
Scenario-Based Test Reduction and Prioritization for
Multi-Module Autonomous Driving Systems

Yao Deng

Macquarie University

Sydney, NSW, Australia

yao.deng@hdr.mq.edu.au

Xi Zheng
∗

Macquarie University

Sydney, NSW, Australia

james.zheng@mq.edu.au

Mengshi Zhang
∗

Meta

Menlo Park, CA, USA

mengshizhang@fb.com

Guannan Lou

Macquarie University

Sydney, NSW, Australia

guannan.lou@mq.edu.au

Tianyi Zhang

Purdue University

West Lafayette, IN, USA

tianyi@purdue.edu

ABSTRACT
When developing autonomous driving systems (ADS), developers

often need to replay previously collected driving recordings to

check the correctness of newly introduced changes to the system.

However, simply replaying the entire recording is not necessary

given the high redundancy of driving scenes in a recording (e.g.,

keeping the same lane for 10 minutes on a highway). In this pa-

per, we propose a novel test reduction and prioritization approach

for multi-module ADS. First, our approach automatically encodes

frames in a driving recording to feature vectors based on a driving

scene schema. Then, the given recording is sliced into segments

based on the similarity of consecutive vectors. Lengthy segments

are truncated to reduce the length of a recording and redundant

segments with the same vector are removed. The remaining seg-

ments are prioritized based on both the coverage and the rarity

of driving scenes. We implemented this approach on an industry-

level, multi-module ADS called Apollo and evaluated it on three

road maps in various regression settings. The results show that our

approach significantly reduced the original recordings by over 34%

while keeping comparable test effectiveness, identifying almost all

injected faults. Furthermore, our test prioritization method achieves

about 22% to 39% and 41% to 53% improvements over three baselines

in terms of both the average percentage of faults detected (APFD)

and TOP-K.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

∗
Corresponding authors: Xi Zheng, Mengshi Zhang.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00

https://doi.org/10.1145/3540250.3549152

KEYWORDS
Autonomous Driving, Testing Reduction, Test Prioritization, Re-

gression Testing

ACM Reference Format:
Yao Deng, Xi Zheng, Mengshi Zhang, Guannan Lou, and Tianyi Zhang.

2022. Scenario-Based Test Reduction and Prioritization for Multi-Module

Autonomous Driving Systems. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3540250.3549152

1 INTRODUCTION
Autonomous driving has been through quick development in recent

years and found several new business models such as driverless

taxis [8], driverless buses [27], and last-mile robotic delivery [43].

Nowadays, modern autonomous driving systems (ADSs) such as

Apollo [6] make use of machine learning models and logic-based

controllers in tandem to process rich sensor data (e.g., images, GPS,

point clouds) and plan driving trajectories. To ensure the robustness

and reliability of ADSs, autonomous driving companies often con-

duct extensive on-road testing as well as simulation-based testing

to cover various driving scenarios. For example, Google Waymo

has a fleet of 25000 virtual vehicles traveling eight million miles

per day in simulation [41]. Waymo has also conducted on-road test

for more than 20 million miles in 2021 [55]. Despite the significant

investment on testing, software bugs still slip through and cause

vehicle recalls [45] and traffic accidents [11, 44, 56]. Therefore, new

ADS testing methods are in urgent need to ensure the safety of

autonomous vehicles [28, 38].

During ADS development and testing, a common practice is to

reuse driving recordings collected from on-road testing or simula-

tion to test new updates to ADSs, such as replacing a traffic light

detection model with a new model. This is similar to regression

testing in traditional software systems [58, 59]. However, it is costly

to simply replay the entire recordings to test a change, since some

recordings include many redundant driving scenes that are not

necessary to repetitively test. In particular, a recent study finds

that ADS practitioners wish to have tool support to accelerate the

testing process and reduce the cost of testing [38].

Test reduction and prioritization techniques have been widely in-

vestigated in traditional software engineering [13–15, 21, 22, 30, 50].

However, these techniques are not directly applicable to ADSs. First,

ar
X

iv
:2

20
9.

01
54

6v
1

 [
cs

.S
E

]
 4

 S
ep

 2
02

2

https://doi.org/10.1145/3540250.3549152
https://doi.org/10.1145/3540250.3549152

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yao Deng, Xi Zheng, Mengshi Zhang, Guannan Lou, and Tianyi Zhang

test cases in ADSs are driving recordings with time-series sensor

data, rather than discrete program inputs as in traditional software.

Therefore, it requires extra care to reduce driving recordings. Sec-

ond, test coverage metrics [14, 50] used in existing techniques are

not applicable to multi-module ADSs, since ADSs contain both

logic-based code and machine learning models. While many testing

techniques have been proposed for ADSs [1, 2, 9, 12, 20, 20, 23–

25, 36, 37, 37, 52, 54, 60, 62], most of them focus on test generation

rather than test reduction or prioritization. Furthermore, many of

them can only handle a single driving model, rather than a multi-

module system. To the best of our knowledge, only two recent

techniques have been proposed to address test reduction or priori-

tization for ADSs [10, 39]. However, they can only handle limited

driving scenarios, e.g., road shapes only. Furthermore, both of them

require access to test configuration files (e.g., the road map) to ex-

tract road features, rather than directly from driving recordings.

This limits their utility and generalizability in practice.

To fill the research gap, we propose a novel framework called

STRaP (Scenario-based Test Reduction and Prioritization) that auto-

matically extracts and analyzes rich driving scenarios from driving

recordings. In particular, we formally define a driving scene schema

with rich features, e.g., pedestrians, traffic lights, stop signs, and

interactions. We further leverage the publish-subscribe commu-

nication mechanism to dynamically extract semantic information

related to corresponding features from the communication chan-

nels between different modules in an ADS. This publish-subscribe

communication mechanism is adopted by most multi-module au-

tonomous driving systems [6, 34] and robot operating system in

general [46]. Given a driving recording, STRaP first plays it to ex-

tract the corresponding semantic information in each frame of the

recording from the communication channels of the ADS under test.

The extracted semantic information is encoded to vectors for the

ease of comparison and clustering. Then, STRaP slices the driving

recording into continuous segments with the same frame vector.

Lengthy segments are truncated to reduce the length and redun-

dant segments with the same vector are removed. Furthermore, to

expose potential errors (e.g., collisions) early, STRaP sorts the re-

maining segments based on the coverage of different driving scene

features and the rarity of these features. This heuristic is inspired

by coverage-based test prioritization approaches in traditional soft-

ware engineering [59], as well as observations that corner cases or

rare driving scenarios are more likely to detect faults [52, 54].

We implemented STRaP for an industry-level multi-module ADS

called Apollo [6] and evaluated it in terms of test reduction capability
(RQ1), test effectiveness of reduced recordings (RQ2), and bug detection
speed after prioritization (RQ3). We created a benchmark of driving

recordings on three different types of road maps in a simulator

called SVL [47]. We further developed a mutation testing tool to

systematically inject errors to different modules of Apollo and

evaluated the effectiveness of reduced and prioritized ADS tests.

The experiment results show that (1) STRaP reduces over 34% of

given driving recordings and thus significantly reduces the testing

time in ADS regressing testing; (2) The reduced driving recordings

have comparable test effectiveness—they detected 99% of injected

faults that were detected by the original driving recordings; (3)

The diversity-based test prioritization method in STRaP achieves

39%, 33%, and 22% improvement compared with a coverage-based

method related to code change, chronological prioritization, and

random prioritization.

There are three main contributions of this work:

• We propose a general scenario-based test reduction and pri-

oritization framework for multi-module autonomous driving

systems that adopt the publish-subscribe communication

mechanism.

• We make a regression testing benchmark publicly available.

The benchmark includes driving recordings on three differ-

ent kinds of road maps, as well as a mutation testing tool

that systematically injects errors in different ADS modules

in Apollo and evaluates test effectiveness.
1
. With this bench-

mark, future researchers can systematically evaluate their

ADS testing methods in various regression settings.

• We conduct experiments on an industry-level multi-module

ADS and demonstrate the test reduction capability and test

effectiveness of our proposed framework.

The rest of the paper is organized as follows: Section 2 introduces

the background of current ADS testing practice and multi-module

ADSs. Section 3 formulates testing reduction and prioritization

problems. Section 4 describes proposed testing reduction and prior-

itization methods. Section 5 introduces experiment settings. Sec-

tion 6 demonstrates experiment results. Section 7 introduces related

works. Section 8 describes threats to validity of the work. Section 9

concludes the paper.

2 BACKGROUND
2.1 ADS Testing Practices in the Industry
Two primary methods of testing ADSs in the industry are on-road

testing and simulation-based testing [38]. The goal is to cover var-

ious driving scenarios, especially corner cases, and check consis-

tency and generalizability of ADSs in these scenarios. Such testing

processes will produce massive amounts of log data, including sen-

sor data (e.g., video recordings, point clouds) and outputs of ADS

modules (e.g., obstacle detection results, speed control commands).

These log data will be further processed for regression testing in

a simulation environment. When an ADS is updated, it will be

tested by replaying previously logged sensor data and comparing

the system outputs of the new ADS with previous outputs (e.g.,

collision or deviation) [53]. However, replaying an entire recording

takes a long time and computation power. Alternative, some ADS

developers will manually label and clip recordings to obtain specific

driving scenarios (e.g., overtaking, merging) for testing. Yet since

this requires a lot of manual effort, it cannot be done in a large

scale.

2.2 Multi-Module ADSs
Modern ADSs such as Baidu Apollo [6] and Autoware [34] are com-

posed of multiple modules to process rich sensor data and make

trajectory plans. A typical multi-module ADS includes perception,

localization, prediction, planning, and control modules, as shown

in Figure 1. Similar to robot operating systems (ROS) [46], these

modules in an ADS communicate and coordinate with each other

1
Our benchmark has been open-sourced in an anonymous GitHub repository at https:

//github.com/ITSEG-MQ/STRAP

https://github.com/ITSEG-MQ/STRAP
https://github.com/ITSEG-MQ/STRAP

Scenario-Based Test Reduction and Prioritization for Multi-Module Autonomous Driving Systems ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Prediction

Planning
Traffic Light

detection

LocalizationIMU

Perception

Prediction

Planning

Localization

Subscribe

Publish

Module

Channel

Message

Inputs

Camera

IMU

LiDAR

Traffic light

 detection

Obstacle
detection

Outputs

BrakeSteering

LiDAR

Image

Object Detection

IO

Control

Sub-module

Figure 1: The Architecture and Data Flow of a Multi-Module ADS

through the publish-subscribe communication mechanism. Each mod-

ule maintains its channel(s) to publish module outputs. Specifically,

when a module generates its output at a timestamp, it packages

the output as a message and publishes the message into its chan-

nel. Each module also subscribes to one or more channels of other

modules to obtain needed data.

Figure 1 gives an overview of an multi-module ADS based on

the architecture of Apollo. As the autonomous vehicle is driving,

sensors such as cameras and LiDARs continuously capture environ-

ment information, package collected data to messages, and send

messages into the corresponding channels. In the perception mod-

ule, a traffic light detection model subscribes to the message from

the image channel and detects traffic lights in the images. Themodel

predictions are then published to the traffic light detection channel.

Similarly, the obstacle detection model subscribes to both the image

channel and point cloud channel to detect and classify obstacles on

the road, such as vehicles and traffic cones. The detection results are

published to the obstacle detection channel. The prediction module

subscribes data from localization, traffic light detection and obstacle

detection channels to predict the trajectories of detected obstacles.

The prediction result is published to the prediction channel, which

is subscribed by the planning module. Finally, the planning mod-

ule generates the trajectory of the ego-vehicle, while the control

module subscribes data from the planning channel and outputs the

control commands such as steering angles and brakes.

2.3 Regression Testing on Driving Recordings
A driving recording includes all sensor data and module outputs

that are packaged as messages in different channels during the

running of an ADS, as shown in Figure 2. Mathematically, given a

start time point 𝑡𝑎 and an end time point 𝑡𝑏 , a driving recording
is denoted as 𝑅𝑎→𝑏 . Suppose it contains 𝑛 channels {𝐶𝑖

𝑎→𝑏
|1 ≤ 𝑖 ≤

𝑛]}. Each channel 𝐶𝑖
𝑎→𝑏

contains all messages𝑚𝑖
𝑗
created in the

time period [𝑡𝑎, 𝑡𝑏], denoted as𝐶𝑖
𝑎→𝑏

= {𝑚𝑖
𝑗
|𝑎 ≤ 𝑗 ≤ 𝑏} where 𝑡 𝑗 is

the timestamp when a message is created. Given a timestamp 𝑡𝑎 , a

frame 𝑓𝑎 is a slice of a recording that contains all channel messages

created at timestamp 𝑡𝑎 , denoted as 𝑓𝑎 = {𝑚𝑖
𝑎 |1 ≤ 𝑖 ≤ 𝑛}. Therefore,

a driving recording can be seen as a list of frames, denoted as

𝑅𝑎→𝑏 = {𝑓𝑖 |𝑎 ≤ 𝑖 ≤ 𝑏}. A recording segment 𝑠𝑎′→𝑏′ is a clip of

the driving recording containing frames created in [𝑡𝑎′, 𝑡𝑏′], where
𝑎 ≤ 𝑎′ ≤ 𝑏 ′ ≤ 𝑏. However, since different modules are invoked in

different time orders and frequency, the number of messages and

the creation time of messages in different channels are not quite

Table 1: Terminology Definitions

Terminology Symbol Meaning

Recording 𝑅𝑎→𝑏

A log file that stores sensor data and

module outputs in different channels

from the timestamp 𝑡𝑎 to 𝑡𝑏 .

Channel 𝑐
A message queue to store the outputs

of a module

Message 𝑚𝑎
The output of a module created at

the timestamp 𝑡𝑎
Frame 𝑓𝑎 A slice of the recording at timestamp 𝑡𝑎

Segment 𝑠𝑎→𝑏 | 𝑠𝑖
A list of frames created from 𝑡𝑎 to 𝑡𝑏 |

The 𝑖𝑡ℎ segment in a segment list

Frame feature 𝜃𝑖

An attribute to represent specific

driving scenario-related semantic

information in a frame

Frame feature value 𝑣𝑎
𝑖

The value of the frame feature 𝜃𝑖 for

the frame 𝑓𝑎

Frame vector v𝑎
A vector (𝑣𝑎

1
, 𝑣𝑎

2
, ..., 𝑣𝑎𝑛) to represent

the frame 𝑓𝑎
Segment vector sv𝑖 A vector to represent the segment 𝑠𝑖

aligned. This message alignment problem is discussed and solved

in Section 4.1.1. Table 1 summaries terminologies and notations in

this paper.

Messages in a channel can be used to perform regression testing

on the module that subscribes to the channel. For example, sup-

pose a driving recording 𝑅𝑎→𝑏 with𝑚 frames, the image channel

𝑐
𝑖𝑚𝑔

𝑎→𝑏
in 𝑅𝑎→𝑏 with𝑚 messages of collected images, and the traffic

light detection channel 𝑐
𝑙𝑖𝑔ℎ𝑡

𝑎→𝑏
with𝑚 messages of traffic light de-

tection results. When the traffic light detection system is updated,

by replaying the driving recording, the new version of traffic light

detection system can take images from the recording frames and

output detection results. Then, by comparing the new detection

results with the original detection results in the traffic light de-

tection channel 𝑐
𝑙𝑖𝑔ℎ𝑡

𝑎→𝑏
, we can check whether inconsistent model

predictions or discrepancies are introduced. For example, if a traffic

light detected as in red by the old traffic light detection system but

it is detected as in green by the new one, it implies a potential fault.

Other ADS modules can be tested in the same way.

3 PROBLEM FORMULATION
In this section, we formulate the test reduction problem and the

test prioritization problem in ADS testing.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yao Deng, Xi Zheng, Mengshi Zhang, Guannan Lou, and Tianyi Zhang

Feature 2 ():
Traffic light

Frame

Message #

Message #

Message #

Message #

: Is there any pedestrian crossing the road?

: Is the traffic light in red?

Frame Vectorization

Feature 1 ():
Pedestrian

t1 t2 t3 tnt4

Segments
 Reduced
Segments

Ordered
Segments

t1 ta tb tn

Recording frames with feature vectors

t1 t2 t3 tnt4

Aligned Driving
Recording

Driving Recording

Scenario Features

Semantic encoding Function Set Frame vector

Weights of

semantic encodings

Figure 2: The architecture of proposed regression testing reduction and prioritization method

Test reduction: Given a driving recording 𝑅𝑎→𝑏 , a test reduc-

tion method 𝛼 should output a list of recording segments 𝑆 =

{𝑠1, 𝑠2, ..., 𝑠𝑛}, denoted as 𝑆 = 𝛼 (𝑅𝑎→𝑏), where 𝑛 is the number

of recording segments. The total time cost of replaying record-

ing segments in 𝑆 should be less than the time cost of replaying

𝑅𝑎→𝑏 . Meanwhile, 𝑆 should be able to detect the same number of

faults as 𝑅𝑎→𝑏 . More specifically, test reduction shall comply with

two constraints:

∑𝑛
𝑖=1 (𝑇 (𝑠𝑖)) ≤ 𝑇 (𝑅𝑎→𝑏) and

∑𝑛
𝑖=1 (𝜏 (𝑠𝑖 , 𝑆𝑈𝑇)) =

𝜏 (𝑅𝐴→𝑏 , 𝑆𝑈𝑇), where 𝑛 is the number of recording segments, 𝑇

is a function to output replaying time cost of a given segment or

recording, 𝑆𝑈𝑇 is the testing module, and 𝜏 represents the number

of detected faults in the testing module using the input segment or

recording.

Test prioritization:Given𝑛 recording segments 𝑆={𝑠1, 𝑠2, ...𝑠𝑛}
that detect 𝑚 faults in the new version of an ADS module, test

prioritization aims to sort the recording segments and obtain a list

𝑃 = [𝑝1, 𝑝2, ..., 𝑝𝑛], where 𝑝𝑖 is the execution order of the recording

segment 𝑠𝑖 . For example, if 𝑝1 = 5, the recording segment 𝑠1 will be

the fifth to replay. The sorted recording segments should detect all

𝑚 faults as early as possible.

4 APPROACH
Figure 2 shows the overview of our approach, STRaP. First, given a

driving recording, STRaP performsmessage alignment across differ-

ent channels and converts messages in each time frame into vectors

based on a driving scene schema (Section 4.1). Second, STRaP slices

the given recording into segments based on the similarity of con-

secutive vectors. Long segments of the same continuous vectors

will be truncated and redundant segments will be removed (Sec-

tion 4.2). Third, the remaining segments are prioritized based on the

coverage of driving scene features and the rarity of these features

(Section 4.3).

4.1 Recording Alignment and Vectorization
4.1.1 Recording message alignment. As different modules in ADS

run asynchronously and in different frequencies, the timestamp and

the number of messages in different channels are not aligned. For

example, in Apollo, the localization module logs a message every

t0 t1 t2 t3

t0 t1 t3t2 t0 t1 t3t2

Step 1

Step 2

: Reference channel

: Target channel

: Reset timestamp

: Copy the message
and reset timestamp

Figure 3: An example of message alignment

0.1 second, while the prediction module logs a message every 0.15

second. Since the messages in different channels are not aligned,

raw driving recordings cannot be used as-is for comparison and

clustering. Therefore, we need to align them first.

We propose a novel message alignment algorithm to address this

issue. Specifically, we choose the channel containing most messages

as the reference channel to align messages of other channels (i.e.

target channels). Given the reference channel 𝐶𝑟𝑒 𝑓 , at each time

we retrieve two consecutive messages𝑚𝑖
𝑟𝑒 𝑓

and𝑚𝑖+1
𝑟𝑒 𝑓

from it and

obtain their creation timestamps 𝑡𝑖 and 𝑡𝑖+1. Then, for the target
channel, if the message is generated between (𝑡𝑖 , 𝑡𝑖+1), we reset the
timestamp of the message to 𝑡𝑖 , as shown in Step 1 of Figure 3 .

Then, we iterate over the reference channel and the target channel

to check whether at 𝑡𝑖 there is a corresponding message in the

target channel. If no message is found, we copy the prior message

at 𝑡𝑖−1 in the target channel and reset its timestamp to 𝑡𝑖 as shown

in Step 2 of Figure 3. In this way, we align all channels to ensure

that the aligned driving recording can be sliced to a list of frames.

4.1.2 Schema-based Recording Vectorization. Given an aligned driv-
ing recording, STRaP converts each frame into a vector v, where
each dimension represents specific semantic information in a driv-

ing scene. We formally define a schema for a variety of semantic

information in a driving scene, as shown in Figure 4. A driving

Scenario-Based Test Reduction and Prioritization for Multi-Module Autonomous Driving Systems ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

𝑠𝑐𝑒𝑛𝑒 := 𝜖 | 𝑜𝑏 𝑗𝑒𝑐𝑡 ; 𝑠𝑐𝑒𝑛𝑒
𝑜𝑏 𝑗𝑒𝑐𝑡 := 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑜𝑏 𝑗𝑒𝑐𝑡 | 𝑠𝑡𝑎𝑡𝑖𝑐 𝑜𝑏 𝑗𝑒𝑐𝑡

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑜𝑏 𝑗𝑒𝑐𝑡 := < 𝑎𝑐𝑡𝑜𝑟, 𝑎𝑐𝑡𝑖𝑜𝑛 >

𝑎𝑐𝑡𝑜𝑟 := vehicle | pedestrian | 𝑐𝑦𝑐𝑙𝑖𝑠𝑡 | unknown
𝑣𝑒ℎ𝑖𝑐𝑙𝑒 := truck | car | bus | van
𝑐𝑦𝑐𝑙𝑖𝑠𝑡 := bicyclist | motorcyclist | tricyclist
𝑎𝑐𝑡𝑖𝑜𝑛 := stop | cruise | change lane |

overtake | cross | ...
𝑠𝑡𝑎𝑡𝑖𝑐 𝑜𝑏 𝑗𝑒𝑐𝑡 := traffic light | stop sign | crosswalk |

intersection | traffic cone | ... | unknown
𝑡𝑟𝑎𝑓 𝑓 𝑖𝑐 𝑙𝑖𝑔ℎ𝑡 := < 𝑐𝑜𝑙𝑜𝑟, 𝑠ℎ𝑎𝑝𝑒, 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 >

𝑐𝑜𝑙𝑜𝑟 := red | green | yellow | black
𝑠ℎ𝑎𝑝𝑒 := square | round

𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 := vertical | horizontal

Figure 4: Part of the Driving Scene Schema

scene is represented as a list of static or dynamic objects. A dy-

namic object is defined of an actor (e.g., vehicles, pedestrians, etc.)

and an action of the actor (e.g., stop, cruise, etc.). A static object

can be traffic light, stop sign, crosswalk, interaction, traffic cone,

etc. An object can have subcategories and also properties. Our driv-

ing scene schema is designed as a general schema for all driving

systems. Yet one can customize it based on the concrete channel

messages logged by an ADS. For example, in Apollo, each detected

object is also logged with its coordinates and heading direction (if

movable). Such information can also be encoded as new dimensions

in the vector. The encoding function in our current implementation

only considers the existence of different types of objects and their

properties in a driving scene. Given channel messages in a time

frame, it parses the channel messages into a list of objects based on

the schema and flattens the list of extracted objects and their prop-

erties into a vector of integers using label encoding. Specifically, 0 is

a reserved code for none (i.e., undetected objects or properties). This

encoding function also enforces a specific ordering of objects based

on their types for the ease of vector comparison in the next step. For

example, consider a driving scene that contains vertically-aligned,

round traffic lights with the red light on. The corresponding feature

dimensions in the final vector is <22, 34, 39, 41> where 22 is the

unique code for traffic light, 34 is the code for red, 39 is the code

for the round shape, and 41 is the code for vertical alignment. If no

traffic light is detected, the four dimensions are all set to 0.

After vectorization, a driving recording is represented as a list of

vectors, where each vector corresponds to each time frame in the

recording. In regression testing, if one or more updated ADS mod-

ules are given as input, STRaP will further simplify the vectors by

only retaining features obtained from the channels that the updated

modules subscribe or publish to. For example, suppose only the traf-

fic light detection model is updated. Since the traffic light detection

model takes raw images as input and publishes prediction results to

the traffic light detection channel, features obtained from the traffic

light channel (e.g., traffic light color, shape, and orientation) will be

retained in the final vectors. To avoid over-simplifying the vectors,

we specify several features that should always be preserved in the

final vectors, including stop sign, intersection, and crosswalk.

Frame vectors:

Frame vectors
after smoothing:

Get majority vector

Sliding window

Figure 5: Smoothing frame vectors with a sliding window

4.2 Test Reduction
4.2.1 Segmentation. STRaP slices the given recording into seg-

ments based on the similarity of consecutive vectors. If vectors in a

consecutive time range are the same, then they will be sliced into

one single segment. For example, in a 1-hour driving recording, if

the ego-vehicle drives on a highway with no new objects detected

for 10 minutes, the vectors for each time frame in this 10 minutes

will be the same and therefore this 10 minutes will be sliced into a

single segment.

In practice, we noticed that due to noises in raw sensor data

and the uncertainty of DL models, channel messages often contain

glitches—exceptional predictions that only exist for a very short

period of time (e.g., 0.1 second). Such glitches often do not lead

to abnormal ADS behavior since they only exist very shortly and

ADS make decisions based on a sequence of time frames, not just

one. However, it has a significant impact on our segmentation

algorithm. Specifically, it will lead to many tiny segments since

a glitch will produce an exceptional vector that is different from

its preceding and following vectors. To handle this issue, STRaP

smooths glitches in the list of vectors using a sliding window, as

shown in Lines 4−16 of Algorithm 1. Figure 5 illustrates this process

with a sliding window of 3 vectors (𝑛 = 3). When smoothing is

finished, we split frames into segments. Each segment contains a

list of frames represented by the same vector, which is denoted as

the segment vector.

4.2.2 Segment Reduction. STRaP adopts two strategies to reduce

the length and the number of segments. First, for each driving

segment, as each frame in the segment is semantically equivalent

(i.e., represented by the same vector), STRaP only keeps the first 𝑛

frames in the segment. STRaP keeps n frames rather than one frame,

because certain ADS modules, such as the planning module, rely on

a sequence of frames to make a decision, not just one frame. In our

current implementation for Apollo, we experimented with different

number of frames and finally set n to 45 (roughly 3 seconds). Second,

as each segment reflects a unique driving scenario, we only keep

one unique segment and remove those segments with identical

segment vectors. By combining these test reduction strategies, we

obtain a list of reduced segments as test cases to evaluate ADS

modules.

4.3 Test Prioritization
Coverage-based prioritization methods have been widely investi-

gated in traditional software systems. These methods sort test cases

based on the total or additional coverage of program statements

or branches [4, 59]. Inspired by these methods, we propose the

notion of semantic coverage of different driving scenes by counting

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yao Deng, Xi Zheng, Mengshi Zhang, Guannan Lou, and Tianyi Zhang

Algorithm 1: Recording Segmentation and Reduction

Input : V: a list of frame feature vectors with size 𝑁 , 𝑁 is

the number of frames;

l: the clip length of a segment;

w: the sliding window size;

Output : S: a list of reduced driving segments;

SV: a list of segment vectors;

1 S𝑡𝑒𝑚𝑝 , SV𝑡𝑒𝑚𝑝 ← [];

2 // Initiate the start and end indices of a

segment

3 ss, se← 0;

4 // Create an empty list to save smoothed feature

vectors

5 V𝑡𝑒𝑚𝑝 ← [];

6 // Smoothing using sliding window

7 for 𝑖 ← 1 to 𝑁 do
8 // Obtain the window of frame feature vectors

9 if 𝑖 ≤ 𝑤
2
then

10 window← V [𝑖 : 𝑖 +𝑤 − 1];
11 else
12 if 𝑖 ≥ 𝑁 − 𝑤

2
then

13 window← V [𝑖 : 𝑖 +𝑤 − 1];
14 else
15 window← V [𝑖 − 𝑤

2
: 𝑖 + 𝑤

2
];

16 end
17 end
18 // Set V𝑡𝑒𝑚𝑝[𝑖] as the majority vector in the

window

19 V𝑡𝑒𝑚𝑝 .append(Majority(window));
20 end
21 // Recording segmentation

22 for 𝑖 ← 2 to 𝑁 do
23 if V [𝑖] ≠ V [𝑖 − 1] or 𝑖 == 𝑁 then
24 se← i ;

25 else
26 S𝑡𝑒𝑚𝑝 .append(V𝑡𝑒𝑚𝑝 [ss : se]);
27 SV𝑡𝑒𝑚𝑝 .append(V𝑡𝑒𝑚𝑝 [𝑖 − 1]);
28 // Reset segment indices

29 ss, se← 𝑖;

30 end
31 end
32 // Clip each segment to length 𝑙

33 foreach 𝑠 in S𝑡𝑒𝑚𝑝 do
34 𝑠 ← Clip(𝑠 , 𝑙);
35 end
36 // Drop segments with the same segment vector

37 S, SV← [];

38 for 𝑖 ← 1 to S𝑡𝑒𝑚𝑝 .length do
39 if !SV.contain(SV𝑡𝑒𝑚𝑝 [𝑖]) then
40 SV.append(SV𝑡𝑒𝑚𝑝 [𝑖]);
41 S.append(S𝑡𝑒𝑚𝑝 [𝑖]);
42 end
43 end
44 return S, SV;

Algorithm 2: Coverage and Rarity Based Prioritization

Input : V: a list of frame feature vectors with size 𝑁 ×𝑄 ; 𝑁

is the number of frames, 𝑄 is the number of

elements in a frame feature vector;

SV: a list of segment vectors with size𝑀 ×𝑄 ;𝑀 is

the number of segments after test reduction;

Output : p: a list of segments’ execution order with size𝑀 ;

1 weights← [];

2 /* Initialize a list weights to save the weights
of feature elements and a list rarity to save
the rarity degree of segments */

3 for 𝑖 ← 1 to 𝑄 do
4 weights [𝑖]← 0;

5 rarity [𝑖]← 0;

6 end
7 // Calculate weights of feature elements

8 for 𝑖 ← 1 to 𝑄 do
9 weights [𝑖]← 𝑁∑𝑁

𝑗=1 Nonzero(V[i][j])
;

10 end
11 // Weight normalization

12 for 𝑖 ← 1 to 𝑄 do
13 weights [𝑖]← weights[𝑖]∑𝑄

𝑗=1
weights[𝑗]

;

14 end
15 // Calculate rarity of each segment

16 for 𝑖 ← 1 to𝑀 do
17 rarity [𝑖]← ∑𝑄

𝑗=1
(weights[𝑗] × 𝑆𝑉 [𝑖] [𝑗]);

18 end
19 // Get indices of rarity after descending sorting

20 p← DescendingArgsort (rarity);
21 return p;

the number of non-zero feature dimensions in a vector. Note that

0 is a preserved code that indicates the corresponding object or

property does not exist. Intuitively, a driving scene with a traffic

light and a pedestrian in a crosswalk has a higher coverage than a

driving scene with only a pedestrian. However, only considering

the coverage of driving scenes may not be sufficient. Since ADSs are

equipped with DL models for perception and prediction, common

driving scenes are less likely to expose faults compared with rare

driving scenes or corner cases, since common driving scenes are

prevalent in training data. This phenomenon has been observed

by several existing works in ADS testing [52, 54]. Therefore, we

should also take into account the rarity of driving scenes when

prioritizing recording segments.

We define a new prioritization method that accounts for both the

coverage and rarity of different driving scenes. First, given a driving

recording represented by a list of frame vectors 𝑅 = {𝑣1, 𝑣2, ..., 𝑣𝑛},
we calculate the rarity score of each dimension in the vector by the

formula at Line 9 of Algorithm 2, where 𝑛 is the number of frames,

nonzero(𝑉 [𝑖] [𝑗]) = 1 when𝑉 [𝑖] [𝑗] ≠ 0. The formula presents that

the semantic information occurring less times in a driving recording

has a higher rarity score. The process is shown in Lines 8 − 10 of

Scenario-Based Test Reduction and Prioritization for Multi-Module Autonomous Driving Systems ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Algorithm 2. Then, we normalize weights to [0, 1] (Lines 12 − 14 of
Algorithm 2). Then, for each recording segment represented by its

segment vector, it sums the rarity score of non-zero feature elements

in the corresponding segment vector (Lines 16− 18 of Algorithm 2).

Finally, we sort the list of recording segments in descending order

based on the rareness of recording segments. The sorted indices of

the recording segments list is obtained as the execution orders of

recording segments.

5 EXPERIMENTS
5.1 Research Questions
To evaluate the effectiveness of STRaP, we conducted experiments

to answer the following research questions:

• RQ1: To what extent can the proposed test reduction method

reduce a given driving recording?

• RQ2: Compared with an original recording, how effective is

the reduced recording in detecting faults?

• RQ3: Compared with alternative prioritization methods, how

effective is the proposed test prioritization method in detect-

ing faults?

We implemented and evaluated STRaP on an industry-level ADS,

Apollo 5.0 [6]. We chose Apollo 5.0 since it is a mature version with

stable modules. We constructed our experiment as follows. First, we

collected driving recordings from a simulator SVL [47]. Then, we

injected mutants into the source code of Apollo to simulate the mod-

ule changes with faults. Third, we tested the traffic light detection

module, the obstacle detection module, the planning module and

the prediction module to build baselines. Finally, we applied STRaP

to split driving recordings, generated reduced and prioritized test

segments, and evaluated STRaP’s effectiveness.

5.2 Benchmark Creation
We created simulation environments using SVL [47]. SVL is a high

fidelity simulator to render driving environments, which provides

bridges to connect with ADSs such as Apollo and Autoware. The

rendered driving environment is fed to an ADS via the bridge. Then,

the ADS outputs control commands and sends them back to SVL

to render the next driving scene based on the control commands.

We collected driving recordings from three maps including Cube-

town, Gomentum, and Shalun in SVL to create three testing suites.

Specifically, Cubetown is a simple map containing a circular road.

Gomentum (as shown in Figure 6) and Shalun are reconstructed

maps based on real-world autonomous vehicle testing (e.g., on-road

testing) environments. These three maps cover the various driving

environments in urban and rural areas. The weather condition and

non-player characters (e.g., vehicles and pedestrians) behaviors are

randomly generated by the simulator in default settings. For each

test suite, the destination waypoints are randomly generated by

the simulator. To collect sufficient data, we manually inspected the

waypoints and chose those waypoints with the most complex trajec-

tories. When Apollo 5.0 was connected with SVL, we ran a recorder

in Apollo to record all channel messages generated during the sim-

ulation. In the end, collected test suites contain driving recordings

of different lengths (Cubetown: 84.14 seconds, Gomentum: 96.22

seconds, and Shalun 73.28 seconds). For each driving recording,

Figure 6: The Gomentum map in SVL

Figure 7: A bug detected by replaying the recording segment.
A new traffic light detection model classifies a red light as a
green light, which is inconsistent with the previous run

we applied proposed reduction method to obtain reduced driving

segments. Each driving segment is separately replayed to test the

ADS. To ensure that Apollo is in a correct state before replaying

each segment, STRaP replayed the one second before the segment

in the original recording to initialize modules and restore system

states.

We modified the source code of four modules to simulate the

module change with faults. For those modules under test, we im-

plemented a mutation testing [31] tool to randomly inject mutants

into the source code. The mutants include commonly used muta-

tion operators such as replacing arithmetic operators, changing

constant values, changing variable values, and changing condition

operators, where the generated mutants can simulate real faults
234

.

An example
5
is shown in Figure 8. For each module, 9 c++ files were

randomly selected for mutation and totally, 36 regression testing

benchmarks are created for each test suite.

5.3 Evaluation Metrics
For RQ1, we used the reduction ratio of testing time to reflect

the effectiveness of the test reduction method, which is defined as

the length of the reduced driving recording over the length of the

original driving recording.

2
Changing constant values:https://bit.ly/3Qsv7Cn

3
Changing condition statement: https://bit.ly/3w13194

4
Replacing arithmetic operators: https://bit.ly/3vZc2zG

5
https://bit.ly/3AgZyWz

https://bit.ly/3Qsv7Cn
https://bit.ly/3w13194
https://bit.ly/3vZc2zG
https://bit.ly/3AgZyWz

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yao Deng, Xi Zheng, Mengshi Zhang, Guannan Lou, and Tianyi Zhang

(a) A real fault of correcting buffer size

(b) A mutant of changing constant value

Figure 8: An example of real and artificial fault.

For RQ2, we used the fault coverage to reflect the quality of the
test reduction method, which is defined as the ratio of the number

of the detected faults in reduced driving recording over the num-

ber of the detected faults in the original driving recording. In our

work, we defined a fault as the inconsistency of a module output

before and after code changes (e.g., injecting a mutant). Since each

output is a driving segment, we applied the frame vectorization

approach to such output and retrieved the frame vector list rep-

resenting the output. For the outputs before and after change, we

compared each frame pair. Intuitively, if we find any mismatched

frame pairs, we claim an inconsistent case is detected. To reduce the

systematic noises introduced by Apollo 5.0, we recognized the in-

consistency only when more than 10% of frames were mismatched.

This treatment was proposed since our benchmark study showed

that the inconsistency rate could be up to 10% when we replicated

experiments on the benchmarks.

We calculated the number of faults from the reduced and the

original driving segments. For those detected faults, we manually

checked the visualized driving segments (before and after a ADS

module change) and removed semantically identical faults (e.g., red

traffic light is recognized as green, as shown in Figure 7) to improve

experiment quality.

For RQ3, we used metrics Top-K and Average Percentage of
Faults Detected (APFD) [51] to evaluate the effectiveness of test

prioritization. Given 𝑛 driving segments containing𝑚 bugs, Top-K

measures the amount of segments required for finding the first fault.

APFD measures the capability of fault detection per percentage of

test cases execution. The calculation of APFD is shown in Formula 1,

𝐴𝑃𝐹𝐷 = 1 −
∑𝑚
𝑖=1𝑇𝐹𝑖

𝑚𝑛
+ 1

2𝑛
(1)

where 𝑛 is the number of test recording segments,𝑚 is the number

of faults, 𝑇𝐹𝑖 is the index of the first segment that detects fault 𝑖 .

For example, if 𝑇𝐹2 = 3, it means the second fault is detected at the

first time when replaying the third prioritized recording segment.

A higher APFD value means the test suite can find all faults faster.

Figure 9: Test reduction percentage when updates are made
on different ADS modules

5.4 Experiment Settings
For test reduction experiments, we clipped each segment by keeping

its first 45 frames as explained in Section 4.2. To evaluate the test

prioritization method, we created three baselines. The first baseline

sorts the segments in chronological order (i.e., CH). The second

baseline randomly sorts the segments (i.e., RD). Specifically, we
randomly sorted the reduced segments by 100 times and evaluated

the average performances using Top-K and APFD. For the third

baseline, we first identified the code change in which function in the

source code. Then, we counted the number of calls on the changed

function for each recording segment based on the Apollo running

log data. Finally, we sorted recording segments in descending order

by the number of calls on the changed function (i.e., CC). In addition,
we marked the proposed semantic coverage method as SC and the

rarity and semantic coverage-based method as RSC in Section 6.

All experiments were conducted on a Ubuntu PC with Intel i7-8700

3.2GHz, 32GB of memory, and a NVIDIA GTX 1080Ti GPU.

6 RESULTS
6.1 RQ1: Test Reduction Capability
Figure 9 shows the test reduction percentage for three test suits on

four testing modules. The result shows that for the planning module

in Gomentum, the reduction ratio of testing time achieves 77%.

Similarly, the reduction ratio of testing time for the planningmodule

in Cubetown achieves 73%. A similar pattern can be observed for the

traffic light detection and obstacle detection modules in Gomentum

and Cubetown where the test reduction ratios are in general close

or above 50%.

We noticed the test reduction ratios are relatively lower for mod-

ules in Shalun (34% to 37%). We speculated the main reason is

that Shalun contains more complex driving scenarios and finer-

granularity frame feature encoding functions can be explored be-

sides just using existence of semantic information. We also noticed

that test reduction ratios for all test suites on the prediction module

are relatively lower than on other modules. We manually inspected

the output from the prediction module in Apollo and noticed that

the trajectory prediction for vehicles in the ADS tends to fluctuate

a lot. For instance, for a vehicle in front of the ego-vehicle, the

Scenario-Based Test Reduction and Prioritization for Multi-Module Autonomous Driving Systems ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

prediction module in one frame detects the vehicle is driving in

a straight line ahead, but in the next frame the prediction result

is the vehicle is turning right. Such dynamic prediction changes

across frames will result in different semantic feature encoding for

continuous frames for the prediction module thus impacting the

reduction ratios. Nevertheless, the reduction ratio is still promising

with the minimum reduction ratio of 37% in the prediction module.

6.2 RQ2 & RQ3: Test Effectiveness of Test
Reduction and Prioritization

In Table 2, we present the effectiveness of the reduced recording in

detecting faults on the left-hand side. For the traffic light detection

system, besides Shalun, in other two test suites, the fault coverage is

100%. For Shalun, the fault coverage is 92.3%which is also promising.

For the 6 missing faults, we manually inspected the traffic light

module output and noticed for vertical traffic light in Shalun (in

other two suites, the traffic lights are mostly horizontal), the module

output sometimes gave wrong bounding box for traffic lights in

a very short duration but the glitch is within our threshold for

smoothing (10%). This might contribute to the 6 missing faults as

such short-duration glitch is embedded in those driving frames

discarded. The 10% smoothing threshold is empirically retrieved as

the best value for Apollo through our pilot study. Overall, the fault

coverage achieves on average 98.8%, which proves the reduction

technique is effective across four modules in different test suites.

We also present on the right-hand side of Table 2 the comparison

results of our proposed SC and RSC against the baselines using Top

K and APFD metrics. For each module in a specific test suite, the

presented results are the averaged values on nine benchmarks. We

observed that RSC outperforms other baselines for all test suites for

prediction module both in Top K and APFD. Similarly, for planning

module, RSC also outperforms others both in Top K and APFD

except in the Shalun test suite for Top K (1.44 VS 1.0 both in CC and

SC). We speculated that even a specific driving segment contain-

ing the rarest semantic information are ranked as the top in RSC,
this driving segment does not contain faults. However, empirically

the correlation between semantic rareness and faults is very posi-

tive as shown in the table as a general trend. For obstacle module,

RSC has lower value in APFD than the baselines (0.47 VS 0.51 in

CH) in Gomentum. Similarly, in traffic light detection system, RSC
outperforms all other baselines in Top K, but for APFD has lower

value both in Gomentum (0.76 VS 0.82 in SC) and Shalun (0.54

VS 0.56 in SC). We believe because the semantic information in

both traffic light and obstacle detection modules are largely static.

Thus capturing rarest information in such modules has fluctuating

performance either scoring the best in Top K (capturing the first

error fastest) or APFD (capturing all the errors fastest). In summary,

on average, that our method RSC achieves the best performance

across all modules in different test suite with 1.58 for Top K and

0.61 for APFD.

7 RELATEDWORK
7.1 Test Reduction and Prioritization
Test reduction and prioritization are two approaches to reduce

the cost of regression testing. Test reduction, also called test mini-

mization [48], seeks to reduce the size of a test suite by removing

redundant test cases. Test prioritization [49] aims to maximize some

desired properties such as the rate of fault detection by sorting test

cases. The comprehensive overview of regression testing techniques

can be checked in the survey [59].

The typical test reduction techniques contain heuristic meth-

ods [13–15, 30] and genetic algorithm-based approaches [40, 42].

Different heuristics and search algorithms were applied to select a

minimal set of test cases that achieve the same test requirements

(e.g., branch coverage and code coverage) as the original test suite.

For test prioritization, many coverage-based prioritization meth-

ods [21, 22, 50] were proposed to maximize structural coverage

or code coverage early. The idea behind these methods is that the

early maximization of structure coverage will improve the chance

to detect faults early [59]. These existing test reduction and prior-

itization methods target on traditional programs. However, they

cannot be directly applied on ADSs with time series inputs. Inspired

by traditional coverage metrics, in this paper we propose rarity and

semantic coverage-based test prioritization method.

There are a few works related to test reduction and prioritiza-

tion on ADSs. In [39], Lu et al. conducted experiments to evaluate

the performances of five search algorithms for prioritizing driv-

ing scenarios and defined objective functions (e.g., the probability

of collision) for optimization. However, it does not account for

the coverage of different modules in an ADS, which limits its pri-

oritization capability. In our work, the test reduction process is

automated based on frame vectorization calculated by the data

in driving recordings. Furthermore, we evaluate our method on

four ADS modules. In [10], Birchler et al. proposed a prioritization

method to sort driving scenarios of lane-keeping systems. In their

work, testing suites are maps with different shapes, turns, and other

properties. They extracted features of maps and sorted them using

genetic algorithms. In our work, testing suites are different driv-

ing recordings and the testing modules are perception, prediction,

and planning modules. We split driving recordings to recording

segments for further test reduction and prioritization.

7.2 Autonomous Driving Testing
The research of testing on ADSs mainly focused on the generation

of rare or error-prone driving scenarios. In [54], Tian et al. proposed

to apply different affine transformations to generate new testing im-

ages to evaluate the steering angle prediction of CNN-based driving

models. In [60], Zhang et al. proposed to use Generative adversarial

networks (GANs) to generate high-quality testing images such as

driving scenes on rainy and snowy days. In [17], Deng et al. pro-

posed to generate driving scenarios based on traffic rules to test

driving models for speed prediction. In [62], Zhou et al. proposed

to use adversarial attack methods [18, 19] to generate adversarial

billboards in driving scenarios. In [23], Gambi et al. generated crash

driving scenarios based on police reports.

Several search-based methods were proposed to find and gener-

ate driving scenarios leading to crash or deviation of ego-vehicles [1,

2, 9, 12, 20, 24, 25, 37]. While most work targeted on E2E driving

models or Advanced driver-assistance systems (ADAS), some re-

cent works started investigating on industry-level ADSs. In [26],

Garcia et al. systematically analyzed bugs in Apollo and Autoware

based on their Github repository commits. In [37], Li et al. proposed

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yao Deng, Xi Zheng, Mengshi Zhang, Guannan Lou, and Tianyi Zhang

Table 2: Effectiveness of the test reduction and prioritization methods in detecting faults

Top K APFD
Test suite ADS Module Total faults Covered faults CH RD CC SC RSC CH RD CC SC RSC
Cubetown

Traffic light

13 13 (100%) 6.0 4.26 5.5 5.0 2.0 0.43 0.50 0.39 0.50 0.67
Gomentum 19 19 (100%) 2.0 3.57 6.14 1.0 1.0 0.50 0.50 0.25 0.82 0.76

Shalun 78 72 (92.3%) 1.83 1.46 2.17 2.0 1.33 0.56 0.50 0.51 0.56 0.54

Total 109 104 (95.4%) 3.28 3.10 4.60 2.67 1.44 0.50 0.50 0.38 0.63 0.66
Cubetown 49 49 (100%) 1.89 2.47 2.44 3.0 3.0 0.56 0.50 0.53 0.59 0.59
Gomentum 28 28 (100%) 3.67 1.74 2.22 1.0 1.0 0.51 0.50 0.34 0.44 0.47

Shalun 27 27 (100%) 2.0 1.17 1.22 1.0 1.0 0.48 0.50 0.50 0.53 0.53
Total

Obstacle

94 94 (100%) 2.52 1.79 1.96 1.67 1.67 0.52 0.50 0.46 0.52 0.53
Cubetown

Planning

42 42 (100%) 3.0 1.38 1.0 1.0 1.0 0.37 0.50 0.58 0.59 0.59
Gomentum 10 10 (100%) 7.0 4.48 7.14 7.0 2.0 0.19 0.50 0.17 0.19 0.81
Shalun 64 64 (100%) 3.0 1.60 1.0 1.0 1.44 0.49 0.50 0.56 0.53 0.58
Total 116 116 (100%) 4.33 2.49 3.05 3.0 1.48 0.35 0.50 0.44 0.44 0.66
Cubetown 34 34 (100%) 4.44 3.27 4.44 2.22 2.22 0.39 0.50 0.48 0.61 0.62
Gomentum 61 61 (100%) 1.22 1.13 1.11 1.0 1.0 0.50 0.50 0.50 0.50 0.51
Shalun 19 19 (100%) 4.63 5.82 6.50 3.75 2.0 0.55 0.50 0.45 0.61 0.64
Total

Prediction

114 114 (100.0%) 3.43 3.41 4.02 2.32 1.74 0.48 0.50 0.48 0.57 0.59
Total Total 433 428(98.8%) 3.39 2.70 3.41 2.42 1.58 0.46 0.50 0.44 0.54 0.61

AV-FUZZER to search safety violations of Apollo in the urban driv-

ing environment using genetic algorithms [36]. In [20], Ebadi et

al. searched testing scenarios for obstacle detection of Apollo. Our

work focus on test reduction and prioritization based on driving

recordings.

7.3 Driving Scenario Identification
Driving scenario identification is the task of identifying driving

scenarios and converting driving scenarios to vectors. After this,

a few downstream works such as scenario clustering and anom-

aly detection can be implemented. Currently, only a few works

in the software engineering community researched in this direc-

tion. In [52], Andrea et al. proposed a method to detect potential

misbehaviors of an ADS. The main idea is to train a reconstructor

to reconstruct the current driving scenario (single image or a se-

quence of images). If the reconstruction error exceeds a threshold,

the driving scenario is most likely an anomalous scenario, and the

autonomous vehicle may misbehave in the scenario. In this work,

we identify driving scenarios based on the module outputs in the

driving recording and convert each frame to a feature vector. We

then use feature vectors for testing reduction and prioritization.

Beyond SE community, some existing work targeted driving sce-

nario vectorization. In [29], Harder et al. proposed scenario2vector
to characterize a driving image from three aspects actors, actions,
and scene. Then based on the text description of the driving image,

key elements belonging to the above three categories are extracted

and converted to vectors or matrices. In our work, we also describe

key elements of driving scenarios from these three aspects. How-

ever, we use them to define a driving scene schema to describe

corresponding semantic information occurred in a driving scene.

On the other hand, we do not use them together to characterize

a driving scenario. For different testing modules, We extract data

from its publish channel messages to encode semantic information

described in the schema.

In [61], Zhao et al. proposed using Convolutional Neural Net-

work (CNN) and Gated recurrent unit (GRU) network [16] to learn

feature representations for driving videos. In [7], Balasubramanian

et al. proposed to use self-supervised learning [32] to learn better

feature representations for driving recordings. In our work, we treat

a driving recording as a combination of multiple driving scenarios.

We create and calculate frame-level features for driving recording

segmentation.

8 THREATS TO VALIDITY
We discuss threats to validity from three aspects external validity,

construct validity, and internal validity proposed in [57].

External Validity: The external validity is generalizability of

the proposed method. In this work, we conduct experiments on

an industry-level ADS Apollo to evaluate the effectiveness of the

proposed test reduction and prioritization methods. These methods

are also available for other multi-module ADSs that apply publish-

subscribe communication mechanism among modules and save

module outputs in driving recordings (e.g., Autoware [34] that

adopts ROS [3]).

Internal Validity: The internal validity is that in ADS modules

there are many non-deterministic algorithms, which makes module

outputs have slight differences when the module runs on the same

input multiple times [35]. This problem may introduce uncertain

faults when we compare the outputs of the old and new versions

of SUTs. To solve the problem, We use a sliding window-based

smoothing algorithm to remove noises. Furthermore, we set the

threshold to evaluate inconsistent outputs as 10% to ensure the

detected inconsistent output is caused by the new version of SUT.

In this work, we inject mutants into Apollo source code to create

regression benchmarks. The effectiveness of mutation testing are

suitable for software testing experimentation [5, 33]. In this way,

we explore common faults in different ADS modules and ensure

every time we only change one file in an ADS module. We do

Scenario-Based Test Reduction and Prioritization for Multi-Module Autonomous Driving Systems ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

not use commits in Apollo Github commit history as regression

benchmarks because most commits are relevant to the update of

multiple modules.

Construct Validity: The construct validity is that we conducted
experiments on Apollo 5.0, not Apollo 6.0 that is used in other pa-

pers [37]. The reason is that now for Apollo 6.0, the camera-based

perception module does not work and LiDAR-based perception

is unstable in SVL
6
. In this work, we evaluated our methods on

three maps. We tested two other maps (i.e., ‘Borregas Avenue’ and

‘San Francisco’) but we found that Apollo is not able to control the

ego-vehicle stably. This issue has been reported by Apollo users
78
.

Therefore, we excluded these two maps from the experiment. We

will keep tracking these issues and try to include more maps for

experiments in the future work. For mutant rejection, we did not

directly mutate DL models in Apollo because the models are en-

capsulated in binary files. Alternatively, we mutated C++ files that

are related to DL model configuration and model input/output to

simulate bugs in DL models. For example, by mutating the output

of the obstacle detection model, we can simulate incorrect model

predictions.

9 CONCLUSION
This paper proposes STRaP to reduce the cost of regression testing

in industry-scale multi-module ADSs. Since such ADSs are largely

built upon publish-subscribe mechanism, we define a driving scene

schema and for different modules under test, we extract frame

data from its publish channels and encode semantic information

described in the schema as frame feature vectors. Based on such

feature vectorization, we propose a test reduction algorithm to

split original driving recordings to recording segments, each of

which reflects a unique driving scenario. We also propose semantic

coverage based and rarity based test prioritization to order the

reduced recording segments as test inputs for ADS modules. In our

work, testing suites are different driving recordings and the test

modules are perception, prediction, and planning modules in ADSs.

In our evaluation using an industry-level multi-module ADS and

three road maps in diverse regression testing settings, we prove

STRaP is able to significantly reduce the length of original driving

recordings (34% to 77%), has promising fault coverage of 98.8%, and

achieves 1.58 for Top K and 0.61 for APFD beating the state-of-the-

art baselines. This work is a pioneering work to utilize frame-level

features for driving recording segmentation.With manually defined

driving scene feature schema, we have achieved promising results

in both test reduction and prioritization. As future directions for SE

community, based on this open-sourced work, automated feature

extraction from driving recording can be explored along with more

intelligent smoothing algorithms.

10 ACKNOWLEDGEMENTS
This work is in part supported by an Australian Research Council

(ARC) Discovery Project (DP210102447), an ARC Linkage Project

(LP190100676), and a DATA61 project (Data61 CRP C020996).

6
https://bit.ly/3bVX2LR

7
https://bit.ly/3zUGmMP

8
https://bit.ly/3di6slc

REFERENCES
[1] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2018.

Testing vision-based control systems using learnable evolutionary algorithms.

In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 1016–1026.

[2] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C Briand, and

Thomas Stifter. 2018. Testing autonomous cars for feature interaction failures

using many-objective search. In 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 143–154.

[3] Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven Timper-

ley. 2020. A study on challenges of testing robotic systems. In 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST).
IEEE, 96–107.

[4] KK Aggrawal, Yogesh Singh, and Arvinder Kaur. 2004. Code coverage based

technique for prioritizing test cases for regression testing. ACM SIGSOFT Software
Engineering Notes 29, 5 (2004), 1–4.

[5] James H Andrews, Lionel C Briand, and Yvan Labiche. 2005. Is mutation an

appropriate tool for testing experiments?. In Proceedings of the 27th international
conference on Software engineering. 402–411.

[6] ApolloAuto. 2021. Apollo. https://bit.ly/2E3vWyo.

[7] Lakshman Balasubramanian, Jonas Wurst, Michael Botsch, and Ke Deng. 2021.

Traffic Scenario Clustering by Iterative Optimisation of Self-Supervised Networks

Using a Random Forest Activation Pattern Similarity. In 2021 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 682–689.

[8] Rebecca Bellan. 2021. Waymo launches robotaxi service in San Francisco. http:

//shorturl.at/dltFY.

[9] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2016.

Testing advanced driver assistance systems using multi-objective search and

neural networks. In Proceedings of the 31st IEEE/ACM international conference on
automated software engineering. 63–74.

[10] Christian Birchler, Sajad Khatiri, Pouria Derakhshanfar, Sebastiano Panichella,

and Annibale Panichella. 2021. Automated test cases prioritization for self-driving

cars in virtual environments. arXiv preprint arXiv:2107.09614 (2021).
[11] Neal E. Boudette. 2017. Tesla’s Self-Driving System Cleared in Deadly Crash.

https://nyti.ms/2iZ93SL.

[12] Alessandro Calò, Paolo Arcaini, Shaukat Ali, Florian Hauer, and Fuyuki Ishikawa.

2020. Generating avoidable collision scenarios for testing autonomous driving

systems. In 2020 IEEE 13th International Conference on Software Testing, Validation
and Verification (ICST). IEEE, 375–386.

[13] Tsong Yueh Chen and Man Fai Lau. 1970. Heuristics towards the optimization

of the size of a test suite. WIT Transactions on Information and Communication
Technologies 14 (1970).

[14] Tsong Yueh Chen and Man Fai Lau. 1998. A new heuristic for test suite reduction.

Information and Software Technology 40, 5-6 (1998), 347–354.

[15] Tsong Yueh Chen and Man Fai Lau. 1998. A simulation study on some heuristics

for test suite reduction. Information and Software Technology 40, 13 (1998), 777–

787.

[16] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555 (2014).
[17] Yao Deng, Guannan Lou, Xi Zheng, Tianyi Zhang, Miryung Kim, Huai Liu, Chen

Wang, and Tsong Yueh Chen. 2021. BMT: behavior driven development-based

metamorphic testing for autonomous driving models. In 2021 IEEE/ACM 6th
International Workshop on Metamorphic Testing (MET). IEEE, 32–36.

[18] Yao Deng, Tiehua Zhang, Guannan Lou, Xi Zheng, Jiong Jin, and Qing-Long Han.

2021. Deep learning-based autonomous driving systems: a survey of attacks and

defenses. IEEE Transactions on Industrial Informatics 17, 12 (2021), 7897–7912.
[19] Yao Deng, Xi Zheng, Tianyi Zhang, Chen Chen, Guannan Lou, and Miryung

Kim. 2020. An analysis of adversarial attacks and defenses on autonomous

driving models. In 2020 IEEE international conference on pervasive computing and
communications (PerCom). IEEE, 1–10.

[20] Hamid Ebadi, Mahshid Helali Moghadam, Markus Borg, Gregory Gay, Afonso

Fontes, and Kasper Socha. 2021. Efficient and Effective Generation of Test Cases

for Pedestrian Detection-Search-based Software Testing of Baidu Apollo in SVL.

In 2021 IEEE International Conference on Artificial Intelligence Testing (AITest).
IEEE, 103–110.

[21] Sebastian Elbaum, AlexeyMalishevsky, andGregg Rothermel. 2001. Incorporating

varying test costs and fault severities into test case prioritization. In Proceedings
of the 23rd International Conference on Software Engineering. ICSE 2001. IEEE,
329–338.

[22] Sebastian Elbaum, Alexey G Malishevsky, and Gregg Rothermel. 2000. Priori-

tizing test cases for regression testing. In Proceedings of the 2000 ACM SIGSOFT
international symposium on Software testing and analysis. 102–112.

[23] Alessio Gambi, Tri Huynh, and Gordon Fraser. 2019. Generating effective test

cases for self-driving cars from police reports. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 257–267.

https://bit.ly/3bVX2LR
https://bit.ly/3zUGmMP
https://bit.ly/3di6slc
https://bit.ly/2E3vWyo
http://shorturl.at/dltFY
http://shorturl.at/dltFY
https://nyti.ms/2iZ93SL

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yao Deng, Xi Zheng, Mengshi Zhang, Guannan Lou, and Tianyi Zhang

[24] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically testing self-

driving cars with search-based procedural content generation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
318–328.

[25] Alessio Gambi, Marc Müller, and Gordon Fraser. 2019. Asfault: Testing self-

driving car software using search-based procedural content generation. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). IEEE, 27–30.

[26] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Alfred

Chen. 2020. A comprehensive study of autonomous vehicle bugs. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering. 385–396.

[27] The Guardian. 2021. Driverless electric bus hits the road in Spanish city of Málaga.

shorturl.at/ovwH3.

[28] Junyao Guo, Unmesh Kurup, and Mohak Shah. 2019. Is it safe to drive? an

overview of factors, metrics, and datasets for driveability assessment in au-

tonomous driving. IEEE Transactions on Intelligent Transportation Systems 21, 8
(2019), 3135–3151.

[29] Aron Harder, Jaspreet Ranjit, and Madhur Behl. 2021. Scenario2Vector: scenario

description language based embeddings for traffic situations. In Proceedings of
the ACM/IEEE 12th International Conference on Cyber-Physical Systems. 167–176.

[30] M Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. 1993. A methodology for

controlling the size of a test suite. ACM Transactions on Software Engineering and
Methodology (TOSEM) 2, 3 (1993), 270–285.

[31] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of

mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.

[32] Longlong Jing and Yingli Tian. 2020. Self-supervised visual feature learning

with deep neural networks: A survey. IEEE transactions on pattern analysis and
machine intelligence 43, 11 (2020), 4037–4058.

[33] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and

Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software

testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654–665.

[34] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato

Hirabayashi, Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii,

and Takuya Azumi. 2018. Autoware on board: Enabling autonomous vehicles

with embedded systems. In 2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS). IEEE, 287–296.

[35] Philip Koopman and Michael Wagner. 2016. Challenges in autonomous vehicle

testing and validation. SAE International Journal of Transportation Safety 4, 1

(2016), 15–24.

[36] Manoj Kumar, Mohammad Husain, Naveen Upreti, and Deepti Gupta. 2010.

Genetic algorithm: Review and application. Available at SSRN 3529843 (2010).
[37] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Ku-

mar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar Iyer. 2020. AV-FUZZER:

Finding safety violations in autonomous driving systems. In 2020 IEEE 31st Inter-
national Symposium on Software Reliability Engineering (ISSRE). IEEE, 25–36.

[38] Guannan Lou, Yao Deng, Xi Zheng, Tianyi Zhang, and Mengshi Zhang. 2021. An

investigation into the state-of-the-practice autonomous driving testing. arXiv
preprint arXiv:2106.12233 (2021).

[39] Chengjie Lu, Huihui Zhang, Tao Yue, and Shaukat Ali. 2021. Search-Based

Selection and Prioritization of Test Scenarios for Autonomous Driving Systems.

In International Symposium on Search Based Software Engineering. Springer, 41–
55.

[40] Xue-ying Ma, Bin-kui Sheng, and Cheng-qing Ye. 2005. Test-suite reduction using

genetic algorithm. In International Workshop on Advanced Parallel Processing
Technologies. Springer, 253–262.

[41] Alexis C. Madrigal. 2017. INSIDE WAYMO’S SECRET WORLD FOR TRAINING

SELF-DRIVING CARS. https://shorturl.at/xDEF2.

[42] Nashat Mansour and Khalid El-Fakih. 1999. Simulated annealing and genetic

algorithms for optimal regression testing. Journal of Software Maintenance:

Research and Practice 11, 1 (1999), 19–34.
[43] Alan Ohnsman. 2021. Robotruck Startup Gatik Making Delivery Runs For Wal-

mart Without Humans At The Wheel. shorturl.at/xBGY0.

[44] Ðorđe Petrović, Radomir Mijailović, and Dalibor Pešić. 2020. Traffic accidents

with autonomous vehicles: type of collisions, manoeuvres and errors of conven-

tional vehicles’ drivers. Transportation research procedia 45 (2020), 161–168.
[45] New York Post. 2022. Tesla recalls 579K more cars — fourth over the last 2 weeks.

shorturl.at/etGMQ.

[46] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, Andrew Y Ng, et al. 2009. ROS: an open-source Robot Operating

System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.
[47] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke,

Mārtin, š Možeiko, Eric Boise, Geehoon Uhm, Mark Gerow, Shalin Mehta, et al.

2020. Lgsvl simulator: A high fidelity simulator for autonomous driving. In 2020
IEEE 23rd International conference on intelligent transportation systems (ITSC).
IEEE, 1–6.

[48] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. 1998. An

empirical study of the effects of minimization on the fault detection capabilities

of test suites. In Proceedings. International Conference on Software Maintenance
(Cat. No. 98CB36272). IEEE, 34–43.

[49] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. 1999.

Test case prioritization: An empirical study. In Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Maintenance for
Business Change’(Cat. No. 99CB36360). IEEE, 179–188.

[50] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.

2001. Prioritizing test cases for regression testing. IEEE Transactions on software
engineering 27, 10 (2001), 929–948.

[51] Praveen Ranjan Srivastava. 2008. Test case prioritization. Journal of Theoretical
& Applied Information Technology 4, 3 (2008).

[52] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Mis-

behaviour prediction for autonomous driving systems. In Proceedings of the
ACM/IEEE 42nd international conference on software engineering. 359–371.

[53] Yun Tang, Yuan Zhou, Tianwei Zhang, Fenghua Wu, Yang Liu, and Gang Wang.

2021. Systematic testing of autonomous driving systems using map topology-

based scenario classification. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 1342–1346.

[54] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated

testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303–314.

[55] Waymo. 2021. Waymo Safety Report. Technical Report. Waymo.

[56] Kale Wiggers. 2020. Waymo’s driverless cars were involved in 18 accidents over

20 months. https://bit.ly/3w2KHMU.

[57] C. Wohlin, P. Runeson, M. Hst, M. Ohlsson, B. Regnell, and A. Wessln. 2012.

Experimentation in Software Engineering. Springer Publishing Company, Incorpo-

rated.

[58] W Eric Wong, Joseph R Horgan, Saul London, and Hiralal Agrawal. 1997. A

study of effective regression testing in practice. In PROCEEDINGS The Eighth
International Symposium On Software Reliability Engineering. IEEE, 264–274.

[59] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and

Prioritization: A Survey. Softw. Test. Verif. Reliab. 22, 2 (mar 2012), 67–120.

[60] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.

2018. Deeproad: Gan-based metamorphic testing and input validation framework

for autonomous driving systems. In 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 132–142.

[61] Jinxin Zhao, Jin Fang, Zhixian Ye, and Liangjun Zhang. 2021. Large Scale Au-

tonomous Driving Scenarios Clustering with Self-supervised Feature Extraction.

In 2021 IEEE Intelligent Vehicles Symposium (IV). IEEE, 473–480.
[62] Husheng Zhou,Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei Yu, Lingming

Zhang, and Cong Liu. 2020. Deepbillboard: Systematic physical-world testing of

autonomous driving systems. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 347–358.

shorturl.at/ovwH3
https://shorturl.at/xDEF2
shorturl.at/xBGY0
shorturl.at/etGMQ
https://bit.ly/3w2KHMU

	Abstract
	1 Introduction
	2 Background
	2.1 ADS Testing Practices in the Industry
	2.2 Multi-Module ADSs
	2.3 Regression Testing on Driving Recordings

	3 Problem Formulation
	4 Approach
	4.1 Recording Alignment and Vectorization
	4.2 Test Reduction
	4.3 Test Prioritization

	5 Experiments
	5.1 Research Questions
	5.2 Benchmark Creation
	5.3 Evaluation Metrics
	5.4 Experiment Settings

	6 Results
	6.1 RQ1: Test Reduction Capability
	6.2 RQ2 & RQ3: Test Effectiveness of Test Reduction and Prioritization

	7 Related Work
	7.1 Test Reduction and Prioritization
	7.2 Autonomous Driving Testing
	7.3 Driving Scenario Identification

	8 Threats to Validity
	9 Conclusion
	10 Acknowledgements
	References

