
Avgust: Automating Usage-Based Test Generation
from Videos of App Executions

Yixue Zhao∗
yixuezhao@cs.umass.edu

University of Massachusetts Amherst
USA

Saghar Talebipour∗
talebipo@usc.edu

University of Southern California
USA

Kesina Baral
kbaral4@gmu.edu

George Mason University
USA

Hyojae Park
hyoj.p20@gmail.com
Sharon High School

USA

Leon Yee
leon.yee000@gmail.com

Valley Christian High School
USA

Safwat Ali Khan
skhan89@gmu.edu

George Mason University
USA

Yuriy Brun
brun@cs.umass.edu

University of Massachusetts Amherst
USA

Nenad Medvidović
neno@usc.edu

University of Southern California
USA

Kevin Moran
kpmoran@gmu.edu

George Mason University
USA

ABSTRACT

Writing andmaintainingUI tests formobile apps is a time-consuming
and tedious task. While decades of research have produced auto-
mated approaches for UI test generation, these approaches typically
focus on testing for crashes or maximizing code coverage. By con-
trast, recent research has shown that developers prefer usage-based
tests, which center around specific uses of app features, to help
support activities such as regression testing. Very few existing tech-
niques support the generation of such tests, as doing so requires
automating the difficult task of understanding the semantics of UI
screens and user inputs. In this paper, we introduce Avgust, which
automates key steps of generating usage-based tests. Avgust uses
neural models for image understanding to process video recordings
of app uses to synthesize an app-agnostic state-machine encoding
of those uses. Then, Avgust uses this encoding to synthesize test
cases for a new target app. We evaluate Avgust on 374 videos of
common uses of 18 popular apps and show that 69% of the tests
Avgust generates successfully execute the desired usage, and that
Avgust’s classifiers outperform the state of the art.

CCS CONCEPTS

• Software and its engineering → Software notations and

tools.

KEYWORDS

Test Generation, UI Understanding, AI/ML, Mobile Application

∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549134

ACM Reference Format:

Yixue Zhao, Saghar Talebipour, Kesina Baral, Hyojae Park, Leon Yee, Safwat
Ali Khan, Yuriy Brun, Nenad Medvidović, and Kevin Moran. 2022. Avgust:
Automating Usage-Based Test Generation fromVideos of App Executions. In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22),
November 14–18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3540250.3549134

1 INTRODUCTION

Writing UI tests is time-consuming and tedious. The research com-
munity has contributed a large body of work that aims to automati-
cally generate UI tests [15, 20, 30, 34, 39, 42, 46, 50, 59, 74, 80]. Such
testing techniques generate a test’s inputs, and use a pre-defined
criterion as the test’s oracle. A significant portion of recent work
on UI test generation has focused on mobile platforms and has
predominantly aimed to discover crashes or maximize code cover-
age [30, 34, 59, 65, 74, 80]. However, studies have repeatedly found
that existing testing techniques in this domain fall short in address-
ing developers’ needs in practice [43, 52] or present challenges for
practical adoption [35, 52].

Specifically, mobile developers have a strong preference for test
cases that are closely coupled to app use cases or features [52].
In line with recent work [85], we refer to this type of preferred
test case as usage-based UI test. A usage-based UI test consists
of a sequence of UI events that mimic realistic user behaviors in
exercising a specific feature of a given app, such as “adding an item
to the shopping cart.” The developer preference for usage-based
tests is due to the fact that such test cases support specific testing
goals in practice, such as regression or performance testing, which
in turn require orientation to common app use cases [52].

Automating such testing activities is critical for mobile devel-
opers who face unique challenges related to rapidly evolving plat-
forms [18, 51], pressure for frequent releases [38, 41], and a deluge
of feature requests and bug reports from user reviews [25, 29, 67, 68].
Despite the importance of these usage-based tests for developers,
current automated testing approaches typically do not consider

ar
X

iv
:2

20
9.

02
57

7v
4

 [
cs

.S
E

]
 1

 N
ov

 2
02

2

https://doi.org/10.1145/3540250.3549134
https://doi.org/10.1145/3540250.3549134

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Y. Zhao, S. Talebipour, K. Baral, H. Park, L. Yee, S. Khan, Y. Brun, N. Medvidovic, and K. Moran

app usages as a goal or test adequacy criteria, and as such cannot
generate these tests [52, 85].

A growing body of research on the topic of UI test reuse (also
sometimes called test migration, test transfer, or test adaption [19,
20, 50, 62, 71]) has begun to explore the possibility of automating
the transfer and adaptation of existing usage-based tests from a
source app to a behaviorally similar target app that contains shared
features [19, 20, 39, 50, 61, 62, 71, 85]. However, these test-reuse
techniques have three notable limitations that pose challenges for
developers to adopt in practice. 1 To generate tests for a target
app, UI test reuse requires pre-existing, manually-written tests for a
corresponding source app. In practice, creating these source tests is
time-consuming and error-prone, leading many mobile developers
to forgo writing them [43, 52]. 2 Test-reuse techniques have typi-
cally been designed for, and tasked with, transferring tests between
behaviorally similar applications from similar domains (e.g., be-
tween two finance or two shopping apps). However, there are many
use cases common across apps from varying domains (e.g., logging
in or changing the theme), which current test techniques would
struggle to effectively transfer. 3 Many existing techniques rely
on expensive and difficult to use program analyses (e.g., bytecode
decompilers, Soot [9, 78], Gator [2, 83]) that often require access to
an app’s source code. The ease of use and scalability limitations of
such underlying utilities have hindered the adoption of test case
transfer tools in practice.

To help better align automation related to usage-based testing
with developers needs, we propose Avgust, a technique for app-
video-based generation of usage tests. Avgust is a novel developer-
in-the-loop test generation technique that directly addresses the
three limitations mentioned above. 1 Instead of requiring pre-
existing source tests written by domain experts, Avgust allows
for easy creation of source test scenarios through screen recordings
of app usages, which are becoming increasingly common software
artifacts for mobile apps [26] and can be easily obtained via crowd
workers with no testing expertise. After video collection and pro-
cessing, Avgust operates according to two main phases. In the first
phase, neural computer vision (CV) and natural language processing
(NLP) techniques are employed to guide developers through a light-
weight screen and GUI widget annotation process for video frames
that were automatically identified to contain a touch action. Using
this information, Avgust is able to generate an app-independent
intermediate-representation model (IR Model), which represents ab-
stract states and transitions of a usage that can be mapped to multi-
ple apps. This procedure is a one-time effort for developers, and once
the IR Model is generated, it can be used to generate tests for multi-
ple target apps. 2 The generality of the IR Model allows Avgust to
synthesize test scenarios across domains, effectively overcoming the
second limitation of existing test-case transfer techniques. Avgust’s
second phase automates the synthesis of new UI test scenarios by
guiding a developer with suggestions, made by using predictions
from Avgust’s CV and NLP techniques, of which GUI elements
must be manipulated to exercise a given app feature or usage. 3 To
bolster the applicability and practicality of Avgust from a devel-
oper’s perspective, Avgust operates purely on visual information en-
coded into screenshots and video frames from UI-screen recordings.

As such, it does not require access to an app’s source code, instru-
mentation, or expensive program analyses. Note that solely relying
on app videos as input is a key aspect of Avgust’s novelty and it
has three major advantages. First, videos are common artifacts that
are easily collectible without requiring difficult tool configuration
and setup, which are major barriers for adoption [43, 52]. Second,
videos can be collected by crowd workers (e.g., real users) with no
testing experience, enabling the opportunity to obtain much more
training data to cover diverse and realistic usage scenarios across
different apps. This can yield more generalized models to generate
higher-quality tests. Finally, videos are agnostic to the underlying
device and platform, meaning Avgust’s design is not tied to An-
droid platforms (where Avgust is evaluated on), but is applicable
to any apps, devices, and platforms (e.g., websites) in principle.

The key research challenge that Avgust tackles is the automated
synthesis of a generalized model of feature usages that can effec-
tively map test scenarios across apps from a variety of domains,
using only screenshots and video frames from screen recordings.
The challenge lies in automating two key tasks: (1) screen under-
standing from pixels and (2) design of an IR Model that is general
enough to capture diverse app usages yet specific enough to allow
mapping actions to a given target app for test scenario genera-
tion. Avgust accomplishes the first task through the creation of
a bespoke image classification technique, built on top of a neural
auto-encoder representation [69] and BERT-based textual embed-
dings [28]. The classification operates at two granularity levels, (i)
screen-level, and (ii) GUI widget-level. This classification procedure
helps to provide the mapping to our IR Model, and makes use of
a rich screen representation obtained by training our neural auto-
encoder on the public RICO dataset [27]. Avgust accomplishes
the second task by using the information from our classifiers to
build a state machine capable of simultaneously capturing multiple
scenarios from different usages. This yields a richer model of app
usage than past test transfer techniques.

In order to build a community resource of usage-based tests,
we conducted a user-study to collect 374 video recordings from 18
apps, covering 18 usage scenarios, wherein each usage scenario
is exercised by three associated apps, for a total of 54 unique app-
usage pairs [39, 85]. Using this data, we conducted an empirical
evaluation to measure the efficacy of Avgust in generating usage-
based tests that closely mirror those created by humans during our
user study. First, we examined Avgust’s test generation capability
by simulating a developer interacting with Avgust’s suggestions,
and measured how closely generated tests matched analogous tests
created by human users. Next, to gain a better understanding of
Avgust’s performance during test generation, we evaluated Av-
gust’s classifiers compared to state-of-the-art techniques. Our re-
sults show that Avgust is able to generate tests that effectively
exercise target-app features and closely match human tests in terms
of the screens visited and actions performed. Additionally, Avgust’s
classifiers significantly outperform state-of-the-art techniques and
show promising performance for our generated developer-in-the-
loop recommendations.

We have developed Avgust with open science in mind, making
it both practical to use for developers, and easily reusable by re-
searchers to foster future research in this area. We make publicly

Avgust: Automating Usage-Based Test Generation from Videos of App Executions ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

available all of our source code, trained models, and annotated eval-
uation data collected during our user study [10]. Avgust’s pipeline
can be easily adapted to create various usage models of interest
by simply changing the input videos, such as including additional
usages and apps. As such, Avgust not only lays a foundation for
future work on usage-based test generation, but also represents a
living repository for the software engineering community to study
related problems.

In summary, this paper makes the following contributions:
(1) We introduce Avgust, the first technique capable of gener-

ating usage-based tests by learning from app videos.
(2) We develop a novel image classification technique to trans-

late app videos into an app-independent intermediate repre-
sentation based on vision-only information, which largely
outperforms the state-of-the-art.

(3) We implement a reusable pipeline to train IR models based
on app videos that can be applied to various downstream
tasks, and further provide 125 pre-trained models that can
be used by developers directly.

(4) We collect 374 app videos and conduct an empirical eval-
uation to demonstrate Avgust’s effectiveness in assisting
developers with generating usage-based tests.

(5) We provide a public repository [10] that contains Avgust’s
artifacts to foster future research, including Avgust’s source
code, our pre-trained models, labeled datasets, benchmarks
used, and their corresponding results.

2 THE AVGUST APPROACH

Avgust is an automated approach that aims to assist developers
with the generation of usage-based tests to mimic realistic usage
scenarios. Avgust operates in three phases. (1) It processes recorded
videos of different apps’ usages by applying neural CV and NLP to
detect user actions in individual video frames. (2) Avgust uses this
information to generate an app-independent state machine-based
IR Model. (3) Finally, Avgust leverages the IR Model to generate
tests for a new (i.e., “target”) app. In this section, we provide an
overview of Avgust’s workflow, and then detail its three phases.

2.1 Avgust Overview

Avgust functions as a human-in-the-loop tool to provide sugges-
tions of input events for developers in the creation of usage-based
tests. This design decision is guided by the nature of usage-based
tests, since each usage scenario may have various correct ways of
being tested. For instance, there may be different ways to execute
the login scenario in an app, such as logging in using username
and password or by using user’s existing social media accounts.
Thus, providing suggestions to a developer allows for flexibility in
generating tests that are tailored to a given app usage and testing
objective. Figure 1 depicts Avgust’s workflow, which consists of
three principal phases: ① Video Collection & Analysis, ② IR Model
Generation, and ③ Guided Test Scenario Generation.

During the Video Collection & Analysis phase, crowdsourced
workers are tasked with collecting videos of app usages. These
videos are then analyzed in a fully automated process that involves
deconstructing the video into constituent frames, identifying touch-
based actions that were performed on the an app’s UI (which builds

upon past work in app-video analysis [21]), and eliminating sensi-
tive information such as user passwords.

Next, in the IR Model Generation phase, Avgust assists a de-
veloper with labeling screens and individual GUI widgets from
processed video frames into categories, which Avgust can then use
to generate an app-independent IR Model. This is a semi-automated
process wherein a developer is presented with a screen and Avgust
provides top-k suggestions for the labels that should be applied
to both screens an exercised GUI widgets. These suggestions are
made using a combination of visual- and text-based classifiers that
operate upon the video frames extracted in the prior phase. After
the labels have been applied by the developer, Avgust is able to
automatically generate the state machine-based IR Model for the
usage, merging it with other similar usages in a shared database.
This phase is intended to be a one-time cost, wherein developers
contribute their crowdsourced IR Models of various app usages to
a collective community database for future use.

Finally, in the Guided Test Scenario Generation phase, Avgust
assists developers by providing top-k recommendations for actions
that should be performed on given screens of a previously unseen
target app in order to exercise a specified app feature (e.g., adding
an item to the shopping cart). This process starts from the initial
screen of the app and runs until the specified feature is exercised.
This functions similarly to the IR Model generation phase, but in
reverse order: the model is used in conjunction with Avgust’s
classification techniques to recommend event inputs to developers.

2.2 Video Collection & Analysis

Given a set of collected videos of app usages, Avgust’s video analy-
sis processes them into frames that serve as the inputs for Avgust’
AI-assisted IR Model generation (Section 2.3). Specifically, Avgust
first identifies the user actions in the videos and extracts their corre-
sponding event frames, which are the key video frames that capture
the user interactions via the touch indicator.1 An example of event
frame is shown in Figure 3, where the touch indicator points to
the user interacting with the “app menu” button in the top-left
corner. As a final step, Avgust filters the extracted event frames by
eliminating the frames that contain sensitive user information.

2.2.1 Action Identification& Event Frame Extraction. Avgust builds
upon the analyses introduced by V2S [21, 36] to identify user ac-
tions and event frames. V2S is a recent technique that leverages
neural object detection and image classification to identify the user
actions in a video, and automatically translates these actions into a
replayable scenario. We extended V2S to work with GPU clusters,
to enable it to process large numbers of videos in parallel. The out-
puts of our extended video processing technique are (1) a sequence
of event frames of a given video and their associated user actions
(i.e., click, long tap, and swipe); and (2) the coordinates of the touch
indicator in each event frame [45].

2.2.2 Event Frame Filtering. Avgust filters the extracted event
frames by eliminating the frames that are associated with the typing
action, since they may expose user’s private information such as
password. Note that Avgust only eliminates the frames where the

1Avgust requires enabling the display of the touch indicator, which can easily be done
in, both, the Android and iOS settings menus, even by inexperienced users.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Y. Zhao, S. Talebipour, K. Baral, H. Park, L. Yee, S. Khan, Y. Brun, N. Medvidovic, and K. Moran

Crowd
Testers Videos of

App Usages

Video Collection & Analysis1

Video Processing,
Action Parsing,

& Keyboard
Detection

IR Model Generation 2

Input
Video

Frames

Car Data Entry

Password

Item Entry
Screen

Developer
IR Refinement

Community
Database of
IR Models

Guided Test Scenario Generation3

Running
Target App

Car Data Entry

Password

Item Entry
Screen

Assisted Input
Generation

Usage-
based

Scenario

IR
Models

IR Model
Database

IR
Model

Image Features

 Textual Features

IR Classifier

Image Features

 Textual Features

IR Classifier

Figure 1: Avgust’s three-phase workflow.

user types the text content on a keyboard, but still keeps the frames
where the user selects which input field she intends to enter the
text content. For example, the sequence of video frames related
to “typing user password” consists of (1) a frame associated with
clicking the password field, and (2) a group of consecutive frames
associated with typing each individual character in the password.
Avgust only eliminates the latter, while maintaining the former to
represent “typing user password” action in the usage scenario.

To do so automatically, we trained a binary image classifier to
recognize whether an event frame contains a keyboard image. Our
classifier is based on a CNN architecture with 4 blocks, each con-
sisting of a Convolution, a BatchNorm, a ReLU, and a Dropout
layer [79]. The CNN is trained on cropped screenshots that depict
the area of the screen where keyboard may appear, since this area
is standard for mobile devices, as shown in Figure 2. We decided to
focus on the region of the screen where the keyboard appears, as
opposed to the entirety of the screen, based on empirical evidence
collected while tuning our classifier, as the former setting dramati-
cally improved the classifier’s accuracy. We sourced non-keyboard
training data by randomly selecting 4,926 app screenshots without
the keyboard from the publicly available RICO dataset [27]. The
non-keyboard training data do not contain any subject apps used
in our evaluation. Because screens that display a keyboard cannot
be automatically identified using the GUI metadata provided in the
RICO dataset, we additionally sourced 5,605 keyboard training data
images from the video frames in the dataset collected for Avgust’s
evaluation. Our training data relies on standard Android keyboard
images, but can be easily extended to additional keyboard types.

Next, the cropped screen region where a keyboard may appear
for each event frame is fed to the trained keyboard classifier, and
will be classified as either a keyboard or non-keyboard frame. For
the keyboard frames, Avgust further verifies whether the associ-
ated action is typing, based on whether the touch indicator falls in
the keyboard region. This is determined by the touch indicator’s
coordinates on the screen [45], which are obtained from V2S. In the
end, the event frames that contain a typing action are eliminated.

Figure 2: Examples of the training data used inAvgust’s key-

board classifier during the event frame filtering.

Note that this frame filtering process not only addresses the
privacy issue as discussed earlier, it also largely reduces the number
of event frames used to represent an app’s usage. For example, a two-
minute sign-in video from the app 6pm contained over 3,000 video
frames originally, but only 8 filtered event frames. These 8 frames
are sufficient to represent all relevant user actions without the
duplicated or privacy-exposing frames in the original video frames.

2.3 AI-Assisted IR Model Generation

Avgust uses the filtered event frames from the previous phase
as inputs and translates them into app-independent IR Models of
app usages. The key technical challenge in this phase stems from
Avgust’s use of video inputs, which forces us to rely solely on
visual information encoded into the pixels of the video frames. We
address this challenge in two steps: (1) we break down event frames
into GUI events and (2) use image classification techniques to assist
developers in translating GUI events to their corresponding IR
Models. As an illustration, Figure 3 demonstrates the key artifacts
in this process using a single event frame extracted from a popular
shopping app 6pm as an example. We now detail these two steps.

2.3.1 Transforming Event Frames to GUI Events. We define a GUI
event as a triple (𝑠,𝑤, 𝑎), where 𝑠 is the app screen that shows a
snapshot of the app’s execution state;𝑤 is the GUI widget the user
interacts with; and 𝑎 is the corresponding action the user performs,
such as click or swipe. The GUI widget w is optional since certain
actions (e.g., swipe) are not associated with any widgets. Avgust
converts event frames into GUI event triples in a two-step process:
widget extraction and action identification.

Widget Extraction. Extracting individual widgets from a screen
presents two major challenges. First, each widget’s bounding box
must be identified without reliance on source code-level informa-
tion that is available on platforms like Android [7]. Second, Avgust

Event Frame

 screen:

"home"

widget:

"menu"

action:

"click"

screen s

widget w

GUI Event

(s, w, a)

"click"

action a

State1

Transition1

IR Model

State2

Figure 3: An example of converting a 6pm’s Event Frame

into a GUI Event triple, and an app-independent IR Model.

Avgust: Automating Usage-Based Test Generation from Videos of App Executions ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

needs to isolate the precise bounding box of the widget with which
the user is interacting, such as the app-menu button in the top-left
corner of the screen in Figure 3.

To detect the bounding boxes of GUI widgets, we modified
UIED [24, 82], a state-of-the-art tool that combines unsupervised
CV and deep learning, and applied it on the screens extracted from
Avgust’s previous phase. Given an input screen, UIED detects tex-
tual and visual GUI elements and produces their bounding boxes,
as depicted with solid rectangles in Figure 4. However, UIED treats
each visual and textual GUI element separately, which can lose im-
portant semantic information. For example, if the touch indicator
refers to a checkbox, the corresponding GUI element detected by
UIED in Figure 4 would be one of the two checkboxes only, leaving
unclear whether the extracted widget is intended to be associated
with “Show password” or “Keep me signed in”.

Figure 4: Avgust adjusts

the GUI-element bound-

ing boxes detected by

UIED, depicted by the

two dashed rectangles.

To remedy this, we modified
UIED to group the visual GUI el-
ements together with their sur-
rounding textual elements, if any.
Avgust iterates through all vi-
sual elements detected by UIED
and identifies their closest GUI
elements. If the closest GUI ele-
ment is both a textual element
and is in the same line as the vi-
sual element—defined as being
vertically collocated based on a
customizable threshold—then the
bounding box of the visual ele-
ment will be updated to include
the textual element as well. In
Figure 4, this results in the two
checkboxes being grouped with
their corresponding labels, as de-
picted by the dashed rectangles.

Next, the detected GUI ele-
ments’ bounding boxes are used
by Avgust to automatically crop
out the widget 𝑤 to which the
touch indicator refers. Avgust
combines the widgets detected by its modified UIED with the co-
ordinates of the touch indicator obtained from the modified V2S
(recall Section 2.2) to identify all candidate widgets for cropping,
covering three possible cases: (1) The simplest case is when only
one widget’s bounding box covers the touch indicator, in which
case Avgust crops that widget as-is. (2) If no widgets’ bounding
boxes cover the touch indicator, Avgust repeatedly expands each
widget’s bounding box based on a customizable threshold, until
a suitable widget is found. Avgust’s default threshold is set at 10
pixels. (3) When multiple widget candidates are found, Avgust
first eliminates the “coarse-grained” candidates whose boundaries
completely cover any of the other candidates (e.g., “sign-in form”
that covers “username” widget), and then selects the widget whose
center point is closest to the touch indicator’s coordinates.

Action Identification. To identify the action 𝑎 in the GUI event
triple, Avgust leverages V2S’s action identification procedure, which

home menu sign_in end
menu#click account#click sign_in#click

self[email#click & password#click & up & keep_signin#click]

Figure 5: The IR Model generated from a sign-in video col-

lected from the app 6pm.

analyzes the coordinates of touches detected in consecutive video
frames and classifies actions according to a set of heuristics [21, 36].
V2S is able to identify clicks, long taps, and swipes. We reused V2S’s
heuristics for click and long tap, and extended its swipe detection
heuristic to additionally detect the direction of the swipe.

2.3.2 Transforming GUI Events to IR Models. Avgust’s IR Model
generation is a developer-in-the-loop process. This section explains
how Avgust provides recommendations to assist developers in
translating GUI events into their app-independent IR representa-
tions (recall the example in Figure 3).

Avgust’s IR Model is defined as a finite state machine (FSM)
that captures app usages. Figure 5 shows an example IR Model
converted from one of 6pm’s sign-in videos. Each state in the IR
Model represents a particular app screen and is captured as an
app-independent canonical screen, while each transition represents
a user interaction with a canonical widget and its corresponding
action. A self-transition (e.g., shown in the “sign_in” state in Fig-
ure 5) means that the app stays on the same screen during certain
user interactions.

The key challenge in translating a GUI event triple (𝑠,𝑤, 𝑎) into
Avgust’s IR Model is to properly abstract away and capture in an
app-independent manner the app-specific screens 𝑠 and widgets𝑤 .
Each action 𝑎 in the GUI event triple is translated as-is, including
click, long tap, and swipe up/down/left/right. With the translated
canonical screens, canonical widgets, and actions, the final IRModel
can be constructed by iterating through the sequence of GUI events
of a particular usage.

We formulate the translation of screens and widgets as a clas-
sification problem, where app-specific screens and widgets are
classified into their canonical counterparts (categories) that are
shared across different apps. To this end, we build upon and extend
app-independent categories defined by previous work [39, 85], re-
sulting in 37 canonical screens and 74 canonical widgets. Example
canonical screens are “home screen”, “password assistant page”,
and “shopping cart page”. Example canonical widgets are “account”,
“help”, and “buy”. The complete sets of canonical screens and wid-
gets are available [10]. Note that these categories are not directly
tied to our subject apps used in the evaluation, but can generalize
across diverse apps. To facilitate the extensibility of new canonical
screens/widgets, we have created a data labeling tool using Label
Studio [12], allowing future research to further tailor and improve
the canonical categories for both screens and widgets.

We note that our classification problem provides a unique chal-
lenge as it relies only on information from app screenshots. There
are no existing techniques in the mobile-app domain that have
previously addressed this problem [27, 39, 47] in a context similar
to ours. Moran et.al. [64] were one of the first to use a CNN for
widget classification from GUI component images. However, their
classifier only functioned on 15 general widget categories. Our

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Y. Zhao, S. Talebipour, K. Baral, H. Park, L. Yee, S. Khan, Y. Brun, N. Medvidovic, and K. Moran

larger number of 74 categories represents a more challenging clas-
sification problem that requires the use of both textual and visual
features to achieve reasonable accuracy. Another recent technique
for screen classification in this domain is Screen2Vec (S2V) [47],
which aims to produce embeddings for app screens that can be
used for downstream classification tasks, such as ours. However,
S2V cannot be applied on screenshots alone as it requires the UI
layout information of an app screen that is specific to the Android
platform [7]. Obtaining such information requires extraction using
third-party tools (e.g., Appium [4], UIAutomator [1]), and would
sacrifice the practicality of usage collection through videos.

Screen Classifier. To classify a given app-screen image into its
canonical screen, Avgust leverages both visual and textual fea-
tures, wherein textual features are extracted from the image using
the Tesseract OCR engine [73]. More precisely, we make use of a
pre-trained autoencoder model to encode the screen’s visual in-
formation, and a pre-trained BERT language model [28] to encode
the screen’s textual information. Avgust uses a three-layer con-
volutional autoencoder with max pooling [33] and is tasked with
encoding an image into a high dimensional vector space, and then
decoding the image vector to reconstruct the original image, hence
employing a self-supervised training process.

As past work has shown [48], learning features or patterns di-
rectly from the pixels of UI screens can be difficult due to the
variability in GUI designs across apps. Therefore, to train and
use our auto-encoder to learn app-agnostic visual patterns, we
re-implemented the screen segmentation approach introduced by
REMAUI [66], and use the segments to generate abstracted versions
of screens from the RICO dataset [27]. As illustrated in Figure 6, in
these abstracted screens text components are transformed into yel-
low boxes and non-text components into blue boxes, on a black back-
ground. We trained Avgust’s autoencoder on 33,000 abstracted im-
ages from the RICO dataset [27], and to classify an incoming screen,
we run it through this abstraction process, and then through the
encoder of our autoencoder network to extract the feature vector.

Avgust’s screen classifier leverages linear layers to combine the
autoencoder and BERT embeddings and classify the screens. The
architecture for the screen classifier consists of three blocks, each
containing a linear layer, BatchNorm, a ReLU activation function,
and a dropout layer. These blocks are followed by a fully connected
output layer that applies softmax function to predict the probability
distribution of different screen classes. We then train the screen
classifier on partitions of data collected for our evaluation, intro-
duced in Section 3.1, where individual classifiers for each app were
trained on data sourced from other apps. This process produced 18
pre-trained screen classifiers for each of our subject apps, and will
be reused in Avgust’s test generation phase (see Section 2.4).

Widget Classifier. To classify a given app-widget image, Avgust
leverages its textual, visual, contextual, type, and spatial informa-
tion: (1) the widget’s text is extracted from the widget’s image using
Tesseract [73] and then encoded using the pre-trained BERT model;
(2) the canonical screen of the screen image to which the widget
belongs is mapped to an id and transformed into a continuous
vector via an embedding layer; (3) the visual features of the widget
are encoded with the pre-trained ResNet model [37], widely used
for encoding images; (4) the UI widget class type (e.g., EditText,

Original	GUI	Screen Abstracted	GUI	Screen

Figure 6: Avgust’s screen abstraction process.

ImageButton) is obtained using the classification method introduced
by ReDraw [64] and refined by S2V [47], then mapped by an embed-
ding layer into a continuous vector; and (5) the widget’s location
on the screen is obtained by dividing the screen into 9 zones and
then transformed to a continuous vector via an embedding layer.

Avgust’s widget classifier then adapts a similar architecture to
its screen classifier—three blocks of linear layers followed by a fully
connected output layer applying softmax—to combine the different
feature vectors discussed above. Note that the embedding layers for
the canonical screen, widget location, and widget class type features
are optimized during the training phase of the widget classifier to
generate meaningful embeddings for each of these input features.

Similarly to the screen classifier, Avgust’s widget classifier is
trained on our dataset (Section 3.1), and produces 18 pre-trained
models that are reused in Avgust’s test generation phase.

Avgust’s screen and widget classifiers are able to provide the
standard top-k labels with different confidence levels. The top-k
labels are then recommended to developers in labeling the screens
and widgets and, in turn, the IR Models are constructed using the
specific labels selected by developers. Note that the IR labels refined
by developers and the generated IR Models can be reused by future
work. We have thus created a database [10] to serve as a living
repository for this problem domain, as also depicted in Figure 1.

2.4 Guided Test Scenario Generation

Avgust assists developers in generating usage-based tests for their
(“target”) apps by leveraging the IR models described above. Given
a usage of interest, Avgust selects the relevant IR Model(s) from
the IR Model Database (recall Figure 1), and uses them to guide
the test generation. Internally, IR Models of the same usage are
represented as a single merged model where multiple scenarios
for a given usage populate the same state machine. Specifically,
the merged model is constructed by using the union of all the
edges from all the IR Models of the same usage, demonstrating
“all possible transitions”. A simplified example of the merged IR
model for the sign-in usage is shown in Figure 7. This unified
model of scenarios for a single usage gives Avgust the ability to
generate multiple test scenarios for a target usage on an unseen
app. Avgust’s test scenario generation phase has three principal
components: (1) State Extractor, (2) State Matcher, and (3) Event
Generator. We first describe the test generation workflow, and then
discuss the three components.

Avgust: Automating Usage-Based Test Generation from Videos of App Executions ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Start
Home

Get Started

Menu

Shopping Cart

Sign In/Sign Up

Sign In

End

Sign in with
Amazon

Initial

Initial

cart#tap

menu#tap

get started#tap

menu bookmark#tap |
menu account#tap

to sign in/sign up#tap

to sign in/sign up#tap

self [password#tap |
keep sign in#tap |
sign in#tap
…]

self [password#tap |
keep sign in#tap]

back#tap

by amazon#tap

sign in#tap

Figure 7: A simplified example of the merged IR Model learned from three sign-in videos of the 6pm and Etsy apps.

Avgust’s test scenario generation phase is an iterative process
that continues to generate the test inputs based on the target app’s
current state, until the end condition is met (i.e., the target feature is
executed). The process begins by launching the target app and run-
ning Avgust’s Screen Classifier to retrieve themost likely canonical
categories of the target app’s starting screen. Avgust then presents
the developer with these top-k classification results, and the canon-
ical category selected by the developer is used to match the target
app’s current device screen to the canonical screen states in the
IR Model. Next, Avgust recommends the top-k app widgets for
developers to interact with by using its Widget Classifier to map
the canonical widgets in the IR Model to the widgets on the target
app’s current screen. Avgust then checks whether the test should
complete based on whether the widget chosen by the developer
will lead to the end state in the IR Model. If not, the chosen widget
is triggered, the target app’s next state becomes its current state,
and this process repeats until the end state in the unified IR Model
for a given usage is reached.

2.4.1 State Extractor. Avgust’s State Extractor extends recent
work on the MAPIT [77] test case transfer tool. Specifically, for
a given target app Avgust extracts (1) the bitmap of the current
screen, (2) the graph representation of the app screen’s UI layout
hierarchy [7], and (3) the boundaries of each UI widget and their
corresponding cropped images. The UI layout hierarchy is an XML
file that contains the information of all the UI widgets on the target
app’s current screen, such as their position, size, textual attributes
(e.g., “Sign In”), and class name (e.g., ImageButton). The extracted
information is used by Avgust to generate tests, and also to explore
different variants of Avgust’s classifiers as discussed in Section 3.

2.4.2 State Matcher. As discussed previously, Avgust uses its
Screen Classifier to suggest the top-k candidates for the canon-
ical category of a target app’s given screen. Once the developer
selects from one of the suggested categories, Avgust maps the
current screen to the corresponding state in the IR Model. Since all
possible transitions captured in the IR Models are known, Avgust
is able to recommend the target app’s widget(s) with which the
developer should interact by using a combination of the Widget
Classifier (recall Section 2.3.2), information obtained from the State
Extractor (recall Section 2.4.1), and a set of pre-defined heuristics.

The number of widgets to be recommended by Avgust is deter-
mined by a configurable threshold. Avgust first checks whether
the target widgets match the expected canonical widgets from the

IR Model based on a set of heuristics that can be divided into two
categories. The first category are heuristics that infer a widget’s
type based on the UI class of its parent widget. This allows Avgust
to bypass the noise that may be present in the data associated with
an individual widget. For example, Avgust identifies a widget that
represents a menu item, not by trying to capture all possible menu
items, but much more simply by comparing its parent widget’s UI
class to ListView. The second category are heuristics that correlate
the textual data of a widget with similar terms associated with each
of the canonical widgets (e.g., the terms from our set of canonical
widgets [10] discussed in Section 2.3.2 and their synonyms).

If the heuristics alone yield a number of recommendations below
the set threshold, as the next step Avgust will predict the top-1
classification of the canonical category for each interactive widget
on the target app’s screen. If the target-app widgets that match the
expected canonical widgets in the IR Model bring the total number
of matched widgets above the threshold, the process terminates and
the identified widgets are presented to the developer. Otherwise,
as the final step, the matching criteria are relaxed and the process
switches from the top-1 to the top-5 classifications of each widget’s
canonical category.

2.4.3 Event Generator. With a chosen widget, Avgust generates
an executable event to trigger based on whether the widget requires
user input. This is determined by the widget type. For example,
EditText [11] is a widget type that requires an input from the user,
such as entering the email address. In such cases, Avgust prompts
the developer for text inputs, as these typically do not generalize
across apps. If the selected widget does not require user input, the
Event Generator automatically executes the touch event (e.g., tap,
swipe) stored in the transition of the IR Model.

This event generation process requires minimal effort from the
developer and provides the flexibility to test the same usage with
different desired text inputs of the developer’s choice. A test sce-
nario is generated when the end condition is met, as discussed
earlier, and each test consists of a sequence of events triggered by
the Event Generator.

2.5 Avgust’s Implementation

Avgust is implemented in Python with 10,700 SLOC, of which
the screen and widget classifiers are stand-alone modules totaling
2,800 SLOC, and include the autoencoder model we developed. Av-
gust additionally extended several research tools, including the
modified V2S (500 SLOC in Python), UIED (300 SLOC in Python),

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Y. Zhao, S. Talebipour, K. Baral, H. Park, L. Yee, S. Khan, Y. Brun, N. Medvidovic, and K. Moran

and the re-implemented REMAUI (5,000 SLOC in Java). Avgust
employs the pytransitions library [70] to manipulate its state-
machine IR Models, and uses the Appium testing framework [4]
for its test generation.

3 EVALUATION OF AVGUST

To demonstrate Avgust’s effectiveness at generating usage tests,
and its improvement on the state of the art, we answer two research
questions:

RQ1 How effective is Avgust at generating tests that
exercise the desired usage?

RQ2 How accurate are Avgust’s vision-only screen and
widget classifiers?

3.1 Evaluation Context

To evaluate Avgust as a whole, app videos are needed as its input.
To collect these videos, we relied on the apps and usages defined
by the FrUITeR benchmark [85], which contains 20 popular apps
and 18 most-common app usages. We then designed a user study
to collect screen recordings of these app usages, which resulted
in the collection of 374 videos. To evaluate Avgust’s image clas-
sification component, we developed a semi-automated pipeline to
annotate the video frames of screen recordings collected by users
with ground-truth canonical categories for both screens and GUI
widgets. This process is detailed in Section 3.1.2.

3.1.1 Video Collection. We designed a large-scale user study to
collect videos of app usages from participants. We recruited and
assigned the 18 usages and 20 apps to 61 computer science students
in a Master’s level course at the authors’ institution, and asked them
to record videos of themselves exercising scenarios that triggered
the features associated with the usages. We assigned usages such
that each student was assigned 2 applications, each with 2 different
usages, for a combination of 4 app-usage pairs. We balanced the
assigned apps and usages evenly across participants. We then asked
them to collect two screen-recording videos for each app-usage
pair, for a potential total of 8 videos per participant. We asked for
two videos per app-usage pair in order to capture different ways of
exercising a given feature (e.g., adding an item to a shopping cart

Table 1: The 18 usages used in Avgust’s evaluation.

Usage ID Test Case Name Tested Functionalities #Videos

U1 Sign In provide username and password to sign in 21
U2 Sign Up provide required information to sign up 76
U3 Search use search bar to search a product/news 29
U4 Detail find and open details of the first search result item 17
U5 Category find first category and open browsing page for it 27
U6 About find and open about information of the app 15
U7 Account find and open account management page 18
U8 Help find and open help page of the app 17
U9 Menu find and open primary app menu 12
U10 Contact find and open contact page of the app 16
U11 Terms find and open legal information of the app 20
U12 Add Cart add the first search result item to cart 13
U13 Remove Cart open cart and remove the first item from cart 10
U14 Address add a new address to the account 11
U15 Filter filter/sort search results 14
U16 Add Bookmark add first search result item to the bookmark 15
U17 Remove Bookmark open the bookmark and remove first item from it 20
U18 Textsize change text size 23

by searching vs. by browsing categories). However, if a participant
deemed that there were not two distinct scenarios for exercising a
given feature, they were allowed to provide only one usage.

This study was conducted remotely due to COVID-19, and par-
ticipants were given detailed instructions for installing and setting
up an Android emulator (Nexus 5X, API24), the .apk files required
to install their assigned apps, and a short textual description of
the assigned use cases (illustrated in Table 1). Additionally, we
provided a small desktop application that allowed participants to
record the screens and a usage trace of their scenarios. This ap-
plication makes use of the adb screenrecord and Linux getevent

command line utilities. We provide these instructions, the app .apk

files, usage descriptions, device recording tool, and anonymized
collected data in our online appendix [10]. This study was approved
by the Institutional Review Board (IRB) at the authors’ university
(IRBNet 1666261-1).

This data collection process spanned two semesters, and in total,
31 of the originally recruited 61 students completed the study, some
with partial data, hence the imbalance of videos across apps and
usages shown in Tables 1 and 2. In the end, we obtained a dataset
of 374 screen recordings of 18 usages from 18 of the 20 apps (shown
in Table 2) from the FrUITeR benchmark [85] discussed earlier.

3.1.2 Ground-Truth Annotation. Recall from Section 2 that Av-
gust’s classification involves (1) the screen classifier that maps an
app screen to an abstract screen IR category, and (2) the widget
classifier that maps a cropped widget image to an app-independent
canonical widget category. To establish the ground-truth labels (i.e.,
the correct categories needed to generate Avgust’s IR Models),
we developed a pipeline to import pairs of screen-widget images
into Label Studio [12], and trained four human annotators to label
the data. Specifically, the screen-widget image pairs are sourced
from the GUI Event Frames that Avgust converted during its Video
Analysis phase (recall Figure 1).

To establish our ground truth categorizations, we provided de-
tailed instructions to and trained the four annotators to label the
data based on the 37 screen and 74 widget canonical categories
we defined (recall Section 2.3.2). Each image is labeled by at least
two annotators, and discrepancies are resolved by negotiated agree-
ment [23] with the annotators and one author.

Table 2: The 18 subject apps used in Avgust’s evaluation.

App ID App Name #Downloads (mil) #Videos

A1 AliExpress 100 27
A2 Ebay 100 15
A3 Etsy 10 25
A4 Dailyhunt 1.7 8
A5 Geek 10 17
A6 Groupon 50 53
A7 Home 10 53
A8 6PM 0.5 25
A9 Wish 100 44
A10 The Guardian 5 8
A11 ABC News 5 18
A12 USA Today 5 26
A13 Zappos 0.054 11
A14 BuzzFeed 5 8
A15 Fox News 10 11
A16 BBC News 10 6
A17 Reuters 1 12
A18 News Break 0.322 7

Avgust: Automating Usage-Based Test Generation from Videos of App Executions ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

This data collection process was time-consuming and intensive,
spanning ∼8 person-months of effort. At the end of the process, we
derived a comprehensive labeled dataset containing 2,478 ground-
truth labels for screens and 2,434 labels for widgets across 18 apps.
Given these labels, Avgust was able to automatically generate the
IR Models for the usages needed for our evaluation. Our labeled
dataset, as well as the annotation pipeline we developed can be
easily reused or extended by future work in this area [10].

3.2 RQ1: Avgust’s Test Quality

Avgust’s main goal is to generate a test for a target app that accom-
plishes the usage encoded by the videos of other apps. To evaluate
how well Avgust accomplishes that goal, for each of the 18 app
usages, we randomly selected 3 apps under test (AUTs) as the tar-
get apps. (For three of the usages, we selected only 2 apps because
we were unable to extract data from certain commercial apps due
to security reasons or limitations of the underlying used testing
framework [4].) For each of those apps, we use the merged IR Model
Avgust learned from all the other 17 apps to guide Avgust’s test
generation, aiming to demonstrate Avgust’s ability to generate
tests for unseen apps. As discussed in Section 2.4, Avgust’s test
generation is a developer-in-the-loop process. Specifically, four of
the authors served as the developers interacting with the tool dur-
ing this process. We use the first test Avgust generates for the
evaluation, resulting in a total of 51 tests across 18 app usages. (We
limit our evaluation to a single test per usage per app due to the
significant manual effort involved in the evaluation process.)

We examined each of the tests manually to consider whether
it accomplished the intended usage. Note that this judgement is
objective. For example, it is straightforward and unambiguous to
determine whether the generated test accomplishes the Sign In
usage— either the tests signs into the app or it does not. We found
that 35 of the 51 tests (68.6%) accomplished the usage, meaning that
Avgust successfully generated a correct test.

For the remaining 16 tests, we measured how similar each gen-
erated test was to the closest human test, to evaluate whether it
would potentially save human effort in writing the test. The is due
to the nature of usage-based tests, as there are usually multiple
correct paths of exercising the same usage. Thus, to enable fair
comparison, we compare Avgust’s test with the closest human test.
We measured similarity using two metrics: precision and recall in
matching the human test’s behavior. Precision measures the frac-
tion of the states and transitions in the generated test that occur in
the most-similar human test from the relevant videos. Recall mea-
sures the fraction of the states and transitions in the most-similar
human test that occur in the generated test. The closest human test
is chosen using the precision similarity metric.

Table 3 lists the similarity results for the 16 tests across 11 us-
ages that do not satisfy that usage, and the cloest human test. On
average, 79% of the states and 47% of the transitions in the gener-
ated tests is captured by the most similar human test. This means
that Avgust rarely visited an incorrect state, but often triggered
inputs for GUI widgets not triggered by humans. Meanwhile, on
average, the generated tests capture 68% of the states and 37% of
the transitions in the closest human test. This means that Avgust
was able to visit a majority of the screens seen in the human test,

Table 3: We compare the 16 Avgust-generated tests that do

not satisfy their intended usage with the most-similar hu-

man test, to indicate how much work these tests may save a

developer.

precision recall

Usage states transitions states transitions

U4 Search 1.00 0.50 1.00 0.50
U5 Terms 0.71 0.29 0.63 0.33
U9 About 1.00 0.50 1.00 0.25
U10 Contact 0.75 0.37 0.72 0.33
U11 Help 0.67 0.50 0.67 0.33
U12 AddCart 0.75 0.59 0.55 0.37
U13 RemoveCart 1.00 0.69 0.62 0.42
U14 Address 0.83 0.69 1.00 0.75
U15 Filter 1.00 0.50 1.00 0.40
U17 RemoveBookmark 1.00 0.75 0.60 0.50
U18 Textsize 0.00 0.00 0.00 0.00

average 0.79 0.47 0.68 0.37

but correctly exercised comparatively fewer expected GUI widgets
that trigger proper transitions. This suggests that while the 31.4%
of the tests Avgust generates do not fully exercise the intended
usage, they may be at least partially helpful for developers writing
tests. Our future work will examine the effort reduction Avgust’s
tests produce for developers.

RA1: We find that 69% of Avgust’s generated tests success-
fully accomplish the desired usage, saving the developer
from having to manually write the test from scratch. For
the remaining 31% of the tests, we found that those tests
capture significant portions of the behavior in the most-
similar test a human would write, again, potentially saving
human effort.

3.3 RQ2: Avgust’s Classification Accuracy

RQ2 compares Avgust’s vision-only screen classification and wid-
get classification accuracy to the state-of-the-art S2V [47]. First,
Section 3.3.1 evaluates Avgust’s classification independently, as a
stand-alone tool. Then, Section 3.3.2 evaluates Avgust’s classifica-
tion in the context of test generation.

3.3.1 Evaluating Avgust’s Stand-Alone Classification. To evaluate
Avgust’s vision-only classification module as a stand-alone tech-
nique, we use our labeled dataset from Section 3.1.2. We use leave-
one-out cross-validation [22] to evaluate the accuracy of Avgust’s
screen and widget classifiers. For each of the 18 apps, we train our
model on the data from all the other apps, and test on that app.
Screen Classification: We evaluate three variants of Avgust’s
screen classifier. The first, the standard Avgust as introduced in
Section 2, and two other classifiers that use only Avgust’s autoen-
coder (AE) model and classify with two widely-adopted methods
KNN [14] (AE + KNN) and MLP [32] (AE + MLP), respectively. As
Avgust’s AE model only encodes the screen’s visual features, the
results aim to demonstrate the impact of visual-only information
on the classification tasks. We did not evaluate the text-only model
since it contains app-specific noises (e.g., news content, product

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Y. Zhao, S. Talebipour, K. Baral, H. Park, L. Yee, S. Khan, Y. Brun, N. Medvidovic, and K. Moran

0.0

0.2

0.4

0.6

0.8

S2V +
KNN

S2V +
MLP

AE + KNN AE + MLP AVGUST

Min Avg Max

Top-1 Accuracy

0.00

0.25

0.50

0.75

1.00

S2V +
KNN

S2V +
MLP

AE + KNN AE + MLP AVGUST

Min Avg Max

Top-5 Accuracy

Figure 8: Avgust’s vision-only screen classification outper-

forms SV2 [47] and the other Avgust classifier variants in

both top-1 and top-5 accuracy.

description) that do not generalize, and text-only information has
already been shown insufficient for classification tasks [39].

To compare Avgust with S2V, we adapt S2V to learn from the
information on the screen images only, and obtain the UI layout
information [7] that S2V requires as its input. To do so, we reverse
engineered app screen images using REMAUI [66], a research tool
to convert app screen image into its corresponding UI layout [7].
This is the same process Avgust uses (recall Section 2), aiming to
ensure that S2V and Avgust learn from the same raw information
on the app screen. We then apply KNN andMLP to S2V’s screen em-
beddings, resulting in two S2V’s variants (S2V + KNN, S2V + MLP).

Figure 8 shows that Avgust’s classifier consistently outper-
forms all versions of SV2 and the other Avgust classifier variants
in both top-1 and top-5 accuracy. Avgust’s composite classifier
that uses both visual and textual screen features outperforms both
autoencoder-only variants by more than 20%, suggesting that al-
though visual features are important in encoding a UI screen, adding
textual features significantly improves the quality of the generated
embeddings and results in higher classification accuracy.

While using S2V’s screen embeddings is effective for down-
stream tasks when the dynamic UI layout information is avail-
able [47], we were unable to achieve high classification accuracy
using the pre-trained S2V model by reverse engineering app screen
images into S2V’s required format. This suggests that the existing
pre-trained models cannot be used for vision-only tasks effectively.
Widget Classification: To compare Avgust’s widget classifica-
tion with S2V [47], we studied S2V’s implementation and isolated
its underlying model that encodes the widget’s information. We
then applied both KNN and MLP to S2V’s widget embeddings.

Figure 9 shows that Avgust’s widget classifier outperforms both
S2V variants that use the pre-trained UI widget encoder for two
reasons. First, S2V’s UI widget encoder only uses a widget’s textual
information and class type, whereas Avgust’s widget classifier
takes into account many other widget features, such as its location
on the screen and visual features. Second, S2V’s UI widget encoder
is trained using the textual information available on dynamically ex-
tracted UI layout, which is not available for the widgets in Avgust’s
vision-only classification task.

3.3.2 Evaluating Avgust’s Classification for Test Generation. We
next evaluate Avgust’s classification accuracy in the context of
test generation. During the test generation phase in Section 3.2, we
recorded Avgust’s Top-1 and Top-5 recommendations at each step,
and evaluate the accuracy of those recommendations.

0.0

0.2

0.4

0.6

0.8

S2V + KNN S2V + MLP AVGUST

MIN AVG MAX

Top-1 Accuracy

0.00

0.25

0.50

0.75

1.00

S2V + KNN S2V + MLP AVGUST

MIN AVG MAX

Top-5 Accuracy

Figure 9: Avgust’s vision-only widget classification consis-

tently outperforms S2V [47].

0.0

0.2

0.4

0.6

0.8

AE + MLP
(dynamic)

AE + MLP
(vision-only)

AE + KNN
(dynamic)

AE + KNN
(vision-only)

Avgust
(dynamic)

Avgust
(vision-only)

MIN AVERAGE MAX

Top-1 Accuracy

0.00

0.25

0.50

0.75

1.00

AE + MLP
(dynamic)

AE + MLP
(vision-only)

AE + KNN
(dynamic)

AE + KNN
(vision-only)

Avgust
(dynamic)

Avgust
(vision-only)

MIN AVERAGE MAX

Top-5 Accuracy

Figure 10: The accuracy of Avgust’s vision-only screen clas-

sifier variations with vision-only and dynamic input data.

Evaluation Avgust’s Screen Classification: Besides Avgust’s
built-in screen classifier introduced in Section 2, we further im-
plemented 5 variants that incorporate app’s runtime information,
aiming to get insights on whether runtime information can improve
the classification’s accuracy. This is inspired by S2V [47], which
relies on the screen’s runtime UI layout information [7], such as
the Activity name [6] and content description of the widgets on the
screen [8]. As Avgust’s test generation phase interacts with the
target app at runtime, Avgust can crawl the UI for this layout
information. We thus relaxed the vision-only constraint, and modi-
fied Avgust to use this dynamic UI layout information. We term
the modified version Avgust-Dynamic. Note that the fundamental
difference between Avgust-Dynamic and S2V is the training phase.
Avgust-Dynamic still uses vision-only information (screen images)
to train its models, while S2V requires the dynamic UI layout in-
formation in the training data. In practice, as classification tasks
usually require a large amount of training data, Avgust-Dynamic
makes the training process significantly easier by only requiring
screen images, while S2V requires crawling the UI layout informa-
tion at app runtime for every app screen in the training set.

Figure 10 shows Avgust’s screen classifier variants’ accuracies
during the test generation phase. Comparing Figures 10 and 8,
we observe that in both cases, Avgust always outperforms the
two autoencoder-only variants. All the classifier variants are more
accurate when using the vision-only data, compared to also us-
ing dynamic app information captured during runtime. While this
might seem counterintuitive, one possible explanation is that the
features extracted from the vision-only input data are similar to
the data Avgust’s built-in classifier were trained with, whereas
the dynamically obtained information might expose much more
textual information (e.g., content description) that is not consistent
with the OCR-based textual information used in the training phase.
Evaluation Avgust’s Widget Classification: To evaluate Av-
gust’s widget classifier during test generation, we assess whether

Avgust: Automating Usage-Based Test Generation from Videos of App Executions ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Avgust can faithfully recommend widgets to match the transitions
suggested by its IR Model. We recorded the next transitions sug-
gested by the IR Model at each step of the test generation (recall
Section 2.4), as well as the crops of Avgust’s recommended widgets.
Three annotators then manually inspected the cropped widgets and
determined whether their canonical categories match one of the
suggested transitions. In total, over all the generated tests, Avgust’s
widget classifier correctly recommended widgets 77.4% of the time
(175 out of 226 steps).

RA2: Avgust’s classifiers consistently outperform the
state-of-the-art S2V tool. We find that using textual and
visual features together improves accuracy, but adding run-
time features decreases accuracy, perhaps because these
features are too different from the ones used to train Av-
gust’s vision-only models.

4 RELATEDWORK

Automated Input Generation for Mobile Apps: Existing auto-
mated test generation techniques share a complementary objective
to ours: they mainly focus on generating tests to maximize code
coverage and detect crashes, as opposed to generating usage-based
tests to test a certain functionality. The large body of existing work
includes model-based testing [15, 16, 30, 34, 55, 56, 72, 74, 75], ran-
dom testing [3, 57, 84], and systematic testing [13, 17, 58, 59]. Re-
cently, Su et al. proposed Genie [76], which is the first automated
testing technique to detecting non-crashing functional bugs in An-
droid apps. However, Genie is a random-based fuzzing technique,
thus does not generate usage-based tests. Besides the differences
in testing objectives, Avgust’s model is app-independent (repre-
senting usage scenarios learned from different apps) and is derived
purely from visual data, which differs from existing model-based
testing techniques. Furthermore, in comparison to recent human-
in-the-loop techniques, e.g. NaviDroid [54], Avgust’s model and
recommendations differ by providing suggestions for GUI actions
that fulfill a given use case, as opposed to uncovering unexplored
areas of an app.
Test Reuse inMobileApps:The area of research that most closely
aligns with usage-based test generation is the work on UI test reuse,
which has been steadily growing over the past few years [19, 20,
50, 61, 62, 71, 77, 85]. These techniques can transfer an existing
usage-based test from a source app to its equivalent test of a target
app that shares the same functionality, but cannot generate usage-
based tests from scratch. Furthermore, as discussed in Section 1,
existing test-reuse techniques have three important limitations that
we directly address in this paper.
Learning Patterns from Crowdsourced Tests: Similar to our
objective, another line of work aims to learn patterns from crowd-
sourced tests for automated test generation. However, while such
techniques learn from crowdsourced data, their test objectives are
to increase coverage or fault-finding ability as opposed to generat-
ing usage-based tests. For example, Replica [81] compares existing
in-house tests with the user traces in the field, and generates new
tests to mimic field traces that are not covered by the in-house
tests. Replica relies on pre-existing in-house tests that may not be
available, as well as app instrumentation. Ermuth et al. proposed an

approach to generate “macro events” that group multiple low-level
events into logic steps performed by real users [31], such as filling
and submitting a form. However, these macro events are recurring
patterns across all the user traces collected when exercising the
entire app, thus do not capture fine-grained user behaviors exer-
cised in specific usages. Similarly, MonkeyLab and Polariz [53, 60]
mines users’ event traces to generate combinations of low-level
events representing natural scenarios (similar to “macro events”),
as well as untested corner cases (similar to Replica’s objective).
ComboDroid [80] aims to reach complex app functionality by com-
bining independent short “use cases”, such as toggling a setting, or
switching to a different screen. Humanoid [49] leverages a deep
neural network model to learn input actions based on real-user
traces. However, the generated tests from all the work mentioned
above again focus on maximizing the code coverage, but do not
aim to generate tests of specific usages.
Specification-based Testing for Mobile Apps: Finally, this type
of testing aims to generate tests that cover specific functionalities
(similar to our definition of usages), guided by manually-written
specifications. For example, FARLEAD-Android [44] requires the
developer to provide UI test scenarios written in Gherkin [5] in
order to generate tests using reinforcement learning. Similarly,
AppFlow [39] requires the developer to first create a test library
that covers the common functionalities in a certain app category
(e.g., shopping apps) using a Gherkin-based language that AppFlow
defines. AppFlow then synthesizes app-specific tests according to
the test library. Augusto [63] uses GUI ripping to explore popular
app-independent functionalities (referred to as “AIFs”), and gen-
erates functional tests accordingly. However, developers have to
manually define UI patterns and Alloy semantic model [40] to de-
scribe the AIFs. Avgust attempts to advance upon such work by
simplifying the specification process by relying purely on videos
that specify desired test behaviors.

5 CONTRIBUTIONS

We have presented Avgust, a method for generating usage-based
tests for the Android platform. By targeting usage-based tests, Av-
gust solves what mobile developers identify as a major need [52]
but that the state of the art has failed to address [35, 43, 52]. Avgust
uses user-generated videos of app usages to learn amodel of a usage,
and then applies that model to a new target app to generate tests.
Evaluating on 374 videos of common uses of 18 popular apps, we
show that 69% of the tests Avgust generates successfully execute
the desired usage, that the remaining generated tests have potential
for reducing developer effort in writing tests, and that Avgust’s
classifiers outperform the state of the art. Our work suggests a
promising direction of research into usage-based test generation,
and outlines outstanding problems in classification accuracy that
future research should address.

ACKNOWLEDGEMENT

This work is supported by the U.S. National Science Foundation
under grant no. CCF-1717963, CCF-1763423, CNS-1823354, CCF-
1955853, and CCF-2030859 (to the Computing Research Association
for the CIFellows Project), as well as the U.S. Office of Naval Re-
search under grant N00014-17-1-2896. Additionally, we would like
to thank Arthur Wu for his help on data collection and annotation.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Y. Zhao, S. Talebipour, K. Baral, H. Park, L. Yee, S. Khan, Y. Brun, N. Medvidovic, and K. Moran

REFERENCES

[1] 2016. uiautomator | Android Developers. https://android-doc.github.io/tools/
help/uiautomator/index.html

[2] 2019. GATOR: Program Analysis Toolkit For Android. http://web.cse.ohio-
state.edu/presto/software/gator

[3] 2020. UI/Application Exerciser Monkey | Android Developers. https://developer.
android.com/studio/test/monkey

[4] 2021. Appium: Mobile App Automation Made Awesome. http://appium.io
[5] 2021. Gherkin Syntax - Cucumber Documentation. https://cucumber.io/docs/

gherkin
[6] 2021. Introduction to Activities | Android Developers. https://developer.android.

com/guide/components/activities/intro-activities
[7] 2021. Layouts | Android Developers. https://developer.android.com/guide/

topics/ui/declaring-layout
[8] 2021. Make apps more accessible | Android Developers. https://developer.

android.com/guide/topics/ui/accessibility/apps
[9] 2021. Soot. http://soot-oss.github.io/soot/
[10] 2022. AVGUST’s public repository. https://doi.org/10.5281/zenodo.7036218
[11] 2022. EditText | Android Developers. https://developer.android.com/reference/

android/widget/EditText
[12] 2022. Label Studio – Open Source Data Labeling. https://labelstud.io [Online;

accessed 9. Mar. 2022].
[13] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. System-

atic execution of android test suites in adverse conditions. In Proceedings of the
2015 International Symposium on Software Testing and Analysis. 83–93.

[14] Naomi S Altman. 1992. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician 46, 3 (1992), 175–185.

[15] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M Memon. 2012. Using GUI ripping for automated testing
of Android applications. In 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 258–261.

[16] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M Memon. 2014. MobiGUITAR: Automated model-based testing of
mobile apps. IEEE software 32, 5 (2014), 53–59.

[17] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems languages &
applications. 641–660.

[18] G. Bavota, M. Linares-Vásquez, C. Bernal-Cárdenas, M. Di Penta, R. Oliveto, and
D. Poshyvanyk. 2015. The Impact of API Change- and Fault-Proneness on the
User Ratings of Android Apps. IEEE Transactions on Software Engineering (TSE)
(2015).

[19] Farnaz Behrang and Alessandro Orso. 2018. Test migration for efficient large-
scale assessment of mobile app coding assignments. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis.

[20] Farnaz Behrang and Alessandro Orso. 2019. Test Migration Between Mobile
Apps with Similar Functionality. In 34th International Conference on Automated
Software Engineering (ASE 2019).

[21] Carlos Bernal-Cárdenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, An-
drian Marcus, and Denys Poshyvanyk. 2020. Translating video recordings of
mobile app usages into replayable scenarios. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 309–321.

[22] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and
machine learning. Vol. 4. Springer.

[23] K. Charmaz. 2006. Constructing Grounded Theory. SAGE Publications Inc.
[24] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming

Zhu, and Guoqiang Li. 2020. Object detection for graphical user interface: old
fashioned or deep learning or a combination?. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1202–1214.

[25] A. Ciurumelea, A. Schaufelbühl, S. Panichella, and H. C. Gall. 2017. Analyzing
Reviews and Code of Mobile Apps for Better Release Planning. In 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineering
(SANER) (SANER’17). 91–102. https://doi.org/10.1109/SANER.2017.7884612

[26] Nathan Cooper, Carlos Bernal-Cárdenas, Oscar Chaparro, Kevin Moran, and
Denys Poshyvanyk. 2021. It Takes Two to Tango: Combining Visual and Textual
Information for Detecting Duplicate Video-Based Bug Reports. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 957–969. https:
//doi.org/10.1109/ICSE43902.2021.00091

[27] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[29] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Junji Shimagaki, Cor-
rado A. Visaggio, Gerardo Canfora, and Harald C. Gall. 2016. What Would Users
Change in My App? Summarizing App Reviews for Recommending Software
Changes. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE’16). ACM, Seattle, WA, USA, 499–510.
https://doi.org/10.1145/2950290.2950299

[30] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel testing of Android apps. In 2020 IEEE/ACM 42nd International Con-
ference on Software Engineering (ICSE). IEEE, 481–492.

[31] Markus Ermuth and Michael Pradel. 2016. Monkey see, monkey do: Effective
generation of GUI tests with inferred macro events. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. 82–93.

[32] Matt W Gardner and SR Dorling. 1998. Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences. Atmospheric
environment 32, 14-15 (1998), 2627–2636.

[33] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[34] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of An-
droid applications via model abstraction and refinement. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 269–280.

[35] Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven
Apel. 2021. How can manual testing processes be optimized? developer survey,
optimization guidelines, and case studies. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1281–1291.

[36] Madeleine Havranek, Carlos Bernal-Cárdenas, Nathan Cooper, Oscar Chaparro,
Denys Poshyvnayk, and Kevin Moran. 2021. V2S: A Tool for Translating Video
Recordings of Mobile App Usages into Replayable Scenarios. In 2021 IEEE/ACM
43rd International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). IEEE, 65–68.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[38] G. Hu, X. Yuan, Y. Tang, and J. Yang. 2014. Efficiently, effectively detecting mobile
app bugs with AppDoctor. In Ninth European Conference on Computer Systems
(EuroSys’14). Article No.18.

[39] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: using machine learning
to synthesize robust, reusable UI tests. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 269–282.

[40] Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology (TOSEM) 11, 2 (2002),
256–290.

[41] N. Jones. 2013. Seven best practices for optimizing mobile testing efforts. Technical
Report G00248240. Gartner.

[42] Jouko Kaasila, Denzil Ferreira, Vassilis Kostakos, and Timo Ojala. 2012. Testdroid:
automated remote UI testing on Android. In Proceedings of the 11th International
Conference on Mobile and Ubiquitous Multimedia. 1–4.

[43] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zimmer-
mann, and David Lo. 2015. Understanding the Test Automation Culture of App
Developers. In 2015 IEEE 8th International Conference on Software Testing, Verifi-
cation and Validation (ICST). 1–10. https://doi.org/10.1109/ICST.2015.7102609

[44] Yavuz Koroglu and Alper Sen. 2021. Functional test generation from UI test
scenarios using reinforcement learning for android applications. Software Testing,
Verification and Reliability 31, 3 (2021), e1752.

[45] Greg Lee. 2018. Android View Measurement - The Inside Scoop. Medium (Jun
2018). https://blog.takescoop.com/android-view-measurement-d1f2f5c98f75

[46] Kanglin Li and Mengqi Wu. 2006. Effective GUI testing automation: Developing an
automated GUI testing tool. John Wiley & Sons.

[47] Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. 2021.
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

[48] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
Deep Learning-Based Approach to Automated Black-box Android App Testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 1070–1073. https://doi.org/10.1109/ASE.2019.00104

[49] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
deep learning-based approach to automated black-box android app testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1070–1073.

[50] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test Transfer Across
Mobile Apps Through Semantic Mapping. In 34th International Conference on
Automated Software Engineering (ASE 2019).

[51] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta, R. Oliveto, and
D. Poshyvanyk. 2013. API Change and Fault Proneness: A Threat to the Success
of Android Apps. In ESEC/FSE’13. 477–487.

https://android-doc.github.io/tools/help/uiautomator/index.html
https://android-doc.github.io/tools/help/uiautomator/index.html
http://web.cse.ohio-state.edu/presto/software/gator
http://web.cse.ohio-state.edu/presto/software/gator
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
http://appium.io
https://cucumber.io/docs/gherkin
https://cucumber.io/docs/gherkin
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/guide/topics/ui/accessibility/apps
https://developer.android.com/guide/topics/ui/accessibility/apps
http://soot-oss.github.io/soot/
https://doi.org/10.5281/zenodo.7036218
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/reference/android/widget/EditText
https://labelstud.io
https://doi.org/10.1109/SANER.2017.7884612
https://doi.org/10.1109/ICSE43902.2021.00091
https://doi.org/10.1109/ICSE43902.2021.00091
https://doi.org/10.1145/2950290.2950299
http://www.deeplearningbook.org
https://doi.org/10.1109/ICST.2015.7102609
https://blog.takescoop.com/android-view-measurement-d1f2f5c98f75
https://doi.org/10.1109/ASE.2019.00104

Avgust: Automating Usage-Based Test Generation from Videos of App Executions ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

[52] Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Kevin Moran, and Denys Poshy-
vanyk. 2017. How do developers test android applications?. In 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME).

[53] Mario Linares-Vásquez, MartinWhite, Carlos Bernal-Cárdenas, KevinMoran, and
Denys Poshyvanyk. 2015. Mining android app usages for generating actionable
gui-based execution scenarios. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. IEEE, 111–122.

[54] Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun Hu, and Qing Wang.
2022. Guided bug crush: Assist manual gui testing of android apps via hint moves.
In CHI Conference on Human Factors in Computing Systems. 1–14.

[55] Nikola Lukić, Saghar Talebipour, and Nenad Medvidović. 2020. AirMochi: a
tool for remotely controlling iOS devices. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 1273–1277.

[56] Nikola Lukić, Saghar Talebipour, and Nenad Medvidović. 2020. Remote control
of ios devices via accessibility features. In Proceedings of the 2020 ACM Workshop
on Forming an Ecosystem Around Software Transformation. 35–40.

[57] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. 224–234.

[58] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 599–609.

[59] KeMao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated test-
ing for android applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis. 94–105.

[60] Ke Mao, Mark Harman, and Yue Jia. 2017. Crowd Intelligence Enhances Auto-
mated Mobile Testing. In Proceedings of the 32nd IEEE/ACM International Con-
ference on Automated Software Engineering (Urbana-Champaign, IL, USA) (ASE
2017). IEEE Press, 16–26.

[61] Leonardo Mariani, Ali Mohebbi, Mauro Pezze, and Valerio Terragni. 2021. Se-
mantic Matching of GUI Events for Test Reuse: Are We There Yet?. In The ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).

[62] Leonardo Mariani, Mauro Pezzè, Valerio Terragni, and Daniele Zuddas. 2021. An
Evolutionary Approach to Adapt Tests Across Mobile Apps. In The 2nd ACM/IEEE
International Conference on Automation of Software Test (AST 2021).

[63] Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. 2018. Augusto: Exploiting
popular functionalities for the generation of semantic gui tests with oracles. In
Proceedings of the 40th International Conference on Software Engineering. 280–290.

[64] Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and
Denys Poshyvanyk. 2018. Machine learning-based prototyping of graphical user
interfaces for mobile apps. IEEE Transactions on Software Engineering 46, 2 (2018),
196–221.

[65] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-
dome, and Denys Poshyvanyk. 2016. Automatically Discovering, Reporting
and Reproducing Android Application Crashes. In 2016 IEEE International Con-
ference on Software Testing, Verification and Validation (ICST). 33–44. https:
//doi.org/10.1109/ICST.2016.34

[66] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse engineering mobile
application user interfaces with remaui (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 248–259.

[67] Fabio Palomba, Mario Linares-Vásquez, Gabriele Bavota, Rocco Oliveto, Massim-
iliano Di Penta, Denys Poshyvanyk, and Andrea De Lucia. 2015. User Reviews
Matter! Tracking Crowdsourced Reviews to Support Evolution of Successful Apps.
In Proceedings of 31st IEEE International Conference on Software Maintenance and
Evolution (ICSME’15). to appear.

[68] Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Har-
ald Gall, Filomena Ferrucci, and Andrea De Lucia. 2017. Recommending and
Localizing Change Requests for Mobile Apps Based on User Reviews. In Pro-
ceedings of the 39th International Conference on Software Engineering (Buenos
Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 106–117. https:

//doi.org/10.1109/ICSE.2017.18
[69] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens,

and Lawrence Carin. 2016. Variational Autoencoder for Deep Learning of
Images, Labels and Captions. In Advances in Neural Information Processing
Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.),
Vol. 29. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2016/file/
eb86d510361fc23b59f18c1bc9802cc6-Paper.pdf

[70] pytransitions. 2021. transitions. https://github.com/pytransitions/transitions
[71] Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. Testmig: Migrating gui test

cases from ios to android. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 284–295.

[72] Ibrahim-Anka Salihu, Rosziati Ibrahim, Bestoun S Ahmed, Kamal Z Zamli, and
Asmau Usman. 2019. AMOGA: A static-dynamic model generation strategy for
mobile apps testing. IEEE Access 7 (2019), 17158–17173.

[73] Ray Smith. 2007. An overview of the Tesseract OCR engine. In Ninth international
conference on document analysis and recognition (ICDAR 2007), Vol. 2. IEEE, 629–
633.

[74] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. 245–256.

[75] Ting Su, Yichen Yan, Jue Wang, and Zhendong Su. 2020. Automated Functional
Fuzzing of Android Apps. arXiv preprint arXiv:2008.03585 (2020).

[76] Ting Su, Yichen Yan, Jue Wang, Jingling Sun, Yiheng Xiong, Geguang Pu, Ke
Wang, and Zhendong Su. 2021. Fully Automated Functional Fuzzing of Android
Apps for Detecting Non-Crashing Logic Bugs. In Proceedings of the 28th ACM
Joint Meeting on European Software ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications.

[77] Saghar Talebipour, Yixue Zhao, Luka Dojcilovic, Chenggang Li, and Nenad Med-
vidovic. 2021. UI Test Migration Across Mobile Platforms. In 36th International
Conference on Automated Software Engineering (ASE 2021).

[78] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

[79] Akshaj Verma. 2021. PyTorch [Vision] — Binary Image Classification - Towards
Data Science. Medium (May 2021). https://towardsdatascience.com/pytorch-
vision-binary-image-classification-d9a227705cf9

[80] Jue Wang, Yanyan Jiang, Chang Xu, Chun Cao, Xiaoxing Ma, and Jian Lu. 2020.
ComboDroid: generating high-quality test inputs for Android apps via use case
combinations. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. 469–480.

[81] Qianqian Wang and Alessandro Orso. 2020. Improving Testing by Mimicking
User Behavior. In 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 488–498.

[82] Mulong Xie, Sidong Feng, Zhenchang Xing, Jieshan Chen, and Chunyang Chen.
2020. UIED: a hybrid tool for GUI element detection. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1655–1659.

[83] Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swami-
nathan, Dacong Yan, and Atanas Rountev. 2018. Static window transition graphs
for Android. Automated Software Engineering 25, 4 (2018), 833–873.

[84] Faraz YazdaniBanafsheDaragh and Sam Malek. 2021. Deep GUI: Black-box
GUI Input Generation with Deep Learning. In 36th International Conference
on Automated Software Engineering (ASE 2021).

[85] Yixue Zhao, Justin Chen, Adriana Sejfia, Marcelo Schmitt Laser, Jie Zhang, Fed-
erica Sarro, Mark Harman, and Nenad Medvidovic. 2020. FrUITeR: A Framework
for Evaluating UI Test Reuse. In Proceedings of the 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE ’20). ACM, New York, NY, USA.
https://doi.org/10.1145/3368089.3409708

https://doi.org/10.1109/ICST.2016.34
https://doi.org/10.1109/ICST.2016.34
https://doi.org/10.1109/ICSE.2017.18
https://doi.org/10.1109/ICSE.2017.18
https://proceedings.neurips.cc/paper/2016/file/eb86d510361fc23b59f18c1bc9802cc6-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/eb86d510361fc23b59f18c1bc9802cc6-Paper.pdf
https://github.com/pytransitions/transitions
https://towardsdatascience.com/pytorch-vision-binary-image-classification -d9a227705cf9
https://towardsdatascience.com/pytorch-vision-binary-image-classification -d9a227705cf9
https://doi.org/10.1145/3368089.3409708

	Abstract
	1 Introduction
	2 The Avgust Approach
	2.1 Avgust Overview
	2.2 Video Collection & Analysis
	2.3 AI-Assisted IR Model Generation
	2.4 Guided Test Scenario Generation
	2.5 Avgust's Implementation

	3 Evaluation of Avgust
	3.1 Evaluation Context
	3.2 RQ1: Avgust's Test Quality
	3.3 RQ2: Avgust's Classification Accuracy

	4 Related Work
	5 Contributions
	References

