷𝐵𝐵 achieve a high precision and a high recall of about
90% for the CVEs belonging to SP andMEP, while having a high pre-
cision of above 90% but a low recall of around 50% for the CVEs hav-
ing one-to-many mappings to their patches (i.e., MP, MB and MR).
These results show that these vulnerability databases oftenmiss some
patches, especially for CVEs with multiple patches, and such miss-
ing information would make it challenging to achieve accurate soft-
ware composition analysis. It reflects the need to automatically find
complete patches for OSS vulnerabilities.

3 OUR APPROACH
Based on the findings from our empirical study, we propose an au-
tomated approach, Tracer, to track patches (in the form of com-
mits) for OSS vulnerabilities. The underlying idea of Tracer is that
patch commits are often frequently referenced during the report-
ing, discussion and resolution of an OSS vulnerability in various
advisory sources. Fig. 2 presents an overview of Tracer. It takes as
an input the CVE identifier of an OSS vulnerability, and returns its
patches. Tracer works in three steps. First, it constructs a reference
network for the CVE starting from multiple advisory sources (i.e.,
NVD, Debian [12], Red Hat [22] and GitHub). The goal is to model
resource references during the reporting, discussion and resolution
of the CVE. Second, it selects the patch nodes (i.e., patch commits) in
the network which have high connectivity and high confidence, and
thus are most likely to be patches for the CVE. Finally, it expands
the selected patch commits via searching relevant commits across
branches of the same repository. The goal is to establish a potential
one-to-many mapping between the CVE and its patches. In the fol-
lowing subsections, we will elaborate on each step in detail.

3.1 Reference Network Construction
The first step of Tracer consists of three sub-steps. The first two sub-
steps (i.e., advisory analysis and reference analysis) construct a refer-
ence network via analyzing advisories from NVD, Debian and Red
Hat. The last sub-step (i.e., reference augmentation) augments the ref-
erence network by searching relevant commit links from GitHub.

Advisory Analysis. Tracer first initializes the reference net-
work by setting the CVE under analysis as the root node. It then adds
three advisory source nodes (i.e., NVD, Debian and Red Hat) as the
child node of the root node. These advisory source nodes are used to
visualize where the finally selected patches originate.

Example 3.1. Fig. 3 presents the complete reference network for
CVE-2017-11428. The top layer shows the root node, and the second
layer shows the advisory source nodes.

Then, Tracer respectively requests the advisory from NVD, De-
bian and Red Hat with the CVE identifier. Specifically, as NVD pro-
vides structured data feeds [42] of all vulnerabilities in the form of
JSON by year, Tracer requests and parses the corresponding JSON
file to obtain the NVD advisory. As Debian stores advisories at a
repository [11], Tracer extracts theDebian advisory from the repos-
itory. As Red Hat provides WebService API [23], Tracer uses it to
retrieve the Red Hat advisory. Notice that Debian tracks all CVEs
on NVD, and Red Hat tracks some of them.

Tracer extracts URL references in each requested advisory and
adds them as child nodes of the corresponding advisory source node.
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Figure 3: Reference Network for CVE-2017-11428

For an NVD advisory, Tracer extracts URL references in the “refer-
ences” field, where references to advisories and solutions are listed.
Similarly, for a Debian advisory, Tracer extracts URL references
in the “Notes” field. For a Red Hat advisory, Tracer uses a regu-
lar expression to extract URL references in the “comments” field,
where developers discuss and record the resolution process of the
vulnerability and may list references to patches.

Example 3.2. As shown in the third layer in Fig. 3, the NVD advi-
sory for CVE-2017-11428 contains two references. One is a reference
to a blog that describes the technical detail of this vulnerability, and
the other is a reference to a third-party advisory. The two references
are also contained by the Debian advisory which further contains a
reference to a GitHub commit ruby-saml@048a54 [47] which fixes
this vulnerability. Red Hat does not collect this CVE.

Tracer also classifies these reference nodes into three types, i.e.,
patch node, issue node and hybrid node.We distinguish patch nodes as
our goal is to find patches for the CVE.We distinguish issues nodes be-
cause issue trackersmay assign an issue identifier to the CVE, where
developers discuss its resolution and often list references to patches.
Reference nodes that are not identified as patch or issue nodes are re-
garded as hybrid nodes, which can be blogs, third-party advisories, etc.
Inspired by our patch type analysis (Sec. 2.4), Tracer identifies a ref-
erence node as a patch node if its URL contains “git” and matches a
regular expression of commit identifier (i.e., Git platform commits),
or contains “svn” and matches a regular expression of commit iden-
tifier (i.e., SVN commits). Tracer identifies a reference node as an is-
sue node if its URL contains “/github.com/” and “/issues/” (i.e., GitHub
issues), contains “/github.com/” and “/pull/” (i.e., GitHub pull re-
quests), or contains one of the keys “bugzilla", “jira", “issues", “bugs",
“tickets" and “tracker" and matches a regular expression of issue
identifier (i.e., issues from other issue trackers).

Example 3.3. As shown in the third layer in Fig. 3, the two refer-
ences contained in both the NVD and Debian advisory are identified
as hybrid nodes (i.e., the two purple nodes). The reference that is
only contained in the Debian advisory is successfully identified as
a patch node (i.e., the red node).

ReferenceAnalysis. For each of the reference nodes constructed
in the previous sub-step, Tracer applies the following two analyses
to construct the reference network in a layered way.

If the reference node is a patch node, Tracer requests the commit
and analyzes whether it only changes test code or non-source code
files. If yes, this patch node is removed from the reference network
as it cannot be the patch. Tracer identifies test code changes by
checking the “test” string in paths of modified files, and identifies
non-source code changes by checking the suffix of modified files.

If the reference node is an issue or hybrid node, Tracer first re-
quests the URL and gets the response (i.e., HTML text). Then, it uses
a regular expression to extract URL references in plain text, and uses
an HTML parser to get URL references in hyperlinks (i.e., <a> tags).
These extracted URL references are then checked in the sameway as
the previous sub-step to identify patch and issue references, which
are added as child nodes of the reference node under analysis. No
more hybrid references will be added after this layer as the deeper
we explore the reference network, the more noise would be intro-
duced by hybrid references. In other words, only the hybrid refer-
ences directly contained in the NVD, Debian and Red Hat advisories
are included in the reference network. There is one exception in
the above analysis for URL references to GitHub issues or commits.
GitHub issue reports often contain references to issues or commits
from other repositories, which can introduce noise to the reference
network. To this end, if the reference node under analysis corre-
sponds to aGitHub issue, its extracted URL reference that is not from
the same repository will not be added to the reference network.

Tracer repeats the above two analyses on the newly-added
nodes until there is no newly-added node or the depth of our refer-
ence network reaches a limit (which is 5 by default).

Example 3.4. In the first iteration, Tracer keeps the patch node
ruby-saml@048a54 in the third layer in Fig. 3 because it changes
non-test source code files. It identifies that one hybrid node in the
third layer does not reference to any issue/commit, and the other ref-
erences to two issues SAMLBase#3 and saml#140 and one commit
SAMLBase@482cdf. In the next iteration, it finds that SAMLBase#3
references to SAMLBase@482cdf, and saml#140 references to two
issues gosaml2#36 and saml#163 and two commits saml@814d1d
and saml@55d682. However, gosaml2#36 is not included in our ref-
erence network as it belongs to a different repository than saml#140;
and saml@814d1d and saml@55d682 are also not included because
they only change test code. Notice that these not included nodes are
still shown in Fig. 3 for the ease of presentation, but are connected by
dotted arrow lines. After this iteration, the depth limit is reached.

Reference Augmentation. Besides NVD, Debian and Red Hat
which are explicit advisory sources, repository hosting platforms
can be regarded as an implicit source because patches are often hid-
den in the commit history. Hence, in this sub-step, Tracer searches
repository hosting platforms for patch commits of the CVE in or-
der to further augment the reference network.

Inspired by our patch type analysis (Sec. 2.4), here we only search
GitHub as most patches are in the type of GitHub commits. Besides,
issues trackers often assign an issue identifier to the CVE. Similarly,
advisory publishers usually assign an advisory identifier to the CVE.
For example, the vendor advisory of CVE-2019-10426 assigns an ad-
visory identifier of SECURITY-1573 [25], and the issue tracker as-
signs an issue identifier of THRIFT-4647 [57] to CVE-2018-11798.
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Hence, Tracer uses a regular expression to extract issue and advi-
sory identifiers respectively from the URL of issue and hybrid nodes
in our reference network constructed in the previous two sub-steps.

Then, Tracer uses the CVE identifier and extracted issue and ad-
visory identifiers as the key to search for commits by REST API [17]
provided by GitHub. This API returns up to 1,000 results for a search.
To reduce noise, for each returned commit, Tracer checks whether
its owner and repository namematches the vendor and product name
of any CPE of the CVE. CPE is a structured naming scheme for af-
fected software of the CVE, which can be parsed from the JSON file
fromNVD.Herewe followDong et al.’s matching criterion [13] to have
the flexibility to handle the slightly different format of the same soft-
ware name; i.e., two software names are regarded as a match if the
number of matched words is not less than the number of unmatched
words. Besides, Tracer also checks whether the commit changes
non-test source code files. If both checks are passed, Tracer adds
it as a child node of the advisory source node of GitHub.

Example 3.5. For CVE-2017-11428, Tracer fails to extract any
issue or advisory identifier. Thus, it uses the CVE identifier to search
for GitHub commits. Thematched commit is ruby-saml@048a54, and
its owner and repository name is “onelogin” and “ruby-saml”. As the
vendor and product name in the CPE of this CVE is “onelogin” and
“ruby-saml”, a complete match is achieved. As this commit is already
included in our reference network, Tracer connects it as a child
node of the new advisory source node of GitHub, as shown in Fig. 3.

3.2 Patch Selection
The second step of Tracer is to select patches from our reference
network for the CVE under analysis accurately and completely. To
this end, we use two heuristics, and combine their selected patches.

Confidence. We directly select the patch nodes that we treat as
having high confidence of being the correct patch for the CVE under
analysis. Specifically, we consider two kinds of patch nodes in our
reference network as having such high confidence. First, the patch
nodes that are a direct child node of the advisory source node of NVD
are considered as having high confidence. The reason is that NVD is
establishedwith a strong community effort, each vulnerability isman-
ually confirmed with several procedures, and the data can be con-
tinuously updated after the initial vulnerability reporting. Second,
the patch nodes that are a direct child node of the advisory source
node of GitHub are considered as having high confidence. The rea-
son is that the way Tracer adds such patch nodes ensures that the
commit message contains the CVE identifier, advisory identifier,
or issue identifier of the CVE and the name of its belonging owner
and repository matches the vendor and product name of the CPE.

Example 3.6. From the reference network for CVE-2017-11428 in
Fig. 3, Tracer directly selects the patch node ruby-saml@048a54 be-
cause it is a child node of the advisory source node of GitHub and is
considered as having high confidence of being the correct patch for
CVE-2017-11428. In fact, this commit is one of the correct patches.

Connectivity. The confidence-based heuristic alone is often not
strong enough to locate patches accurately and completely because
NVDmay not contain patch references, and CVE identifier, advisory
identifier or issue identifier of a CVEmight not be contained in com-
mit messages. Hence, inspired by the idea that a correct patch would

be frequently referenced during the reporting, discussion, and res-
olution of a CVE in various advisory sources (i.e., the patch node
would be widely connected to the root node in our reference net-
work), we further design a connectivity-based heuristic.

Specifically, we measure the connectivity of a patch node to the
root node in our reference network based on two dimensions. First,
the more paths the root node can reach a patch node, the higher con-
nectivity to the root node the patch node has. Second, the shorter the
paths from the root node to a patch node, the higher connectivity to
the root node the patch node has. To combine these two dimensions,
we use Eq. 1 to compute the connectivity of a patch node to the root
node, where 𝑝 = 1, ..., 𝑛 denotes one of the𝑛 paths from the root node
to the patch node, and𝑑𝑝 denotes the length of a path 𝑝 . Considering
the high confidence of the two advisory sources of NVD and GitHub,
the length of a path is changed by a decrease of 1 if the path origi-
nates from the advisory source node of NVD and GitHub.

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛∑︁

𝑝=1

1
2(𝑑𝑝−1)

(1)

Based on the connectivity of each patch node to the root node,
Tracer selects the patch nodes with the highest connectivity.

Example 3.7. In Fig. 3, there are two paths from root node to the
patch node ruby-saml@048a54. One originates from Debian with a
length of 2, and has connectivity of 0.5. The other originates from
GitHub with an original length of 2 and a changed length of 1, and
has connectivity of 1. Thus, the connectivity of ruby-saml@048a54
to the root node is 1.5. Similarly, there exist four paths from the root
node to the patch node SAMLBase@482cdf, respectively having
connectivity of 0.5, 0.25, 0.25, and 0.125. Hence, the connectivity of
SAMLBase@482cdf to the root node is 1.125. Tracer selects ruby-
saml@048a54 as the patch as it has the highest connectivity.

3.3 Patch Expansion
The third step of Tracer is to expand the patches selected in the sec-
ond step by searching relevant commits across branches of the same
repository. It is inspired by our cardinality analysis (Sec. 2.5) where
we find more than 40% of the CVEs have a one-to-many mapping to
their patches, and these multiple patches often locate in one branch
of a repository (as a CVE is difficult to fix or the first patch is not com-
plete) or multiple branches of a repository (as a CVE affects multiple
versions whose branches are separately maintained). For these mul-
tiple patches, our reference network constructed in the previous two
steps often does not capture them completely. Besides, our patch type
analysis (Sec. 2.4) shows that most patches are in the type of GitHub
commits. Therefore, the third step of Tracer is designed as fol-
lows: for each selected patch that is in the type of a GitHub commit,
Tracer locates its repository, collects all branches in this repository,
and searches the commits within a specific span of each branch for
commits that are potentially patches for the CVE under analysis.

Specifically, for a selected patch that is in the type of a GitHub com-
mit, Tracer uses a regular expression to extract the owner and repos-
itory information from the patch URL, owing to the well-structured
commit URL in GitHub. Based on the owner and repository data,
Tracer retrieves all branches in the repository by GitHub’s REST
API [18]. Then, for each branch, Tracer retrieves the commits cre-
ated before and after the selected patchwithin a specific span (which
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is 30 days by default) by GitHub’s REST API [19]. We do not retrieve
all the commits for balancing performance and accuracy. Then, for
each retrieved commit, Tracer uses the following two criteria to de-
terminewhether the commit is the patch for the CVE under analysis:
i) the commit message of the retrieved commit is the same as, con-
tains, or is contained by the commit message of the selected patch;
or ii) the commit message of the retrieved commit contains the CVE
identifier, advisory identifier or issue identifier. If a retrieved com-
mit satisfies one of the two criteria, Tracer also adds such expanded
patches as child nodes of the selected patch.

Finally, Tracer returns the selected patches in the second step
and the expanded patches in the third step as the patches for the
CVE under analysis. Besides, our reference network is also returned
for the ease of confirming returned patches.

Example 3.8. For the selected patch ruby-saml@048a54 (locating
on themaster branch) for CVE-2017-11428, Tracer expands it by find-
ing three commits ruby-saml@d7ce60 [48], ruby-saml@a35f72 [49]
and ruby-saml@03af9e [50] which have the same commit message
to ruby-saml@048a54 but respectively locate on branches 0.8.3 –
0.8.17, v0.9.3 and v1.6.2. As shown in Fig. 3, Tracer adds them as
child nodes of ruby-saml@048a54. Notice that these four patches
are all correct and involve different code changes. The two vulnera-
bility databases in Sec. 2 only report the patch ruby-saml@048a54.

4 EVALUATION
Research Questions. We design our evaluation to answer the fol-
lowing four research questions.
• RQ6Effectiveness Evaluation: how is the effectiveness of Tracer
in tracking patches, compared to existing heuristic-based ap-
proaches and two industrial vulnerability databases? (Sec. 4.1)

• RQ7 Ablation Analysis: how is the contribution of each com-
ponent in Tracer to its achieved effectiveness? (Sec. 4.2)

• RQ8 Generality Evaluation: how is the generality of Tracer
to OSS vulnerabilities beyond our depth dataset? (Sec. 4.3)

• RQ9 Usefulness Evaluation: how is the usefulness of Tracer
in practice? (Sec. 4.4)
We use our depth dataset to answerRQ6 andRQ7, and build two

datasets to answer RQ8. We conduct a user study to answer RQ9.
Evaluation Metrics. We use four metrics to measure the effec-

tiveness of patch tracking in RQ6, RQ7 and RQ8. The first metric
is the number of CVEs whose patches are not found by a patch track-
ing approach. It measures patch coverage by only consideringwhether
patches are found or not. The other metrics are precision, recall and
F1-score (i.e., the same metrics in Sec. 2.6), which measure patch ac-
curacy for those CVEs whose patches are found by a patch track-
ing approach. In RQ9, we use patch accuracy and the time con-
sumed by users with/without the help of Tracer in finding patches.

4.1 Effectiveness Evaluation (RQ6)
Comparison toHeuristic-BasedApproaches.Wepick twowidely
used heuristics: i) searching NVD references of a CVE for commits
(e.g., [14, 33, 34]) and ii) searching GitHub commit history for com-
mits containing the identifier of a CVE in commit messages (e.g., [61,
67]). The first heuristic can be used to approximate the quality of hid-
den patches in NVD. In fact, we manually track the hidden patches

in NVD, which achieves similar effectiveness results to this heuris-
tic. The second heuristic is usually used for searching patches for
a known OSS, we adapt it to search patches for a CVE by fur-
ther checking whether the owner and repository match the ven-
dor and product in CPE (i.e., our strategy in reference augmenta-
tion). We also investigate a third heuristic that combines the results
of the above two heuristics. Table 3 and 4 respectively present the ef-
fectiveness results of the three heuristics and Tracer (and its vari-
ants, which will be discussed in Sec. 4.2).

On one hand, for patch coverage, all the three heuristics fail to find
any patch (i.e., return nothing) for a very large part (i.e., 59.3%, 76.4%
and 44.5%) of the CVEs across all mapping cardinalities. Differently,
Tracer fails to find a patch for only 12.0% of the CVEs. On the other
hand, for patch accuracy on the CVEs whose patches are found, the
first heuristic achieves a high patch precision due to the high confi-
dence of NVD references, but a low patch recall on the CVEswith one-
to-many mappings; the second heuristic has both a low patch preci-
sion and a low patch recall; and the third heuristic achieves a patch
precision and a patch recall between the first and second heuristic.
Tracer has a lower patch precision, a higher patch recall (a signifi-
cantly higher patch recall on CVEs belonging toMP andMB), and a
comparable F1-score than the first heuristic. We believe it is accept-
able because Tracer finds patches for 116.3% more CVEs for which
the first heuristic fails to find any patch. Besides, Tracer improves
the second and third heuristic in F1-score by 116.8% and 16.3%.

Existing heuristics fail to find any patch for a very large part of
vulnerabilities, while Tracer finds patches for 58.6% to 273.8%
more vulnerabilities than them. For the vulnerabilities whose
patches are found, Tracer has either a comparable F1-score or
a higher F1-score by up to 116.8% than existing heuristics.

Comparison to Vulnerability Databases.We are not aware of
howmuchmanual effort or what automated approach is involved in
the construction of industrial vulnerability databases. Some of them
claimed that they collect patches manually or semi-automatically.
Therefore, the goal of our comparison to industrial databases is not to
demonstrate the superiority or inferiority of Tracer over industrial
databases, but to assess the level of effectiveness Tracer can achieve
and the worthiness of Tracer, and explore whether Tracer can po-
tentially improve or complement existing industrial databases.

As shown in Table 2 and 4, Tracer finds patches for 12.0% fewer
CVEs than 𝐷𝐵𝐴 and 𝐷𝐵𝐵 . This is determined by the way we con-
struct this used depth dataset (i.e., our depth dataset includes vul-
nerabilities whose patches are provided by 𝐷𝐵𝐴 and 𝐷𝐵𝐵 ). We will
demonstrate in Sec. 4.3 how Tracer works on vulnerabilities whose
patches are not provided by 𝐷𝐵𝐴 and 𝐷𝐵𝐵 .

On the CVEs whose patches are found, Tracer has a 6.4% and
5.8% lower patch precision than𝐷𝐵𝐴 and𝐷𝐵𝐵 . This might be poten-
tially due to the manual effort involved in industrial database con-
struction. Besides, Tracer has a 15.5% and 18.4% higher patch recall
than 𝐷𝐵𝐴 and 𝐷𝐵𝐵 (especially on CVEs belonging to one-to-many
mappings), resulting in a 5.5% and 8.6% higher F1-score than 𝐷𝐵𝐴
and𝐷𝐵𝐵 . These results indicate that Tracer isworthwhilewith a sig-
nificantly higher patch recall at the price of amoderately lower patch
precision. Tracer has the merit to complement industrial databases
by reducing manual effort and tracking patches completely.
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Table 3: Effectiveness of Existing Heuristic-Based Approaches

Cardinality Number Searching NVD References Searching GitHub Commit History Searching NVD and GitHub
Not Found Pre. Rec. F1 Not Found Pre. Rec. F1 Not Found Pre. Rec. F1

1:1 (SP) 567 285 (50.3%) 0.973 0.986 0.977 472 (83.2%) 0.416 0.642 0.471 222 (39.2%) 0.839 0.930 0.864
1:𝑖 (MEP) 195 125 (64.1%) 0.932 0.925 0.921 162 (83.1%) 0.472 0.490 0.452 104 (53.3%) 0.821 0.867 0.820
1:𝑛 (MP) 101 68 (67.3%) 0.980 0.552 0.683 73 (72.3%) 0.536 0.445 0.461 52 (51.5%) 0.779 0.605 0.647
1:𝑛 (MB) 372 244 (65.6%) 0.979 0.416 0.546 246 (66.1%) 0.445 0.236 0.284 171 (46.0%) 0.704 0.393 0.465
1:𝑛 (MR) 60 46 (76.7%) 1.000 0.708 0.794 37 (61.7%) 0.627 0.345 0.413 27 (45.0%) 0.801 0.539 0.604
Total 1,295 768 (59.3%) 0.970 0.805 0.842 990 (76.4%) 0.461 0.417 0.386 576 (44.5%) 0.793 0.732 0.720

Table 4: Contribution of Each Component in Tracer

Cardinality Number Tracer 𝑣11 : Tracer w/o NVD 𝑣21 : Tracer w/o Debian
Not Found Pre. Rec. F1 Not Found Pre. Rec. F1 Not Found Pre. Rec. F1

1:1 (SP) 567 102 (18.0%) 0.860 0.951 0.881 286 (50.4%) 0.820 0.936 0.846 110 (19.4%) 0.847 0.943 0.869
1:𝑖 (MEP) 195 6 (3.1%) 0.886 0.918 0.888 79 (40.5%) 0.882 0.935 0.886 8 (4.1%) 0.880 0.912 0.882
1:𝑛 (MP) 101 20 (19.8%) 0.872 0.741 0.761 41 (40.6%) 0.881 0.728 0.766 22 (21.8%) 0.851 0.716 0.739
1:𝑛 (MB) 372 23 (6.2%) 0.861 0.788 0.795 84 (22.6%) 0.876 0.780 0.800 28 (7.5%) 0.838 0.760 0.771
1:𝑛 (MR) 60 4 (6.7%) 0.831 0.620 0.659 8 (13.3%) 0.848 0.551 0.624 5 (8.3%) 0.819 0.613 0.651
Total 1,295 155 (12.0%) 0.864 0.864 0.837 498 (38.5%) 0.856 0.839 0.815 173 (13.4%) 0.848 0.849 0.821

Cardinality Number 𝑣31 : Tracer w/o Red Hat 𝑣41 : Tracer w/o GitHub 𝑣51 : Tracer w/o Network
Not Found Pre. Rec. F1 Not Found Pre. Rec. F1 Not Found Pre. Rec. F1

1:1 (SP) 567 113 (19.9%) 0.853 0.943 0.874 149 (26.3%) 0.898 0.943 0.908 177 (31.2%) 0.910 0.972 0.925
1:𝑖 (MEP) 195 7 (3.6%) 0.883 0.918 0.886 19 (9.7%) 0.887 0.921 0.892 78 (40.0%) 0.956 0.959 0.941
1:𝑛 (MP) 101 21 (20.8%) 0.880 0.736 0.760 28 (27.7%) 0.873 0.690 0.726 40 (39.6%) 0.943 0.669 0.743
1:𝑛 (MB) 372 35 (9.4%) 0.844 0.761 0.767 39 (10.5%) 0.874 0.752 0.773 109 (29.3%) 0.908 0.575 0.659
1:𝑛 (MR) 60 4 (6.7%) 0.738 0.640 0.618 7 (11.7%) 0.816 0.545 0.604 10 (16.7%) 0.920 0.641 0.712
Total 1,295 180 (13.9%) 0.851 0.853 0.823 242 (18.7%) 0.883 0.841 0.835 414 (32.0%) 0.918 0.812 0.823

Cardinality Number 𝑣12 : Tracer w/o Selection 𝑣22 : Tracer w/o Connectivity 𝑣32 : Tracer w/o Confidence
Not Found Pre. Rec. F1 Not Found Pre. Rec. F1 Not Found Pre. Rec. F1

1:1 (SP) 567 102 (18.0%) 0.632 0.961 0.680 245 (43.2%) 0.892 0.978 0.913 102 (18.0%) 0.860 0.942 0.879
1:𝑖 (MEP) 195 6 (3.1%) 0.622 0.976 0.682 111 (56.9%) 0.929 0.939 0.915 6 (3.1%) 0.888 0.913 0.889
1:𝑛 (MP) 101 20 (19.8%) 0.615 0.933 0.656 56 (55.4%) 0.953 0.685 0.764 20 (19.8%) 0.880 0.722 0.751
1:𝑛 (MB) 372 23 (6.2%) 0.616 0.903 0.657 191 (51.3%) 0.927 0.787 0.821 23 (6.2%) 0.871 0.765 0.784
1:𝑛 (MR) 60 4 (6.7%) 0.368 0.891 0.394 27 (45.0%) 0.885 0.722 0.772 4 (6.7%) 0.849 0.462 0.550
Total 1,295 155 (12.0%) 0.611 0.940 0.658 630 (48.6%) 0.910 0.889 0.871 155 (12.0%) 0.869 0.844 0.826

Cardinality Number 𝑣42 : Tracer with Path Length 𝑣52 : Tracer with Path Number 𝑣3: Tracer w/o Expansion
Not Found Pre. Rec. F1 Not Found Pre. Rec. F1 Not Found Pre. Rec. F1

1:1 (SP) 567 102 (18.0%) 0.833 0.957 0.859 102 (18.0%) 0.805 0.951 0.837 102 (18.0%) 0.871 0.948 0.889
1:𝑖 (MEP) 195 6 (3.1%) 0.848 0.945 0.867 6 (3.1%) 0.849 0.920 0.858 6 (3.1%) 0.910 0.914 0.902
1:𝑛 (MP) 101 20 (19.8%) 0.849 0.760 0.742 20 (19.8%) 0.801 0.756 0.726 20 (19.8%) 0.873 0.696 0.732
1:𝑛 (MB) 372 23 (6.2%) 0.830 0.798 0.770 23 (6.2%) 0.833 0.811 0.791 23 (6.2%) 0.860 0.506 0.590
1:𝑛 (MR) 60 4 (6.7%) 0.652 0.747 0.590 4 (6.7%) 0.789 0.630 0.644 4 (6.7%) 0.847 0.567 0.629
Total 1,295 155 (12.0%) 0.827 0.882 0.812 155 (12.0%) 0.819 0.873 0.809 155 (12.0%) 0.873 0.771 0.776

Tracer achieves a 15.5% to 18.4% higher patch recall and a 5.5%
to 8.6% higher F1-score than the two industrial vulnerability
databases, while sacrificing up to 6.4% lower patch precision.
Tracer can complement industrial vulnerability databases by
reducing manual effort and tracking patches completely.

False Negative Analysis.We manually analyze the CVEs for
which Tracer finds no patch or misses some of the patches, and
summarize five main reasons. First, for some old CVEs, the refer-
ences contained in NVD, Debian and Red Hat are limited, and some
of them even become invalid. As a result, Tracer fails to construct
a complete reference network. Second, some key references (e.g., is-
sue reports) about a CVE aremissing fromNVD,Debian and RedHat.
As a result, Tracer fails to be directed to the correct patch. For exam-
ple, for CVE-2018-14642, its issue report [58] is not contained in any

of the three advisory sources. However, following the issue re-
port, we could find the patch [59]. Third, the commit message of a
patch has semantic similarity to the CVE description, but does not
contain the CVE identifier. Hence, our reference augmentation
fails to catch it. For example, for CVE-2019-10077 [40], our patch
commit [30] fixes it without indicating the CVE identifier. Fourth,
GitHub’s REST API for commit search returns 1,000 results, which
may miss the correct patch commit in our reference augmentation.
Fifth, only one patch with the highest connectivity is selected in
our patch selection. Thus, correct patches for CVEs belonging to
one-to-many mappings might be missed although they are already
included in our reference network.

False PositiveAnalysis.We alsomanually analyze the CVEs for
which Tracer finds incorrect patches, and summarize two main
reasons. First, the commit that introduces the CVE is referenced
during the discussion and resolution of the CVE. As a result, Tracer
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falsely identifies it as a patch commit due to the lack of semantic un-
derstanding of the context where the commit is referenced. For ex-
ample, for CVE-2020-5249, the commit that introduces the CVE [20]
and the commit that fixes the CVE [21] are referenced in the same com-
ment of the issue report. Second, multiple CVEs and their issues and
patches are listed on the same page. As a result, patches for other
CVEsmight be falsely identified by Tracer due to the lack of seman-
tic understanding. For example, for CVE-2018-15750, its patches
are maintained in the release note [52] with CVE-2018-15751, and
the release note is all referenced by NVD, Debian, and Red Hat.

The five and two reasons for false negatives and false positives
are respectively summarized bymanual analysis, which can be
leveraged to further improve the effectiveness of Tracer.

4.2 Ablation Analysis (RQ7)
Table 4 presents the results of our ablation study to measure the con-
tribution of various settings in Tracer to its achieved effectiveness.

Removing an Advisory Source.We remove one of the four ad-
visory sources NVD, Debian, Red Hat and GitHub from the first step
of Tracer, and generate variants 𝑣11 , 𝑣

2
1 , 𝑣

3
1 and 𝑣

4
1 of Tracer. These

four variants suffer an increase in the number of CVEs they fail to find
any patch for. 𝑣11 , 𝑣

2
1 , 𝑣

3
1 and 𝑣

4
1 respectively find patches for 30.1%,

1.6%, 2.2% and 7.6% fewer CVEs than Tracer, while achieving com-
parable precision, recall and F1-score on CVEs they find patches for.
These results indicate that all the four advisory sources contribute
to finding patches for more CVEs by constructing a more complete
reference network, while NVD and GitHub contribute the most.

Removing Reference Network.We do not construct the refer-
ence network in a layered way but simply use the direct references
contained in the four advisory sources (i.e., we skip reference anal-
ysis in the first step of Tracer), which is the variant 𝑣51 in Table 4.
𝑣51 also suffers an increase in the number of CVEs it fails to find any
patch for. 𝑣51 finds patches for 22.7% fewer CVEs than Tracer, while
having a 6.3% higher precision, a 6.0% lower recall, and a compara-
ble F1-score on CVEs it finds patches for. These results demonstrate
that patches are not always directly referenced in NVD, Debian and
Red Hat, but might be hidden in indirect references, and our refer-
ence network contributes to tracking such hidden patches at the
price of an acceptable decrease in precision.

Removing Patch Selection. We do not select some patches in
the second step of Tracer but select all the patches in our reference
network, which is variant 𝑣12 in Table 4. 𝑣12 significantly improves
Tracer in recall by 8.8%, especially for CVEs belonging to one-to-
many mappings, while suffering a large degradation in precision
by 29.3% and in F1-score by 21.4% across all cardinalities. These
results indicate that our reference network indeed contains most of
the correct patches, and our patch selection heuristics contribute
to achieving a balance between precision and recall.

RemovingConnectivity orConfidence.We remove one of the
two heuristics adopted in the second step of Tracer, and generate
two variants 𝑣22 and 𝑣

3
2 . Without our connectivity-based heuristic,

𝑣22 finds patches for 41.7% fewer CVEs than Tracer, while achieving
a 5.3% higher precision, a 2.9% higher recall and a 4.1% higher F1-
score. These results indicate that our connectivity-based heuristic

contributes to finding patches for more CVEs while introducing ac-
ceptable noise. Without our confidence-based heuristic, 𝑣32 suffers a
slight decrease in recall and F1-score, especially for CVEs belong-
ing to MR. These results show that our confidence-based heuristic
contributes to achieving a balanced accuracy across all cardinalities.

Reducing Connectivity. We reduce connectivity-based heuris-
tic by only considering path length (i.e., selecting the patch with the
shortest path to the root node) and by only considering path number
(i.e., selecting the patch with the largest number of paths to the root
node), and respectively generate the variant 𝑣42 and 𝑣

5
2 . Both 𝑣42 and

𝑣52 suffer a 4.3% and 5.2% decrease in precision, a 2.1% and 1.0% in-
crease in recall, and a 3.0% and 3.3% decrease in F1-score. These re-
sults demonstrate that our connectivity-based heuristic contributes
to improving the precision of Tracer by comprehensively consid-
ering the path length and path number of a patch to the root node.

Removing Patch Expansion.We do not expand patches in the
third step of Tracer, which is variant 𝑣3 in Table 4. 𝑣3 suffers degra-
dation in recall and F1-score by 10.8% and 7.3%, especially for CVEs
with one-to-many mappings. These results show that our patch
expansion contributes to finding multiple patches more completely.

Our used advisory sources, reference network, patch selection,
and patch expansion all contribute positively to the achieved
effectiveness of Tracer in tracking patches.

4.3 Generality Evaluation (RQ8)
To evaluate the generality of Tracer (i.e., whether Tracer is overfit-
ted to our depth dataset), we collect two new vulnerability datasets,
and run Tracer against them. The first dataset includes the CVEs for
which only one of the two industrial vulnerability databases reports
their patches (Fig. 1b), which has 3,185 CVEs. The second dataset in-
cludes the CVEs for which none of the two industrial vulnerability
databases reports their patches (Fig. 1), which has 5,468 CVEs.

Tracer finds patches for 2,155 (67.7%) of the 3,185 CVEs in the
first dataset, and the two industrial vulnerability databases𝐷𝐵𝐴 and
𝐷𝐵𝐵 report patches for 2,190 (68.8%) and 995 (31.2%) CVEs. Of the
2,155 CVEs Tracer finds patches for, 𝐷𝐵𝐴 and 𝐷𝐵𝐵 report patches
for 1,455 and 700 CVEs. In addition, Tracer finds patches for 2,816
(51.5%) of the 5,468 CVEs in the second dataset, where𝐷𝐵𝐴 and𝐷𝐵𝐵
report no patch. These results indicate that Tracer complements in-
dustrial vulnerability databases by tracking patches for CVEs whose
patches are not provided by industrial vulnerability databases.

Then, we respectively sample 100 CVEs Tracer finds patches for
from the first and second datasets, andmanually find their patches in
the same procedure in Sec. 2.1 to measure the accuracy of Tracer.
The results are reported in Table 5. Our manual analysis has 9 and 11
uncertain CVEs due to limited disclosed information. Of the 91 CVEs
in the first dataset, Tracer has an F1-score of 0.784, while 𝐷𝐵𝐴 pro-
vides patches for 62 (68.1%) CVEs with a higher F1-score and 𝐷𝐵𝐵
provides patches for 29 (31.9%) CVEs with a lower F1-score. Similar
to the results in Sec. 4.1, industrial vulnerability databases achieve
a higher precision but a lower recall. Of the 89 CVEs in the second
dataset, 𝐷𝐵𝐴 and 𝐷𝐵𝐵 report no patch, whereas Tracer achieves
an F1-score of 0.867. These results indicate that Tracer can be gen-
eralized to vulnerabilities beyond the ones in our depth dataset.
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Table 5: Generality of Tracer over Two New Datasets

Dataset Number Tracer 𝐷𝐵𝐴 𝐷𝐵𝐵

Pre. Rec. F1 Not Found Pre. Rec. F1 Not Found Pre. Rec. F1
First Dataset 91 0.823 0.845 0.784 29 (31.9%) 0.935 0.827 0.858 62 (68.1%) 0.885 0.664 0.725

Second Dataset 89 0.888 0.899 0.867 – – – – – – – –

Table 6: Comparison Results of the Time and Accuracy of 10 Tasks

Approach All 10 Tasks 5 Single-Patch Tasks 5 Multiple-Patches Tasks
Time (mins) Pre. Rec. F1 Time (mins) Pre. Rec. F1 Time (mins) Pre. Rec. F1

w/o Tracer 5.66 0.880 0.677 0.765 5.60 0.960 0.960 0.960 5.72 0.800 0.393 0.527
with Tracer 4.66 0.983 0.920 0.951 3.84 1.000 1.000 1.000 5.48 0.967 0.840 0.899

In addition, we find that the two industrial vulnerability databases
have been updated sinceApril 7th, 2020 (i.e., our crawling date). Thus,
we investigate the generality of Tracer from another perspective,
i.e., how patches tracked by Tracer are similar to their updates. To
this end, we update all vulnerability entries in𝐷𝐵𝐴 and𝐷𝐵𝐵 to𝐷𝐵+𝐴
and 𝐷𝐵+𝐵 at March 8th, 2022. Of the CVEs whose patches are found
by Tracer but not provided by𝐷𝐵𝐴 (resp.𝐷𝐵𝐵 ), 147 (resp. 669) CVEs’
patches are newly provided by𝐷𝐵+𝐴 (resp.𝐷𝐵+𝐵 ). For 56 (38.1%) (resp.
405 (60.5%)) of the 147 (resp. 669) CVEs, Tracer finds the same patches
to the patches provided by𝐷𝐵+𝐴 (resp.𝐷𝐵+𝐵 ). For 37 (25.2%) (resp. 199
(29.7%)) of the 147 (resp. 669) CVEs, the patches provided by 𝐷𝐵+𝐴
(resp.𝐷𝐵+𝐵 ) are included in the patches tracked by Tracer. These re-
sults indicate that the patches found by Tracer have a high chance
of being accepted by industrial vulnerability databases.

Tracer finds patches for 67.7% and 51.5% of the CVEs in the
two new datasets with a sampled patch precision of 0.823 and
0.888 and a sampled patch recall of 0.845 and 0.899. Tracer is
generalizable and complements industrial databases.

4.4 Usefulness Evaluation (RQ9)
In practice, to ensure patch accuracy, security experts still need to ver-
ify patches evenwhen automatic tools are used to find patches. To eval-
uate the usefulness of Tracer in such a usage scenario, we conduct
a user study with 10 participants who are required to find patches
for 10 CVEs with and without the help of Tracer. We recruit 10 par-
ticipants from security laboratories inmultiple universities and high-
tech companies. They are Postdocs, PhD students, master researchers,
and engineers majoring in software security. We randomly select 10
CVEs from our depth dataset as tasks. 2 CVEs belong to SP, 3 CVEs
belong to MEP, 1 CVE belongs to MP, and 4 CVEs belong to MB. To
have a fair comparison, we divide participants into two groups (i.e.,
A and B). Group A is required to complete the first five tasks without
Tracer (but can use existing heuristics) and finish the remaining
tasks with Tracer. Group B is required to complete the first five
tasks with Tracer, and finish the remaining tasks without Tracer.

Table 6 reports the average time consumption and patch accuracy
of the 10 tasks.We categorize the 5 CVEs belonging to SP andMEP as
Single-Patch tasks, and categorize the 5 CVEs belonging toMP andMB
asMultiple-Patches tasks. Overall, with the assistance of Tracer, the
participants save time by 17.7% for each task, and improve the patch
accuracy in terms of precision, recall and F1-score by 11.7%, 35.9%
and 24.3%. In particular, the time saving is significant for the 5 Single-
Patch tasks, but not significant for the 5Multiple-Patches tasks. This is
because the reference network and patches returned by Tracer

for Multiple-Patches tasks are more complex than those of Single-
Patch tasks, and participants spend more time understanding the
reference network and verify patches. Moreover, the accuracy im-
provement is significant for the 5 Multiple-Patches tasks, but not
significant for the 5 Single-Patch tasks. In that sense, Tracer is es-
pecially useful for CVEs with multiple patches.

We interview each participant to get their feedback about Tracer.
Overall, they all appreciate the value of our reference network as it
summarizes information from multiple sources, and the different
kinds of nodes and relationships in it are helpful to localize and ver-
ify patches. As commented by a security engineer from a high-tech
company, “the network graph, as a chain of evidence, is helpful to lo-
calize and verify patches". Moreover, they suggest including more in-
formation for the nodes (e.g., commit message and code differences)
instead of a clickable link for the ease of manual review, and also
suggest adding more advisory sources. It is worth mentioning that
Tracer has been deployed to two high-tech companies that par-
ticipate this user study. Unfortunately, we cannot disclose its us-
age statistics due to confidentiality agreement.

Tracer is useful in practice for security experts to localize
patches more accurately and quickly.

4.5 Discussion
Limitations. First, Tracer only uses NVD, Debian and Red Hat as
the advisory sources in the step of advisory analysis. However, it is
designed to easily leverage other sources (e.g., SecurityFocus [53])
thanks to our lightweight reference analysis. Second, as indicated by
our false negative and false positive analysis, the lack of semantic
analysis of patches and vulnerabilities hurts the accuracy of Tracer.
We plan to utilize semantics in vulnerabilities (e.g., descriptions) and
patches (e.g, changed code and the context of patch references) to en-
hance patch selection and expansion. Third, Tracer depends on the
quality of the existing references in advisory sources. If there are not
many high-quality references, Tracer might be less effective. Thus,
we use multiple advisory sources to reduce this possibility.

Significance. Tracer can benefit security community, academia,
and industry by enabling automated patch tracking. For security com-
munity, Tracer can notify NVD for missing or incomplete patches
for CVEs to enhance CVE information quality and accelerate entry
update, and thus benefit the audience of NVD. For academia, Tracer
can enable data-driven security analysis (e.g., learning-based vulner-
ability detection [34, 70]) and empirical studies by providing large-
scale patches. For industry, Tracer can assist security engineers in
enhancing patch coverage and accuracy of industrial vulnerability
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databases, and hence improve the accuracy of software composition
analysis (i.e., determining whether vulnerabilities in patched meth-
ods in a used OSS are reachable in an application).

5 RELATEDWORK
CVE InformationQuality.Nguyen andMassacci [39] uncover the
unreliability of the vulnerable version data inNVD. To improve its re-
liability, Nguyen et al. [38] andDashevskyi et al. [10] develop tools to
determine whether older versions are affected by a newly disclosed
vulnerability. Dong et al. [13] identify vulnerable software names and
versions from vulnerability reports, and find that vulnerability data-
basesmiss truly vulnerable versions or falsely include non-vulnerable
versions. Chen et al. [5] identify open-source libraries affected by a
vulnerability. Chaparro et al. [4] detect the absence of reproduction
steps and expected behavior in vulnerability descriptions. Mu et
al. [36] show the prevalence of missing reproduction information in
vulnerability reports. Jo et al. [29] identify semantic inconsistencies
within the cybersecurity domain. These works are focused on dif-
ferent aspects of vulnerability information. Following this direction,
our work is focused on the patch of a vulnerability.

A closely related work is from Tan et al. [56]. They use a learning-
to-rank algorithm to rank commits in a repository so that patch com-
mits to a CVE are ranked in top positions. However, theymake two as-
sumptions: i) the repository of the affected software of a CVE is known,
which is not practical and requires manual efforts; and ii) a CVE
has a one-to-one mapping to its patches, which does not always
hold (Sec. 2.5). Instead, Tracer has no such assumptions.

Patch Analysis. There are many patch analysis tasks to im-
prove security, e.g., patch generation and deployment [14, 37, 66],
patch presence testing [9, 26, 69] and secret patch identification [6,
51, 65, 71]. Datasets of security patches have been built for Java [46],
C/C++ [16] and specific open-source projects [27].With such datasets,
empirical studies have been conducted to characterize vulnerabili-
ties and their patches [1, 32, 35, 68]. In these works, patches are iden-
tified by manual efforts [6, 9, 26, 46, 51, 65, 66, 68, 71] or by heuristic
rules like looking for commits in CVE references [14, 16, 27, 32, 35]
and searching for CVE identifiers in commits [1, 16, 27]. Such heuris-
tics only search direct references, but patches can be hidden in
indirect references. Tracer addresses it by a reference network.

Patch Applications. Patches can be leveraged to enable various
security applications, e.g., generating exploits based on patches [2,
67], conducting software composition analysis to determinewhether
vulnerabilities in a library are reachable throughwhich call paths [43–
45, 61], and detecting vulnerabilities by learning vulnerability fea-
tures [28, 33, 34, 70], by matching vulnerability signatures [24, 31]
and by matching both vulnerability and patch signatures [7, 63, 64].
Similar to those patch analysis works, the mappings between CVEs
and their patches in these works are mostly identified by manual
efforts [43–45, 63] and heuristics rules [28, 33, 34, 61, 67], or directly
taken from security advisories that establish the mapping between
CVEs and patches for specific projects [24, 31, 64].

6 CONCLUSIONS
We have conducted an empirical study to understand the quality
and characteristics of patches for OSS vulnerabilities in two indus-
trial vulnerability databases. We have proposed Tracer to track

patches for OSS vulnerabilities. Our extensive evaluation has demon-
strated the effectiveness, generality and usefulness of Tracer. We
have released the code and data at https://patch-tracer.github.io.
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1 DATASET ANALYSIS
Weanalyzed the 1,295 CVEs in our depth dataset with respect to years
and programming languages. We determined the programming lan-
guage of a CVE by analyzing the changed source files in patches. As
shown in Fig. 1a, the number of CVEs increases every year, which is
consistent with Snyk’s report1. As reported in Fig. 1b, these CVEs
mainly cover seven programming languages, which demonstrates
relatively good coverage of ecosystems. Therefore, we believe that
our depth dataset is representative of OSS vulnerabilities.

2 HIDDEN PATCHES IN NVD
In NVD, patches for a CVE might be listed in the references, and ref-
erences might be tagged with “Patch”. Therefore, we manually find
such hidden patches in NVD for our depth dataset. Specifically, we
look for commit references in NVD’s references and manually con-
firm whether they are correct patches. We also look into the refer-
ence tagged with “Patch” to find patches that may be referenced by
the tagged reference. In this way, we find patches for 540 of the 1,295
CVEs in our depth dataset, but fail to find any patch for 755 CVEs.
On those 540 CVEs, our manual effort achieves a patch precision of
1.0, a patch recall of 0.816 and an F1-score of 0.862, which is similar
to our first heuristic in RQ6 in the submitted paper.

It is worth mentioning that we do not include patch quality eval-
uation of NVD in our empirical study because i) NVD does not pro-
vide a “patch” field for CVEs, and ii) employing the above manual
analysis to measure the patch quality of NVD would be unfair be-
cause it heavily depends on the manual effort and does not truly
reflect the patch quality of NVD.

3 ACCURACY ANALYSIS.
We analyzed the overlap between the patches identified by Tracer
(denoted as 𝑃Tracer) and ourmanually identified patches (denoted as
𝑃𝐺𝑇 ) for each CVE in our depth dataset. In particular, we classify the
overlap relationships into six categories, which are used as another
indicator of patch accuracy. The result is reported in Table 1, where
the first column lists the six categories, the second column shows
the number of CVEs belonging to each category, and the last column
gives the total number of patches found by Tracer.

It can be observed that Tracer can find patches accurately and com-
pletely for 773 (59.7%) CVEs (i.e., 𝑃Tracer = 𝑃𝐺𝑇 ), with an average of
1.9 found patches for each CVE. Tracer can find patches completely
but include some false positives for 128 (9.9%) CVEs (i.e., 𝑃Tracer ⊃
𝑃𝐺𝑇 ). In that sense, 901 (69.6%) CVEs’ patches are completely found
by Tracer. Besides, Tracer can find patches accurately but have some
false negatives for 139 (10.7%) CVEs (i.e., 𝑃Tracer ⊂ 𝑃𝐺𝑇 ). Tracer in-
curs both false positives and false negatives for 27 (2.1%) CVEs (i.e.,
𝑃Tracer ∩ 𝑃𝐺𝑇 ≠ ∅), while the patches found for 73 (5.6%) CVEs by
Tracer are all false positives (i.e., 𝑃Tracer∩𝑃𝐺𝑇 = ∅). Notice that we

1https://snyk.io/wp-content/uploads/sooss_report_v2.pdf

Table 1: Overlap between Tracer and Ground Truth
𝑃Tracer vs. 𝑃𝐺𝑇 Number of CVEs Sum of Found Patches
𝑃Tracer = 𝑃𝐺𝑇 773 (59.7%) 1,451
𝑃Tracer ⊃ 𝑃𝐺𝑇 128 (9.9%) 708
𝑃Tracer ⊂ 𝑃𝐺𝑇 139 (10.7%) 289

𝑃Tracer ∩ 𝑃𝐺𝑇 ≠ ∅ 27 (2.1%) 134
𝑃Tracer ∩ 𝑃𝐺𝑇 = ∅ 73 (5.6%) 250

𝑃Tracer = ∅ 155 (12.0%) 0
Total 1,295 2,832

analyze the reasons for false positives and false negatives in the sub-
mitted paper. These results demonstrate the capability of Tracer in
finding patches accurately and completely.

4 SENSITIVITY ANALYSIS
Tracer has two configurable parameters, i.e., the network depth limit
in the first step of Tracer and the commit span in the third step. The
default configuration is 5 and 30, which is used in the evaluation for
RQ6, RQ7, RQ8 and RQ9. To evaluate the sensitivity of Tracer to
the two parameters, we reconfigured one parameter and fix the other,
and reran Tracer against our depth dataset. Specifically, the net-
work depth limit was configured from 3 to 6 by a step of 1, and the
commit span was configured from 0 to 60 by a step of 10.

Fig. 2a and 2b show the impact of the two parameters on the ac-
curacy of Tracer, where 𝑥-axis denotes the value of the parameter,
and 𝑦-axis denotes the accuracy of Tracer. Overall, as the network
depth limit increases, more potential patches are included in our
reference network. The number of CVEs that Tracer finds no patch
and precision decrease, and recall and F1-score first increase and then
decrease. Hence, we believe 5 is a good value for the network depth
limit. As the commit span increases, a wider scope of commits are
searched. Precision decreases, recall increases, and F1-score first in-
creases and then decreases. Notice that the number of CVEs Tracer
finds no patch will not change and thus is not presented in Fig. 2b.
Hence, we believe 30 is a good value for the commit span. These
results indicate that the sensitivity of the accuracy of Tracer to
the two configurable parameters is acceptable.

5 APPLICATION ANALYSIS
Tracer is configurable tomeet different accuracy requirements of ap-
plications. For applications that needhighpatch precision, Tracer
can be configured to not construct the reference network in a lay-
eredway but simply use the direct references contained in the four ad-
visory sources (i.e., skipping reference analysis in the first step). As
shown by our ablation analysis in the submitted paper, this is actu-
ally the variant 𝑣51 , and achieves the highest precision of 0.918, 6.3%
higher than that of the original Tracer.

For applications that needhigh patch recall, Tracer can be con-
figured to not follow the patch selection step in Tracer but select all
patches in our reference network. As shown by our ablation analysis
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Figure 1: Our Depth Dataset w.r.t Years and Programming Languages

3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision
Recall
F1
Not Found

(a) Network Depth Limit
0 10 20 30 40 50 60

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Precision
Recall
F1

(b) Commit Span

Figure 2: Sensitivity Analysis Result for Network Depth Limit and Commit Span

in the submitted paper, this is actually the variant 𝑣12 , and achieves
the highest recall of 0.940, 8.8% higher than that of the original Tracer.

These results demonstrate that the two variants of Tracer can
meet the practical requirements of high precision and high recall.
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