
eGEN: An Energy-saving Modeling Language and Code Generator for
Location-sensing of Mobile Apps

KOWNDINYA BOYALAKUNTLA, Indian Institute of Technology Tirupati, India

MARIMUTHU C, National Institute of Technology Karnataka, India

SRIDHAR CHIMALAKONDA, Indian Institute of Technology Tirupati, India

K. CHANDRASEKARAN, National Institute of Technology Karnataka, India

The demand for reducing the energy consumption of location-based applications has increased in recent years. The
abnormal battery-draining behavior of GPS makes it difficult for the developers to decide on battery optimization
during the development phase directly. It will reduce the burden on developers if battery-saving strategies are
considered early, and relevant battery-aware code is generated from the design phase artifacts. Therefore, we aim to
develop tool support, eGEN, to specify and create native location-based mobile apps. eGEN consists of Domain-specific
Modeling Language (DSML) and a code generator for location-sensing. It is developed using Xtext and Xtend as an
Eclipse plug-in, and currently, it supports native Android apps. eGEN is evaluated through controlled experiments by
instrumenting the generated code in five location-based open-source Android applications. The experimental results
show 4.35 minutes of average GPS reduction per hour and 188 mA of average reduction in battery consumption
while showing only 97 meters degrade in location accuracy over 3 kilometers of a cycling path. Hence, we believe
that code generated by eGEN would help developers to balance between energy and accuracy requirements of
location-based applications. The source code, documentation, tool demo video1, and tool installation video2are
available at https://github.com/Kowndinya2000/egen.

Keywords: domain-specific language, code generator, energy-saving location-sensing, modeling adaptive strategies,
mobile apps

1 INTRODUCTION

In recent years, software energy consumption is becoming a critical non-functional requirement for software
developers [11, 32, 44]. The investigations by Pinto and Castor [49], and Manotas et al. [35] highlight the
significance of reducing software energy consumption. Especially in the mobile application domain, reducing
the abnormal energy consumption is a concern for both users and developers. Cruz and Abreu [12] have
performed an empirical evaluation on six popular android applications namely Loop - Habit Tracker, GnuCash
and so on to find performance-related code smells that cause heavy battery depletion. They reported that
smartphone’s battery life can be extended upto an hour, if apps are developed by implementing energy-aware
practices. This motivates the need for further research towards making energy efficient mobile applications.
Research efforts were initially focused on energy measurement [19], energy profiling [23], and energy bugs
identification [33, 45]. Of late, the focus has been shifted to energy-saving solutions [37, 54], and automated
repairing of energy bugs [1, 13, 38]. Recently, the research community has provided several frameworks
1https://youtu.be/J-ZmzEBpC8Y
2Part1 of installation at https://youtu.be/wyDfAoAlP-c and part2 of installation at https://youtu.be/o65Fu-xlByI

Authors’ addresses: Kowndinya Boyalakuntla, Indian Institute of Technology Tirupati, Settipalli Post, Tirupati – 517
506, India, cs17b032@iittp.ac.in; Marimuthu C, National Institute of Technology Karnataka, Surathkal, Mangalore, India,
cs15fv08.muthu@nitk.edu.in; Sridhar Chimalakonda, Indian Institute of Technology Tirupati, Settipalli Post, Tirupati – 517
506, India, ch@iittp.ac.in; K. Chandrasekaran, National Institute of Technology Karnataka, Surathkal, Mangalore - 575 025,
India, kchnitk@ieee.org.
Manuscript submitted to ACM 1

ar
X

iv
:2

20
4.

03
85

8v
1

 [
cs

.S
E

]
 8

 A
pr

 2
02

2

HTTPS://ORCID.ORG/0000-0002-3112-9718
HTTPS://ORCID.ORG/0000-0002-4905-0530
HTTPS://ORCID.ORG/0000-0003-0818-8178
https://github.com/Kowndinya2000/egen
https://youtu.be/J-ZmzEBpC8Y
https://youtu.be/wyDfAoAlP-c
https://youtu.be/o65Fu-xlByI
https://orcid.org/0000-0002-3112-9718
https://orcid.org/0000-0002-4905-0530
https://orcid.org/0000-0003-0818-8178

2 Kowndinya and Marimuthu, et al.

[7, 32, 48] to reduce energy consumption of Android apps. Notably, the research work by Georgiou et al.
[18] highlights the list of techniques and tools to adopt in the software development life cycle to improve
energy efficiency.

The energy bugs are induced in the mobile domain by the usage of energy-hungry components such
as GPS, GPU, camera, gyroscope, and other smartphone sensors [46]. Notably, the energy consumed by
location-based apps may drain the mobile battery quickly if GPS is not appropriately handled by the
deveopers[6]. Huang et al. [24] discussed about the transformative evolution of location based services in
mobile applications ranging from navigation, health care and social networking to assistive technologies and
disaster management.

The ubiquitous presence of location-based apps makes the creation of GPS efficient patterns even more
challenging[8, 16]. To ease out developers’ challenges in reducing GPS consumption, a potential strategy
is to consider energy-saving decisions during the design phase of software development. In addition, it is
important to enable provision for developers to consider energy-saving decisions independent of the location
sensing libraries and code patterns.

The existing approaches primarily consider energy-saving solutions at source code level [12, 14, 50, 51].
However, they do not consider energy-saving strategies during early stages of software development such as
design, which might help developers handle energy-related problems. Hence, an appropriate tool support
to consider energy-saving solutions at design time could help developers handle energy-related problems
more clearly. In addition, automatically generating suitable battery-aware code from design phase artifacts
might increase the developer’s productivity. To the best of our knowledge, tool support for considering
energy bugs related to location-based apps at the design phase is not widely investigated in the literature.
Therefore, in this paper, we aim at investigating the possibility of having tool support for reducing the
battery consumption of location-based smartphone applications. Therefore, we aim to develop a tool, eGEN,
that consists of DSML and code generator for location-based Android applications. The contributions of
this paper are three-fold:

(1) A Textual Domain-specific Modeling Language (DSML) for creating battery-aware and self-adaptive
energy-saving location sensing-strategies.

(2) A code generator to generate the native battery-aware Java code from self-adaptive energy-saving
location sensing-strategies.

(3) Controlled experiment based evaluation of the eGEN generated code on five open-source location-based
Android applications, where eGEN’s adaptive code produced a savings of 188mA in battery and 4.35
minute reduction in GPS usage per hour at the expense of 97 meters degrade in accuracy over a
distance of 3060 meters. We have done evaluation through eGEN and non-eGEN versions.

eGEN is designed to consider the impact of different context information such as battery charging state,
battery level, foreground or background app execution, and sensing-interval on energy-saving. Further, the
code generator of eGEN generates the Java code that could be added to the existing Android repositories
to make them battery-aware. eGEN is developed using Xtext and Xtend as an Eclipse plugin. The Xtext
is used to define the language elements, and Xtend is used to define the code generator. eGEN currently
supports the Android platform and covers the battery manager API, fused location provider client, and

Manuscript submitted to ACM

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps 3

Android activity life cycle. In future, we aim to support the iOS platform as well. The source code of eGEN
is available on GitHub 3 as an open-source repository for others to use.

The efficacy of eGEN has been evaluated through controlled experiments. We have selected five open-
source Android applications that primarily use the location for its operation. We have used DSML of eGEN
to specify self-adaptive location-sensing for all subject applications. The code generated using eGEN has
been instrumented to the subject application to check the improvements in energy-saving.

The controlled experiments were conducted on eGEN and non-eGEN versions of the subject applications.
The Google Battery Historian was used to estimate the GPS active time and battery consumption.

The experiment results show that eGEN provides the ability to specify self-adaptive location-sensing
strategies. In addition, the code generator can generate Java code that can be instrumented to the existing
apps without affecting its existing functionalities. The subject applications were instrumented using the
generated code and executed on Nokia C34 smartphone running on Android 10 platform. Overall, the eGEN
version of the subject application shows reduction of 4.35 minutes in GPS active time and 188 mA in battery
consumption. As observed from the results, eGEN generated code show reduced battery usage and negligible
accuracy degradation, showing initial promise and the need for further research.

The rest of the paper is organized as follows: we provide the necessary background information about
location-based apps along with a motivating scenario in Section 2. Section 3 presents the complete description
of eGEN’s design, which is then followed by tool evaluation in Section 4. Threats to validity and related
work are discussed in Sections 5 and 6 respectively. Finally, with pointers to the future work, the paper is
concluded in Section 7.

2 BACKGROUND AND MOTIVATING EXAMPLE

This section presents the background information about the location-based application, the need for self-
adaptive location-sensing, and a motivating example.

2.1 Location-based Applications

User location is important context information [53] to provide location-based services to smartphone users.
Smartphone users widely use Location-Based Services (LBS) [15] for map navigation, discovering nearest
places of interest, activity or mobility tracking, trajectory monitoring, location-based social networking,
games, advertisement, and weather forecasting [24]. New generation smartphones can handle all types of
location-based services with their rich hardware and software capabilities [56]. The smartphones are equipped
with GPS, WiFi [10], Cell ID [25], accelerometer, magnetometer, barometer, gyroscope [58] to position the
users’ current location. Global Positioning System (GPS) [22] is widely used to locate the current location
of the user. GPS provides high accuracy of user location compared to other location-sensing techniques such
as WiFi positioning [10] and Cell ID based positioning [25]. One downside of GPS is its abnormal amount
of energy consumption for its operation [41]. Therefore, GPS usage must be reduced [42] to extend the
smartphone’s battery life. Unfortunately, GPS usage is a inevitable requirement in map navigation, activity
tracking, and trajectory monitoring applications.

3https://github.com/Kowndinya2000/egen
4https://www.nokia.com/phones/en_in/nokia-c-3?sku=SP01Z01Z2428Y

Manuscript submitted to ACM

https://github.com/Kowndinya2000/egen
https://www.nokia.com/phones/en_in/nokia-c-3?sku=SP01Z01Z2428Y

4 Kowndinya and Marimuthu, et al.

The following strategies were found in the literature to address the abnormal battery draining issues
of GPS: (1) GPS Alternatives, (2) Movement Detection, (3) Collaborative Strategies, and (4) Adaptive
Strategies. GPS Alternatives related research efforts use the energy-efficient alternatives such as Cell-ID
sequencing matching [43], GSM positioning [25], and WiFi-based positioning [10, 36]. These approaches are
affected by poor location accuracy, which is not suitable for continuous location-sensing. The research efforts
under Movement Detection category includes approaches such as scheduling of location updates [28], turning
off GPS when not available [42], and postponing GPS updates [9]. These approaches either turn off the GPS
updates or delay them by combining inertial sensors like accelerometer, compass, gyroscope, barometer, etc.
In Collaborative Strategies, the location coordinates are fetched from the other location-based apps [34] or
neighboring devices [57]. In Adaptive Strategies several research efforts uses energy-accuracy requirements
[31, 59], indoor-outdoor detection [6], and context information [27] to dynamically switch between location
sources. These adaptive strategies dynamically select a suitable location strategy based on the dynamic
accuracy and energy requirements. Adaptive strategies are better approaches than other approaches as they
consider balancing energy and accuracy requirements of location-based services.

As reported in Fonseca et al. [17], dynamic adaptability could be one of the important practices to
improve software energy efficiency. Therefore, introducing dynamic adaptability in existing location-based
services would reduce the abnormal battery consumption while satisfying accuracy requirements. Nonetheless,
developing such self-adaptive behavior is a difficult task for the developers [29] as it has to deal with a
dynamically changing environment. In particular, identifying relevant context information for energy-saving
at run-time is not a straightforward task [5]. On the other hand, few researchers have proposed generic
solutions to address energy-efficiency issues of Android applications [7, 40] by combining self-adaptivity
and battery awareness. In this paper, we have investigated the impact of a concept called “self-adaptive
location-sensing" by combining dynamic adaptability and battery awareness. The fundamental idea of self-
adaptive location-sensing is to enforce energy-saving policies in the following situations: (1) when the battery
is discharging, and the battery level is critical, (2) when the app is in the background.

2.2 A Motivating Example

This subsection presents the need for self-adaptive location-sensing through an android application named
Speedometer5. It calculates the vehicle speed on a real-time basis using GPS. This application uses system
location service and requests for location updates for a specific sensing interval. As highlighted in Figure
2, the Speedometer app uses fixed sensing interval. The sensing interval (time gap between two location
calls) plays a significant role in the battery consumption by GPS. The lesser the sensing interval results
in higher location accuracy and more battery consumption. In the case of Speedometer app, the sensing
interval is maintained less and fixed for more accuracy. This usage scenario is suitable when the battery
level is high and connected to the charger. The fixed sensing interval might deplete the battery quickly
if the battery is discharging. The quick battery discharge problem could be addressed by increasing the
sensing interval. However, the location accuracy might degrade if the sensing interval is increased randomly.
Hence, the sensing interval must be made adaptive in response to the change in battery level to balance
location accuracy and battery consumption requirements. We have experimented with a speedometer app to

5https://github.com/iAhmedAwad/Speedometer

Manuscript submitted to ACM

https://github.com/iAhmedAwad/Speedometer

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps 5

Fig. 1. Static location-sensing
Fig. 2. Self-adaptive location-sensing

calculate the GPS active time, battery consumption, and distance measured. As shown in Figure 3, the
original Speedometer app shows 2092838 ms of GPS active timehr, 718.46 mA battery consumption, and
2996 m estimated distance.

To illustrate the efficacy of self-adaptive location-sensing, we instrumented the Speedometer app source
code to make it battery-aware. In Figure 1, the lines of code inside the dashed red box represent the
self-adaptive code added to the original version of the Speedometer app. Predominantly, the function
𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑇 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑃 𝑜𝑖𝑛𝑡𝑠 takes the battery thresholds as 𝐻𝐼𝐺𝐻, 𝑀𝐸𝐷𝐼𝑈𝑀, 𝐿𝑂𝑊 , depending on the
remaining battery level. The functions 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑃 𝑜𝑙𝑖𝑐𝑦_𝐻_𝐷_𝐹 determine the dynamic sensing interval
by considering the base sensing interval and decreasing factor. Here, 𝐻 refers to the battery state HIGH, 𝐷

refers to battery status Discharging, 𝐹 refers to the application state Foreground. In Figure 1, the arrow
points to the function 𝑟𝑒𝑡𝑢𝑟𝑛𝐿𝑒𝑣𝑒𝑙 calculates the dynamic location-sensing interval based on the context
values. We have also defined other functions 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑃 𝑜𝑙𝑖𝑐𝑦_𝑀_𝐷_𝐹 and 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑃 𝑜𝑙𝑖𝑐𝑦_𝐿_𝐷_𝐹

to calculate suitable sensing interval based on the current battery level and app state.
As shown in Figure 3, the self-adaptive location-sensing significantly reduces the battery consumption

(514.5 mA) compared to the original app with static sensing interval. On the other hand, it is observed that
the accuracy degrade only 35 meters which is a consequence of reduced GPS active time per hour. The results
show that the self-adaptive location-sensing might help developers reduce significant battery consumption by
increasing the sensing interval with lesser degrade in accuracy. We have carefully selected the self-adaptive
location-sensing policies as battery and location accuracy requirements are conflicting. Specifically, the
impact of battery level drop and sensing interval increasing rate for each battery drop plays a significant role
in determining energy-saving adaptation policies. Since this approach involves handling multiple context
information such as battery level, battery charging state, and sensing interval increasing factor, it might
be wiser to decide the sensing policies before the development phase. Hence, there is a need for a suitable
methodology and tool support to analyze application requirements and define appropriate energy-saving
location-sensing policies. Therefore, this paper aims to present domain-specific language support to define
location-sensing policies before development. In addition, we aim to provide a code generator that the
developers may use to introduce battery awareness.

Manuscript submitted to ACM

6 Kowndinya and Marimuthu, et al.

Fig. 3. Results of self-adaptive and non-self-adaptive versions

3 EGEN DESIGN AND DEVELOPMENT

With this paper, we would like to address the following questions:

● What factors influence battery consumption and how to fine tune those factors?
● How to make battery-aware decisions during design time?
● How to plug battery-aware adaptation into an existing android application?

Our attempt towards answering all the above questions is the eGEN framework. This section presents the
overview, grammar definition, and language elements of DSML developed as part of eGEN.

3.1 Overview

The essential idea of energy-saving in location-sensing is to enforce energy-saving policies in the following
situations: (1) when the battery is discharging, and the battery level is critical, (2) when the app is in the
background. Therefore, eGEN is designed to assign values for critical battery level, and sensing-interval
based on the application requirements. eGEN consists of a domain-specific modeling language and automatic
code generator. It has been developed, with the help of Xtext and Xtend [3]. As shown in Figure 4, the
usage of eGEN consists of seven steps:

Step 1: The Eclipse editor is used to specify the energy-saving location-sensing policies using the textual
domain-specific modeling language.

Step 2: The editor creates the .𝑒𝑔𝑒𝑛 model.
Step 3: The validator module of Xtext checks the .𝑒𝑔𝑒𝑛 model whether it is following the eGEN DSML

grammar.
Step 4: The code generator takes the validated .𝑒𝑔𝑒𝑛 model as the input.
Step 5: It then generates the Java code using model-to-text transformation.
Step 6: The generated code can be added to existing Android applications to make it energy-aware.

Manuscript submitted to ACM

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps 7

Fig. 4. eGEN eco-system

Step 7: The updated Android project can be built and installed on the Android device by the user.

3.1.1 Domain Model. As shown in Listing 1, the domain model contains the entities
𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑃 𝑜𝑙𝑖𝑐𝑦, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝐹 𝑒𝑎𝑡𝑢𝑟𝑒.

entity AdaptationPolicy {
PolicyID
Context

Adaptation

}
entity Context {

BatteryState = (Charging | Discharging)
BatteryLevel = (Low | Medium | High)
ApplicationState (ForeGround | Background)
}

entity Feature {
SensingInterval
DecreasingFactor
BatteryAwareFunction
}

Listing 1. Domain Model for Modeling Location-sensing

The 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑃 𝑜𝑙𝑖𝑐𝑦 refers to the self-adaptive energy-saving location-sensing strategies. It can be defined
with the combination of 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 and 𝐹 𝑒𝑎𝑡𝑢𝑟𝑒. The entity 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 refers to the contextual situation suitable
for enabling energy-saving self-adaptation. The context information includes 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆𝑡𝑎𝑡𝑒, 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑒𝑣𝑒𝑙,
and 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒. The 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑒𝑣𝑒𝑙 refers to the amount of battery (in %) left in the smartphone. The
𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆𝑡𝑎𝑡𝑒 refers to the charging or discharging status of the smartphone. The 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒 refers to
the background or foreground execution of the application. The entity 𝐹 𝑒𝑎𝑡𝑢𝑟𝑒 includes 𝑆𝑒𝑛𝑠𝑖𝑛𝑔𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙,
𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝐹 𝑎𝑐𝑡𝑜𝑟, and 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐴𝑤𝑎𝑟𝑒𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛.

Manuscript submitted to ACM

8 Kowndinya and Marimuthu, et al.

The 𝑆𝑒𝑛𝑠𝑖𝑛𝑔𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 refers to the time difference between two subsequent location-sensing requests. The
𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝐹 𝑎𝑐𝑡𝑜𝑟 refers to the numerical value that will be used to calculate the sensing interval for each
battery drop in the exponential battery-aware function. The 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐴𝑤𝑎𝑟𝑒𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 refers to the type
of change (exponential or linear) in fixing the sensing interval. This domain model is used as a basis for
defining the grammar of the DSML, which is part of eGEN.

3.2 DSML Grammar

This subsection describes the eGEN grammar along with the structure of the language elements such as
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, and 𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑝𝑜𝑙𝑖𝑐𝑦.

3.2.1 Allowed features. The 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 element of eGEN is used to define the application requirements that
affect the battery consumption of smartphone devices. Especially in location-based services, the features
like location-sensing interval and type of change in sensing interval play a significant role in deciding the
self-adaptive location-sensing strategies.

Listing 2. Structure of the features values
1 Features :
2 SensingInterval | Decreasing_Factor | BatteryAwareFunction ;

As shown in Listing 2, eGEN allows following 𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 for specifying energy-aware requirements:

● 𝑆𝑒𝑛𝑠𝑖𝑛𝑔𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 refers to the time difference between two subsequent location-sensing requests.
● 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝐹 𝑎𝑐𝑡𝑜𝑟 refers to the numerical value that will be used to calculate the sensing interval for

each battery drop in the exponential battery-aware function.
● 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐴𝑤𝑎𝑟𝑒𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 refers to the type of change (exponential or linear) in fixing the sensing

interval.

3.2.2 Feature definition. Each 𝐹 𝑒𝑎𝑡𝑢𝑟𝑒 can have their own rules for defining the corresponding values as
shown in Listing 3. The rules for defining feature values are given below:

● The definition of location-sensing interval starts with the keyword "𝑆𝑒𝑛𝑠𝑖𝑛𝑔𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙" and can be
assigned with an 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 value (refer lines 1-2 in listing 3). Here, the "𝑆𝑒𝑛𝑠𝑖𝑛𝑔𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙" must be
assigned in milliseconds.
● The definition of decreasing factor starts with the keyword "𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝐹 𝑎𝑐𝑡𝑜𝑟" and can be assigned

with the 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 value (refer lines 3-4 in listing 3) as decided by the domain analyst.
● The definition of a type of battery-aware function starts with defining the value for keyword

"𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐴𝑤𝑎𝑟𝑒𝐹 𝑢𝑛𝑐𝑡𝑖𝑜𝑛" and can be assigned with one of the following fixed values: 𝑙𝑖𝑛𝑒𝑎𝑟, 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

(refer lines 5-6 in listing 3).

Manuscript submitted to ACM

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps 9

Listing 3. Structure of feature definition
1 SensingInterval :
2 'SensingInterval ' '=' ivalue = MYINT_T ;
3 DecreasingFactor :
4 'DecreasingFactor ' '=' ivalue = MYINT_T ;
5 BatteryAwareFunction :
6 'BatteryAwareFunction ' '=' value =(' Exponential ' | 'Linear ');

3.2.3 Allowed context. The 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 element of eGEN is used to define the valid situations to enforce
self-adaptive energy-saving policies of smartphone applications. For location-based services, the following
context is considered in eGEN: remaining battery percentage, charging state of the device, and state of the
application.

Listing 4. Structure of the context values
1 Context :
2 BatteryState | BatteryLevel | AppState | Threshold_Medium | Threshold_High

As shown in Listing 4, eGEN allows following 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 for specifying energy-saving situations:

● 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆𝑡𝑎𝑡𝑒 refers to the charging or discharging status of the smartphone.
● 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑒𝑣𝑒𝑙 refers to the remaining battery percentage of the smartphone. Further, the context

𝑇 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝐻𝑖𝑔ℎ and 𝑇 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑀𝑒𝑑𝑖𝑢𝑚 is used to define the high and medium battery percentage
for triggering self-adaptive behavior.
● 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒 refers to the background or foreground execution status of the application.

3.2.4 Context definition. According to eGEN grammar, the definition of each allowed context can have its
pre-defined values, and domain analyst defined values.

Listing 5. Structure of the context constraints
1 BatteryState :
2 'BatteryState ' '=' value =(' Charging ' | 'Discharging ');
3 BatteryLevel :
4 'BatteryLevel ' '=' value =('High ' | 'Medium ' | 'Low ');
5 Threshold_High :
6 'Threshold_High ' '=' ivalue = MYINT_T ;
7 Threshold_Medium :
8 'Threshold_Medium ' '=' ivalue = MYINT_T ;
9 AppState :

10 'AppState ' '=' value =(' Foreground ' | 'Background ')

As shown in Listing 5, the rules for specifying context values are given below:

● The definition of charging state of the device starts with the keyword "𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝑆𝑡𝑎𝑡𝑒" and can have
one of the following values: 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔, 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 (refer lines 1-2 in listing 5).
● The definition of remaining battery level starts with the keyword "𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑒𝑣𝑒𝑙" and can have any

one of the following values: 𝐻𝑖𝑔ℎ, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑜𝑤 (refer lines 3-4 in listing 5). The values for 𝐻𝑖𝑔ℎ and
𝑀𝑒𝑑𝑖𝑢𝑚 can be assigned with an integer value based on the application requirements (refer lines 5-8
in listing 5). The value 𝐿𝑜𝑤 will be inferred by the code generator script based on the range given for
𝐻𝑖𝑔ℎ and 𝑀𝑒𝑑𝑖𝑢𝑚.

Manuscript submitted to ACM

10 Kowndinya and Marimuthu, et al.

● The definition of application execution state starts with the keyword "𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒" and can have any
one of the following values: 𝐹 𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑, 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (refer lines 9-10 in listing 5).

Listing 6. Structure of the adaptation policy
1 Model :
2 eGEN += AdaptationPolicy *;
3 AdaptationPolicy :
4 'AdaptationPolicy ' ivalue = MYINT_T '{' 'Condition ' '{' Situation1 = Context 'AND ' value =(

Situation2);
5 Situation2 :
6 Block = Situation3 '}' 'then ' 'Adaptation ' '{' FeatureBlock1 = Features 'AND ' value =(

FeatureBlock2) '}' '}';
7 Situation3 :
8 Context = Context 'AND ' value =(Situation4);
9 Situation4 :

10 Context = Context 'AND ' value =(Situation5);
11 Situation5 :
12 Context = Context 'AND ' value =(Context);
13 FeatureBlock2 :
14 Feature2 = Features 'AND ' value =(Features);

3.2.5 Adaptation policy. According to eGEN grammar, the definition of adaptation policy consists of
assigning five 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠 and three 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. The specification of a self-adaptive location-sensing policy can
have one or more entries differentiated with a unique ID. As shown in Listing 6, a single adaptation policy
definition contains following parts:

● starts with the keyword 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑃 𝑜𝑙𝑖𝑐𝑦 to describe an adaptation policy followed by the unique
ID of type 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (refer lines 3-4 in listing 6).
● an opening brace for adaptation policy definition
● a keyword 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 to describe the allowed context changes that trigger the self-adaptation
● an opening brace for context block definition
● five condition definition, each consists of context assigned with allowed values. The description of

context values is given in Listing 5. Here, the context definition can be in any order. However, the
repetition of context information is not allowed inside the same context block.
● multiple valid contexts can be separated by the keyword 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛.
● a closing brace for context block
● a keyword 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 to describe the corresponding set of features to be executed at run-time for the

contextual changes described with the keyword 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛.
● an opening brace for a feature block
● three feature definition, each consists of features assigned with allowed values. The description of

feature definition is given in Listing 3. Here, the feature definition can be in any order. However, the
repetition of feature information is not allowed inside the same feature block.
● multiple adaptations can be separated by the keyword 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛.
● a closing brace for a feature block
● Finally, a closing brace for adaptation policy

Manuscript submitted to ACM

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps11

Fig. 5. A sample .egen model and the generated code

3.3 Code Generator

The code generator uses the following Android APIs to achieve self-adaptation: Battery Manager API, Fused
Location API, and Android Activity Life Cycle. The code generator is defined by mapping each element
in the eGEN DSML to a corresponding Android library. The BatteryManager class is used to fetch the
BatteryState, BatteryLevel of the Android device through variables 𝐵𝐴𝑇 𝑇 𝐸𝑅𝑌 _𝑃 𝑅𝑂𝑃 𝐸𝑅𝑇 𝑌 _𝐶𝐴𝑃 𝐴𝐶𝐼𝑇 𝑌

, and 𝐵𝐴𝑇 𝑇 𝐸𝑅𝑌 _𝑃 𝑅𝑂𝑃 𝐸𝑅𝑇 𝑌 _𝑆𝑇 𝐴𝑇 𝑈𝑆. The application’s status is identified using the Android ac-
tivity lifecycle onStart(), onResume(), onPause().

As shown in the Figure 5 the code generator creates Java files (MainActivity.Java, LocationUtility.Java,
BatteryAware.Java, and AdaptationUtility.java) that contains the artifacts for the self-adaptive location-
sensing. BatteryAware.java is the file that does the adaptive location-sensing activity. MainActivity extends
the BatteryAware activity and fetches the location coordinates from the function onLocationUpdate() defined
in the batteryAware class. The application developers can modify MainActivity.java to write their business
logic. The file AdaptationUtility.java contains the code that alters the sensing-interval based on the context
provided. The battery state defined in the egen model is verified against the charging status obtained from
the BatteryManager API. LocationUtility.java contains the code that does the location fetching activity as
per the sensing-interval interval captured in the AdaptationUtility.java. The generated code can be appended
to the existing Android projects to make their app self-adaptive for location-sensing.

4 EVALUATION OF EGEN

In this section, we evaluate the effectiveness of eGEN at reducing the battery consumption of open-source
location-based Android applications. The code generated by eGEN has been instrumented to the subject
applications to show its efficacy. We call our evaluation controlled experiments as the test smartphone’s
battery is only subjected to the application being monitored and some mandatory operating internal services
which will use battery all the time (eg. screen, operating system). All other apps or services that can be

Manuscript submitted to ACM

12 Kowndinya and Marimuthu, et al.

Table 1. List of Subject Applications

S.No App Name Play Store F-Droid GitHub URL
1 GPS Logger Available Not Available https://github.com/BasicAirData/GPSLogger
2 OSM Tracker Available Not Available https://github.com/labexp/osmtracker-android
3 Runner Up Available Available https://github.com/jonasoreland/runnerup
4 OpenTracks Available Available https://github.com/OpenTracksApp/OpenTracks
5 KinetiE- Speedometer Available Not Available https://github.com/xyz-relativity/KinetiE-Speedometer

uninstalled or stopped have been stopped. This experimental setup enabled us to avoid skewed results and
lead us to better investigate the effects of using eGEN’s adaptive code on battery and GPS consumption.
In literature, several studies have used controlled experiments [1, 38, 47] to evaluate the effectiveness of
tool support. Hence, we have designed a controlled experiments based empirical study to evaluate the
effectiveness of eGEN. Hence, we have designed a controlled experiments based empirical study to evaluate
the effectiveness of eGEN.

4.1 Study Design

The study was conducted to answer the following research questions:

● RQ1: Does code generated by eGEN reduce GPS usage?
● RQ2: How much battery consumption is reduced by code generated from eGEN?
● RQ3: To what extent code generated by eGEN degrade location accuracy?

As the main objective of this study is to analyze the effectiveness of eGEN on balancing energy-accuracy
requirements, the relevant independent and dependant variables are selected as follows:

● Independent variable: The Battery drain has been selected as a primary independent variable as
location-sensing reduces the battery over-time based on the GPS usage.
● Dependent variables: In this study, we have selected the variables, sensing interval, GPS usage, battery

drop rate, and distance covered as dependent variables. These variables are directly affected by every
drop in battery percentage as specified in the adaptation policy.

4.1.1 Subject Application Selection. We have used F-Droid6 and Google Play Store7 to find out the subject
applications. Specifically, we have searched for relevant apps with keywords such as gps logging, distance
measurement, path tracker, location service, speed meter, location share, live location tracking, etc. Finally,
we have selected the android applications that primarily rely on GPS for their operation. We have considered
apps if it is open source and the source code is available on code sharing platforms like GitHub8.

The following inclusion criteria were applied to filter the relevant subject applications:

(1) If the app is written in Native Android code
(2) If GPS is primarily used for location sensing
(3) If the source code repository published with an open-source license
(4) If the recent most commit is published less than two years
(5) If the repository is well documented

6https://www.f-droid.org/
7https://play.google.com/store
8https://github.com/

Manuscript submitted to ACM

https://github.com/BasicAirData/GPSLogger
https://github.com/labexp/osmtracker-android
https://github.com/jonasoreland/runnerup
https://github.com/OpenTracksApp/OpenTracks
https://github.com/xyz-relativity/KinetiE-Speedometer
https://www.f-droid.org/
https://play.google.com/store
https://github.com/

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps13

Table 2. GitHub repository profile of Subject Applications

S.No App Name # Contributors # Stars # Forks
1 GPSLogger 6 238 92
2 OSMTracker 25 432 220
3 RunnerUp 47 601 260
4 OpenTracks 60 380 75
5 KinetiE-Speedometer 1 0 0

We found 11 candidate applications by applying the above-mentioned inclusion criteria. Further, the following
exclusion criteria were applied on the 11 candidate applications:

(1) If the app’s android support plugin is incompatible with our IntelliJ IDEA version.
(2) If the app has missing dependencies or other build errors
(3) If it is not compatible with recent versions of Android (such as 10.0 or 9.0)
(4) If the app activity crashes while installing and using the Android application

We applied the exclusion criteria as mentioned above and removed the apps that satisfy at least one criteria.
Finally, we found five subject applications that are suitable for instrumentation and conducting controlled
experiments. Table 1, shows the list of subject applications and their availability on Google Play Store,
F-Droid, and GitHub. Table 2 shows the demographic data gathered from the source code repository like
GitHub. Each of the subject applications except KinetiE-Speedometer have at least 6 contributors, 238
stars, and 75 forks. We have chosen KinetiE-Speedometer to verify the usefulness of eGEN generated for
applications that do not rely on other position sensing sensors.

4.1.2 Investigation of Subject Applications and Writing Adaptation Polices. The first and second authors
have investigated the subject application’s source code to identify the modules responsible for location
listeners. We have looked for the location API, sensing interval, and support for battery awareness. The
subject applications used static sensing intervals and became a candidate for introducing self-adaptive
location sensing. Apart from other utility files, each of the subject application contained location listeners
and files detailing track information to the user. These were the files involved in code instrumentation; while
apps used different location manager APIs, the relaxation time between two location updates was found to
be static and can be modified independently without disturbing the location fetching process. Hence, the
adaptation code being added to subject applications only derives GPS sensing interval based on battery
status and is independent of location manager API used in the subject application. Applications such as
RunnerUp, GPSLogger provision users to set the GPS sensing interval based on their preference, however
the sensing interval adjusted to user’s preference is also static; since eGEN version of the app should contain
adaptive code and that of non-eGEN a fixed value, we have disabled the user control on changing the sensing
interval in the app and code has been instrumented accordingly. As shown in Listing 7 (partial), we have
defined three battery discharging situations to update the location sensing interval. The full adaptation
policies can be found in the readme9. The first situation is when the battery level is High (80 and above),
the second situation is when the battery level is Medium (between 50 to 80), and the third situation is when
the battery level is Low (below 50). We have defined an adaptation policy that assigns sensing intervals of 3
9https://github.com/Kowndinya2000/egen#exact-adaptation-policy-instrumented-for-subject-applications

Manuscript submitted to ACM

https://github.com/Kowndinya2000/egen#exact-adaptation-policy-instrumented-for-subject-applications

14 Kowndinya and Marimuthu, et al.

Listing 7. An excerpt of the instrumented Adap-
tation Policy

1 AdaptationPolicy 01 {
2 Condition {
3 BatteryState = Discharging AND
4 BatteryLevel = High AND
5 Threshold_High = 80 AND
6 Threshold_Medium = 50 AND
7 AppState = Foreground
8 } then
9 Adaptation {

10 SensingInterval = 3000 AND
11 Decreasing_Factor = 10 AND
12 BatteryAwareFunction = Linear
13 }
14 }

Fig. 6. Change in Sensing interval

seconds, 4 seconds, and 5 seconds respectively for High, Medium, and Low battery level when the battery
is discharging. In addition, the decreasing factor for High is set to 10 while 20 and 30 are set for Medium
and Low battery level, respectively. This will ensure that the sensing interval will increase based on the
decreasing factor for each battery drop. As shown in Figure 6, the sensing interval is increasing at a slower
pace along with each battery drop when the smartphone’s battery level is more than 80%. On the other
hand, the sensing interval is increasing at a comparatively faster pace when the battery level is Medium and
Low. Especially, the sensing interval is increasing at a faster rate when the device battery drops to Low to
reduce the number of GPS calls.

4.1.3 Instrumentation of Subject Applications. In this step, we aim at instrumenting the generated code to
the subject applications for battery awareness. For this purpose, we downloaded the source code of each
subject application from GitHub. We looked for variables that hold the sensing interval, functions that
handle location updates, and activities that address map features. We have extracted the generated code
from BatteryAware.java and instrumented it in the subject application. Overall, the instrumentation step
consists of following activities:

● Instrumenting for battery-aware location-sensing: The subject applications are instrumented with
the generated code such that it will dynamically change the location sensing interval based on the
current battery level and charging status. We found that all the subject applications had static sensing
intervals. Therefore, we aim to make it dynamically adaptive in this step. The subject applications are
instrumented with the generated code for dynamically changing the location sensing interval based on
the current battery level and charging status. The instrumentation initialized the adaptation policies
and made a call to the functions described in the Adaptation Activity class. Apps such as GPSLogger,
OSMTracker provided users the option to decide the minimum distance between two location updates
and minimum location accuracy. In such situations, we disabled the original code and replaced it with
the generated code to make it consistent with other subject applications. The subject applications had
static GPS location update interval. We brought Battery level and status in context to determine the
sensing interval on demand for each location update. This is achieved by initializing the adaptation
policies and calling the functions described in the Adaptation Activity class.

Manuscript submitted to ACM

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps15

● Instrumenting for estimating distance covered: This phase aims to instrument the app to fetch the
location coordinates and calculate the distance covered in meters. As pointed earlier, in subject
applications such as GPSLogger, OSMTracker, the distance measurement is given by default. However,
other subject applications cannot measure distance and create a need for measuring distance. Hence,
we have added functions to collect latitude and longitude information from respective java classes
to measure the distance covered. Finally, the measured distance (meters) is annotated on the map
view of the subject applications. While some subject applications have distance measurement given by
default, others do not measure distance travelled. The activity that displays the user track/location
information might not calculate the location related events and use other java classes that do GPS
location sensing as function calls. Hence, we independently added additional functions that collect
latitude and longitude information from respective java classes and we annotated the map view with
the distance travelled in meters.
● Rebuilding the application and install on the test device: After the instrumentation phase, the project

has been cleaned and re-built for conducting experiments. We created two versions of executables for
each subject application, namely, eGEN version and non-eGEN version. The eGEN version represents
the executable built from the instrumented project with battery-aware code. On the other hand, the
non-eGEN version represents the executable built from the source code downloaded from GitHub.
After we instrumented the app, we cleaned the project and re-built it. We then installed the modified
app on the test device and reviewed the app by checking all the UI components and we looked for any
activity crashes before doing the actual trail.

Finally, the executables were installed on the test device, and the UI components were verified to ensure
that the instrumentation did not affect the app’s behavior. We also verified that the apps are not crashing
before doing the actual experiments.

4.1.4 Experiment Protocol. We have selected Nokia C3 as a test device for conducting the experiments.
Nokia C3 comes with a 5.99 inch display, and its hardware packs 3GB RAM and 32GB in-built storage with
a 3040 mAH battery. This smartphone runs on Android 10 and comes with a cleaner version of Android,
which helps us disable all the apps to create an isolated environment for conducting controlled experiments.
Each subject application has been given network/location-related permissions during the trial. Initially, we
had conducted cycling from the specified source to destination using Google Fit10 to measure the total
distance. The three trails of distance measurement with Google Fit is depicted in Figure 7. Figure 7[A]
shows the direction of travel from source to source(destination), Figure 7[B] and [C] show the duration of
the trail and distance covered. Three Google fit trials with the same source and the destination have been
conducted and found an average distance of 3060 meters. The average battery drop percentage was between
3% to 4%. The distance measured with Google Fit (3060 m) is considered a reference distance and used to
analyze the location accuracy of subject applications.

We have conducted three trails for both eGEN and non-eGEN versions of the five subject applications,
thus conducting 30 trails each of length 3 kilometers (approx.). For each trial, we followed steps mentioned
below:

10https://www.google.com/fit/

Manuscript submitted to ACM

https://www.google.com/fit/

16 Kowndinya and Marimuthu, et al.

Fig. 7. Distance Measured by Google Fit

● Installing the instrumented App on testing device
● Resetting the bug report using Android Device Bridge (adb)
● Cycling from the defined source to destination
● Exporting the bug report after reaching the destination
● Uploading the bug report in Google Battery Historian to Measure the percentage of battery drop
● Record the distance covered in Meters

On completing each controlled trial, we use adb to generate the android test device’s bug report in .zip
format. The generated bug report has been uploaded to the Battery historian for further analysis.

4.2 Experimental Results

This subsection presents the experimental results and answers to research questions.

Answering RQ1: Does code generated by eGEN reduce GPS usage? The purpose of this research question is
to check whether the code generated by eGEN reduces the 𝐺𝑃 𝑆𝐴𝑐𝑡𝑖𝑣𝑒𝑇 𝑖𝑚𝑒𝑃 𝑒𝑟𝐻𝑜𝑢𝑟 compared to the non-
eGEN version of the subject application. For this purpose, the Google battery historian tool was used to fetch
the 𝐺𝑃 𝑆𝐴𝑐𝑡𝑖𝑣𝑒𝑇 𝑖𝑚𝑒𝑃 𝑒𝑟𝐻𝑜𝑢𝑟 for each subject application. The reduction in 𝐺𝑃 𝑆𝐴𝑐𝑡𝑖𝑣𝑒𝑇 𝑖𝑚𝑒𝑃 𝑒𝑟𝐻𝑜𝑢𝑟 is
calculated as the time difference between the GPS active time by non-eGEN version and eGEN version of
each subject application. A positive value indicates that eGEN version has managed to bring down the GPS
active duration per hour. As shown in Table 3, the experimental results show that eGEN generated code
reduces GPS active time by a minimum of 58 seconds and a maximum of 6m27s in an hour. Specifically, the
highest reduction in GPS active time was produced by the instrumented version of GPSLogger that reduced
the GPS active time by 6-7 minutes. On the other hand, the instrumented version of Open Tracks produced
the lowest reduction in GPS active time of 58 seconds. Overall, the experimental results show that eGEN
reduced the GPS active time by 4.35 minutes per hour on average.

Manuscript submitted to ACM

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps17

Table 3. GPS Active Time Reduction of eGEN over Non-eGEN

S.No Subject App GPS Active Time per hour Reduction in GPS Active
Time per hourNon-eGEN eGEN

1 GPSLogger 50m40s 44m13s 6m27s
2 RunnerUp 42m38s 43m36s 6m2s
3 KinetiE-Speedometer 46m28s 40m27s 6m1s
4 OSMTracker 48m52s 46m37s 2m15s
5 Open Tracks 46m7s 45m9s 58s

We observed a significant reduction in GPS usage of 4.35 minutes by increasing the 𝑆𝑒𝑛𝑠𝑖𝑛𝑔𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

with a suitable 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔_𝐹 𝑎𝑐𝑡𝑜𝑟 for each battery drop. The results show that adopting dynamic
location-sensing intervals might help developers reduce the GPS usage.

Answering RQ2: How much battery consumption is reduced by code generated from eGEN?. The purpose of this
research question is to identify the amount of battery saved by the instrumentation adaptation policies and
eGEN generated code. We had conducted the trials when the battery level was either low or transitioning
from medium to low or high to medium to cover all the possible battery-critical situations. The Google
battery historian was used to estimate the battery consumed by each subjection application. It displays
battery usage in a chart by taking the bug report as input. We have estimated the battery consumption in
mA by filtering the subject application in the battery usage chart with the help of the subject application’s
package name. The battery consumed by non-eGEN and eGEN version was compared, and the difference
is reported in Table 4. The positive value of Energy Savings in mA implies that the significant amount of
battery consumption is reduced by eGEN version. Overall, eGEN generated code was able to reduce battery
consumption in five subject applications. The results from subject applications show that the eGEN version
shows energy savings ranged from 89 mA (approx) to 269 mA (approx). The calculated mean reduction in
battery consumption is 188 mA As shown in Table 4, the code generated by eGEN can bring a maximum of
268.76 mA (approx.) battery savings in OpenTracks.

Overall, the instrumented code shows considerable battery savings for the trails that last for 12-14
minutes. We believe that the eGEN generated code might show significant battery savings when the
apps are used for a longer time in real-world scenarios. Hence, writing a battery-aware code might
help developers to reduce unwanted battery consumption in location-based Android applications.

Answering RQ3: To what extent code generated by eGEN degrade location accuracy? The purpose of this
research question is to find out the extent to which location accuracy is degraded at the cost of reducing
battery consumption. We have considered the distance measured by Google Fit as the benchmark to measure
the deviation in location accuracy of subject applications. Initially, we have conducted three trials from the
same source to destination using Google Fit, and the averaged distance of 3.06 km has been considered for

Manuscript submitted to ACM

18 Kowndinya and Marimuthu, et al.

Table 4. Battery Saved by eGEN over Non-eGEN

S.No Subject App
Battery Consumption

in mA Energy Savings
in mAeGEN Non-eGEN

1 OpenTracks 541.03 809.79 268.76
2 KinetiE-Speedometer 924.77 1173.78 249.01
3 RunnerUp 798.77 983.49 184.72
4 OSMTracker 506.37 656.31 149.94
5 GPSLogger 842.92 931.80 88.88

the comparison. We used Haversine formula11 for calculating the distance by collecting the coordinates of
the previous and current locations and cumulatively adding the distance between every two locations for the
entire trail.

In Table 5, the distance covered by eGEN and non-eGEN version of the subject applications is presented
along with the error in location accuracy compared to the distance measured by Google Fit. In addition, the
degraded location accuracy is reported in Table 5. The degrade is calculated by subtracting the location
error by non-eGEN version and eGEN. In Table 5, the negative degrade values mean less deviation, and
positive values signify more deviation in location accuracy. Overall, eGEN version interestingly reported a
thin margin of degradation in accuracy when compared to the non-eGEN version of the subject application.
Distinctly, the application KinetiE-Speedometer brought in a more accurate distance measurement of 80
meters while reducing the battery consumption. Similarly, OSMTracker showed equally reliable accuracy in
distance measurement when compared to that of Non-eGEN while results in battery savings of 149.94 mA.
The apps such as Open Tracks, RunnerUp, and GPSLogger showed degraded accuracy about 7, 10, and 54
meters, respectively. However, this degraded accuracy comes with significant battery savings, as reported in
Answer to RQ2.

Overall, the eGEN versions of the subject applications resulted in an average distance measurement
of 2968 meters which is 92 meters lesser than the distance measured by Google Fit. As discussed
in RQ2, the average battery consumption reduction of 188 mA might make the 97 meters degrade
inaccuracy negligible. Hence, writing a suitable self-adaptive location-sensing policy would help to
balance battery consumption and other conflicting requirements such as location accuracy.

4.3 Implications

We believe that the experimental results lay a promising foundation for adopting the energy-saving self-
adaptive location-sensing policies in open source applications in the future for balancing battery and location
accuracy requirements. This subsection presents some of our findings that may further assist domain analysts,
app developers, API developers, and researchers in handling self-adaptive location-sensing.

Domain Analysts and Domain Experts. This study shows the importance of considering energy-aware require-
ments in the early stages of software development. The self-adaptive location-sensing framework presented in
11https://www.movable-type.co.uk/scripts/latlong.html

Manuscript submitted to ACM

https://www.movable-type.co.uk/scripts/latlong.html

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps19

Table 5. Distance covered by eGEN and Non-eGEN

S.No Subject App
Distance

Covered in km
Error in

Location Accuracy
Degrade in

Location Accuracy
Non-eGEN eGEN Non-eGEN eGEN

1 KinetiE-Speedometer 2.79 2.87 280 200 -80
2 OSMTracker 2.990 2.990 60 60 0
4 Open Tracks 2983 2976 77 84 7
5 RunnerUp 2.99 2.98 80 90 10
6 GPSLogger 3.05 2.996 20 74 54
7 Google Fit (Benchmark Application) 3.06 km

this approach can balance battery consumption and location accuracy based on the remaining battery level.
Hence, we suggest domain analysts introduce self-adaptive behavior to manage conflicting requirements like
battery consumption and location accuracy. Therefore, in the future, the domain analyst and domain experts
may consider battery-aware self-adaptive solutions for other application domains. Significantly, the domain
analyst may develop domain-specific languages and code generators to address application domain-specific
energy bugs and corresponding energy-saving solutions for domains like games, social networks, and other
resource-intensive applications.

App Developers and API Developers. As shown in the results, the self-adaptive location sensing with battery-
awareness significantly impacts battery consumption and GPS active time. Hence, we suggest developers
write battery-aware code from the initial development itself to handle energy-hungry components. The
presented approach is about adding battery awareness in the application developer-written code. In addition,
we suggest API developers add support for battery awareness in the library to reduce amount development
efforts of application developers. For instance, prospective API developers may modify the existing location
APIs or create a new API with battery-aware self-adaptive location-sensing. In addition, API developers
from other application domains also introduce battery-awareness in the capabilities provided by their library.

Researchers. The DSML and code generator presented in this paper shows initial promise for considering
domain-specific energy bugs in the early stages. Hence, we suggest potential researchers identify and catalog
the domain-specific energy bugs and their possible solutions to help developers make energy-saving decisions
during the development phase. Further, researchers may provide suitable domain-specific tool support to
handle the most commonly occurring domain-specific energy bugs.

5 THREATS TO VALIDITY

In this section, the potential threats to the validity of the presented case study are discussed. The guidelines
given by Runeson and Höst [52] are followed to categorize and discuss the threats.

Construct Validity

Construct validity refers to the degree to which the analysis measures what we aim to study. In this study,
we aim to measure the GPS usage, Battery Consumption, and Location Accuracy. There is a high possibility
of error in measuring these variables as we do not have widely accepted tools. In literature, several studies

Manuscript submitted to ACM

20 Kowndinya and Marimuthu, et al.

use hardware tools to measure energy consumption and use older Android phones [1, 33, 38], which might
not suit recent Android devices. To address this issue, we have decided to use the recent tool developed
by Google developers, namely Google Battery Historian. The GPS usage is estimated as GPS active time
per hour and the Battery Consumption is estimated in 𝑚𝐴 by the Google Battery Historian tool. The
Location Accuracy was calculated in terms of distance covered in 𝑚𝑒𝑡𝑒𝑟𝑠. Initially, we used the Google Fit
application to measure the distance. We have conducted three trials and considered the averaged value of
3.06 kilometers as the benchmark to compare the location accuracy given by the subject application. Of the
subject applications, OSMTracker cannot calculate the distance covered, hence, we have instrumented a
popularly known method to measure the distance covered using the location coordinates given by the subject
applications. The important validity threat in this category is an error in measuring the GPS usage, battery
consumption, and location accuracy. Therefore, we conducted three trials for each eGEN and non-eGEN
versions of subject applications. The averaged values of three trials have been considered to avoid the error
caused in single trials. In addition, the subject applications were executed in the controlled environment
by disabling all other user applications. Hence, we believe that the values measured are from the subject
applications and can answer the research questions.

Internal Validity

Internal validity is a concern when examining causal relationships. In this study, there is a possibility of
validity threats in deciding the factors affecting GPS usage, battery consumption, and location accuracy.
We have conducted preliminary controlled experiments with subject applications developed in our lab with
varying location-sensing intervals, battery level and battery charging state to mitigate this threat. We have
conducted random trials with the sample subject application and analyzed the relationship between variables.
The first two authors have conducted the experiments, and all the authors were involved while analyzing
the cause-effect relationship. Finally, we have selected battery drain as a primary independent variable as it
affects the location-sensing interval, GPS usage, Battery consumption and location accuracy. Consequently,
the affected variables such as sensing interval, GPS usage, battery consumption and distance covered are
selected as dependent variable. In addition, we have observed a relationship between the dependent variables.
For instance, the sensing interval is set to increase for each battery level drop. Consequently, we observed
a decrease in GPS usage, battery consumption, and accuracy of distance covered. Therefore, we verified
this causal relationship also in the trials we conducted for the subject application. The results show that
the mentioned causal relationship has been maintained between the variables. We believe that we have
considered all aspects of causal relationships in this domain which poses less threat to internal validity. The
other possibility of internal threat is in the selection of subject applications. Initially, we searched the apps
on F-Droid with keywords such as gps logging, distance measurement, path tracker, location service, speed
meter, location share, live location tracking, etc. We believe that the keywords chosen cover all location-based
applications such as map navigation, activity monitoring, etc. In addition, we also searched for open source
applications through the Google play store. After getting 49 candidate applications, we have carefully applied
inclusion and exclusion criteria. The first two authors have primarily worked on applying inclusion and
exclusion criteria. The third and fourth authors have been involved in resolving the conflicts in the selection
of subject applications. To the best of our knowledge, we believe that the selected subject applications are
more suitable representative subject applications for evaluating eGEN.
Manuscript submitted to ACM

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps21

External Validity

The external validity refers to the generalizability of the results presented in this study. There is a possibility
of validity threats in terms of the application domain considered in this case study. In this study, location-
based applications have been selected for evaluating the eGEN. Hence, the results presented in this study
is only can be generalized for location-based applications. However, the results also can be generalized to
the smartphone apps if it uses location as one of the important contexts. The energy-saving opportunities
presented in this study can be applied to such applications if location-sensing drains a significant amount of
battery. The second possible external validity threat is the ability of DSL and code generator developed as
part of eGEN. The domain model of eGEN is specifically designed for location-based applications. Hence,
the capability of eGEN can be generalized only to location-based applications. The code generator presented
in this paper generated only Java code that can be used for Android applications. Hence, the generated
code cannot be used for iOS or Windows smartphone platforms. However, the support for iOS and Windows
platforms will be added in the future enhancements to eGEN.

Reliability

Reliability refers to the extent to which the presented case study is repeatable by other researchers. The
first repeatability issue would be possible in specifying self-adaptive location-sensing policies and generating
code. Therefore, to mitigate this threat, we have uploaded the eGEN source code to GitHub12, which can be
downloaded and used by other researchers. The second threat in this category is instrumenting the subject
applications. We have uploaded the instrumented subject applications in the replicable package to mitigate
this threat, which is available in the replication package13. The other researchers can build the shared source
code and conduct the experiments on their testing device. There may be situations where the source code
building might result in build errors and failure to compile the .apk files. To address this issue, we have
also shared the .apk for both eGEN and non-eGEN versions of the subject application. As we conducted
controlled experiments, there is a high possibility of getting deviated results when other researchers repeat
the same experiment. Therefore, to verify the results, we have shared the bug reports14 that contain the
GPS usage and Battery consumption data. The bug reports can be uploaded to the Google Battery Historian
tool, and presented results can be verified.

6 RELATED WORK

The related works are classified under two categories: (1) DSL for design-time specification of energy-related
properties, (2) Model-driven development of Android apps. In this section, the related works found from the
literature are summarized and compared with the eGEN.

6.1 DSL for Energy Specification

We found only one DSL-based approach, namely Energy Estimation Language (EEL) [4] that considered
explicit specification of energy-related properties at design time to the best of our knowledge. The authors
have used energy estimation formulas to annotate the xDSLs to predict their energy consumption. In this
12https://github.com/Kowndinya2000/egen
13https://github.com/Kowndinya2000/egen/tree/master/subject-applications
14https://github.com/Kowndinya2000/egen/tree/master/bug-reports

Manuscript submitted to ACM

https://github.com/Kowndinya2000/egen
https://github.com/Kowndinya2000/egen/tree/master/subject-applications
https://github.com/Kowndinya2000/egen/tree/master/bug-reports

22 Kowndinya and Marimuthu, et al.

approach, during design time itself energy specialists can define Energy Estimation Models (EEM) for xDSL
and predict how much energy it can consume at run-time for different run-time platforms. EEL is a textual
domain-specific language written using Xtext language development platform. The authors have conducted
a case study on AurdinoML models to evaluate this approach. The results show that the estimation model
produces an estimation error of 4.9%, between 0.4% and 17.1%. EEL is related to eGEN in terms of proposing
a textual domain-specific modeling language for explicit specification energy-related properties. However, it
is different from eGEN as it targets cyber-physical systems while eGEN target Android apps. eGEN comes
with a DSL and code generator for specifying energy-saving opportunities. In contrast, EEL comes with the
only DSL for specifying run-time energy consumption, and it doesn’t have code generation support.

6.2 Model-driven development of Android apps

6.2.1 Existing Approaches. MD2 [21] is an approach for developing mobile apps with model-driven develop-
ment methods. It consists of a domain-specific language to specify the data-driven business apps. It also
contains a code generator for generating native Android and iOS code. The language and code generated by
MD2 follow the Model-View-Controller pattern. The Model component allows the developers to define the
application’s data model. The View component helps in describing the user interface and its elements. The
Controller component aids to describe the user interaction and events associated with the apps. The DSL
was defined with Xtext15, and Xtend16 defines the code generator. The recent version of MD2 [20] includes
the following capabilities: device-specific layout, extended control structures, and offline computing.

Xmob [30] is a platform-independent DSL for creating mobile applications for multiple platforms. It is
developed with three sub-languages (Xmob-data, Xmob-ui, Xmob-event) to follow the MVC pattern. The
Xmob-data helps the developers to specify the way retrieving form database, web service, or other data
sources. The Xmob-ui helps the developers to describe the UI elements such as widgets, forms, buttons,
etc. The Xmob-event helps the developers to link the user interfaces and data sources. Xmob involves
model-to-model transformation and model-to-text transformation to generate the source code of the desired
platform. The model-to-model transformation converts the platform-independent model to a platform-specific
model. The model-to-text generates the source code corresponding to the elements in a platform-specific
model. Xmob uses Xtext for language definition, Kermeta for model-to-model transformation, and Xpand
for the code generator.

ADSML [26] is an adaptive domain-specific modeling language for native mobile app development. It
relies on meta-model extraction, meta-model elevation, meta-model alignment, and meta-model unification
to create target apps for the Android and iOS platforms. The meta-model extraction phase extracts the
platform-specific meta-models from the targeted platforms native APIs. The meta-model elevation phase
abstracts the platform-specific API models and select the sub-set for further analysis. The meta-model
alignment phase find out the similar meta-model elements among different platforms. Finally, the meta-model
unification phase creates the platform-independent DSL from the platform-specific models identified in the
previous phase. The current implementation of ADSML does not have the support for code generation.

DSL-Comet [55] is the active DSL that targets a smart city or IoT applications. It primarily runs on
mobile devices to tag the location and contextual information on the model elements created by DSL-Comet.
15https://www.eclipse.org/Xtext/
16https://www.eclipse.org/xtend/

Manuscript submitted to ACM

https://www.eclipse.org/Xtext/
https://www.eclipse.org/xtend/

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps23

Table 6. Comparison of model-driven development approaches for mobile app development

Approach DSL Type Targeted
Platforms Domain Modeling

Scope
Context

Awareness
Battery

Awareness

MD2 [21] Textual Android, iOS Data-driven
Business Apps

Data, UI &
User Interaction No No

Xmob [30] Textual Android, iOS
& Windows

All Mobile
Apps

Data, UI &
Events No No

ADSML [26] Textual Android, iOS All Mobile
Apps All aspects No No

DSL-Comet [55] Graphical N/A Smart City
Applications

Business
Functions Yes Partial

RAPPT [2] Graphical
& Textual Android All Mobile

Apps Views No No

MoWebA Mobile [39] Graphical Android,
Windows

Offline
Business Apps

Data Layer &
Network

Connectivity
No No

eGEN Textual Android Location
based Apps

Location
Sensing Interval Yes Yes

The DSL-Comet includes Open, Geo, and Contextual DSLs to form an active DSL. The Open DSLs interact
with external APIs to retrieve the information related to model elements. The Geo DSLs render the models
on the map interface to tag the current location on the models associated with geo-services. The Contextual
DSLs are context-aware and helps to re-organize the model after encountering the contextual changes. It
has iOS and Eclipse-based editors that permits the users to model either on the mobile or desktop. The iOS
editor stores the models in JSON format, and the Eclipse-based editor stores the models in XML format.
The DSL-Comet does not have a code generator to generate source code for the targeted platform.

Rapid APPlication Tool (RAPPT) [2] aids the developers in specifying the characteristics of mobile
applications using domain-specific visual language and textual language. Initially, the developers can use visual
language to specify the high-level architecture and the number of screens with navigation. The developers
can then use textual language to add more specific information, such as data schema, authentication, web
service, etc., to define the app. The model-to-model transformation then takes place to convert the app
model to the Android model, where high-level specification will be transferred to Android-specific elements
such as classes, activities, fragments, etc. Finally, the RAPPT generates the source code from the Android
model that resembles the developer’s written code. The generated code produces the working prototype,
and developers need to add the business logic to deliver the working application.

MoWebA Mobile [39] is a model-driven approach covering the mobile apps’ data layer. This approach mainly
defines the data source of application to develop offline access to business applications in case of network
connectivity issues. This approach consists of three phases: (1) Problem Modeling, (2) Solution Modeling,
and (3) Source Code Definition. The problem modeling phase uses the Computational-independent Model
(CIM) and Platform-independent Model (PIM). The solution modeling phase uses the Architecture-specific
Model (ASM) to specify the architectural requirements. It uses UML profiles to create Platform-independent
models and EMF to convert the PIM to ASM. Finally, it uses Acceleo17 to transform models to generate
code for developing native applications for Android and Windows platforms.
17https://www.eclipse.org/acceleo/

Manuscript submitted to ACM

https://www.eclipse.org/acceleo/

24 Kowndinya and Marimuthu, et al.

6.2.2 Comparing approaches. The comparison of the model-driven development of mobile apps is given
in Table 6. The approaches are compared based on the following criteria: DSL Type, Targeted Platform,
Domain, Modeling Scope, Support for Context-awareness, and Support for Energy-awareness. As shown
in Table 6, the considered approaches can be broadly classified into two categories, namely, Textual and
Graphical based on the DSL Type. The approaches such as MD2 [21] , Xmob [30], ADSML [26] uses the
textual DSL to specify the app functionalities. The graphical DSL is used in the approaches like DSL-Comet
[55], RAPPT [2], and MoWebA Mobile [39].

In this research work, eGEN framework adopts the textual DSL for modeling the energy-saving self-
adaptive requirements of smartphone applications. The Target Platform criteria refer to the mobile platform
for which the source code generated by the code generator associated with the discussed tools. Most of
the approaches generate code for multiple platforms such as Android, iOS, and Windows. The RAPPT
[2] approach considers only the Android platform for code generation. In this research work, the eGEN
framework covers only the Android platform, and other platforms will be considered in the future releases of
the framework. The Domain criteria refer to the application domain covered by the DSL and code generator.
As shown in Table 6, most of the approaches cover all the aspects of mobile apps. In contrast approaches
such as MD2 [21], DSL-Comet [55], and MoWebA Mobile [39] covers the specific application domains.
Specifically, the MD2 [21] is for data-driven business apps, DSL-Comet [55] is for smart city applications,
and MoWebA Mobile [39] is for business applications with offline access. As observed from the Table, none
of the approaches have considered location-based Android applications. Subsequently, in this approach,
family of location-based services has been considered as the application domain for DSL and code generator.
The modeling scope criteria refer to the elements that can be modeled with the DSL provided in the related
approaches. As shown in Table 6, most of the approaches cover the data and UI modeling of mobile apps.
None of the existing approaches have considered modeling the location-sensing of mobile apps. On the
contrary, this research work’s modeling scope covers the location-sensing of mobile apps. Finally, the existing
approaches have been compared for self-adaptivity and energy-awareness support. As observed from Table 6,
none of the existing approaches has considered the self-adaptivity and energy-awareness of the mobile apps,
which is the essential non-functional requirements for the recent generation smartphones. Therefore, in this
research work, the modeling of energy-awareness and self-adaptivity has been considered for location-based
Android applications.

7 CONCLUSION AND FUTURE WORK

This paper presents the eGEN tool for modeling energy-aware self-adaptive behaviors of location-based
mobile applications. The domain analyst may use the textual DSML to specify the energy-saving adaptation
plans. The developer may use the generated battery-aware code in the existing repositories. The preliminary
evaluation presented in this paper shows that the instrumented code shows a considerable reduction in
battery consumption for the trials that last for 12-14 minutes. Hence, we believe that the eGEN generated
code might show significant battery savings when the apps are used for a longer time in real-world scenarios.
Therefore, writing battery-aware code might help developers to reduce unwanted battery consumption in
location-based Android applications.

Currently, eGEN grammar covers only GPS and does not cover other smartphone sensors for location-
sensing. We plan to cover accelerometer and magnetometer in the next version. We also intend to perform
Manuscript submitted to ACM

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps25

controlled experiments at a large scale on greater number of android applications to device a catalog of
adaptation policies for different categories of android applications. This also would enable us to strengthen
the further versions of eGEN. The eGEN generated code cannot be used for iOS or Windows smartphone
platforms. However, the support for iOS and Windows platforms will be added in the future enhancements
to eGEN. eGEN has been evaluated by us through controlled experiments. In future, we have plans to
evaluate it with mobile app developers for its usability and completeness.

ACKNOWLEDGMENTS

This publication is an outcome of the R&D work undertaken project under the Visvesvaraya Ph.D. Scheme
of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital
India Corporation.

REFERENCES
[1] Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury. 2018. Energypatch: Repairing

resource leaks to improve energy-efficiency of android apps. IEEE Transactions on Software Engineering 44, 5 (2018),
470–490.

[2] Scott Barnett, Iman Avazpour, Rajesh Vasa, and John Grundy. 2019. Supporting multi-view development for mobile
applications. Journal of Computer Languages 51 (2019), 88–96.

[3] Heiko Behrens, Michael Clay, Sven Efftinge, Moritz Eysholdt, Peter Friese, Jan Köhnlein, Knut Wannheden, and Sebastian
Zarnekow. 2008. Xtext user guide. Dostupné z WWW: http://www. eclipse. org/Xtext/documentation/1_0_1/xtext.
html (2008), 7.

[4] Thibault Béziers la Fosse, Massimo Tisi, Jean-Marie Mottu, and Gerson Sunyé. 2020. Annotating executable DSLs
with energy estimation formulas. In Proceedings of the 13th ACM SIGPLAN International Conference on Software
Language Engineering. 22–38.

[5] Nicholas Capurso, Bo Mei, Tianyi Song, Xiuzhen Cheng, and Jiguo Yu. 2018. A survey on key fields of context awareness
for mobile devices. Journal of Network and Computer Applications 118 (2018), 44–60.

[6] Nicholas Capurso, Tianyi Song, Wei Cheng, Jiguo Yu, and Xiuzhen Cheng. 2017. An Android-Based Mechanism for
Energy Efficient Localization Depending on Indoor/Outdoor Context. IEEE Internet of Things Journal 4, 2 (2017),
299–307.

[7] Angel Cañete, Jose-Miguel Horcas, Inmaculada Ayala, and Lidia Fuentes. 2020. Energy efficient adaptation engines for
android applications. Information and Software Technology 118 (2020), 106220. https://doi.org/10.1016/j.infsof.2019.
106220

[8] Kongyang Chen, Guang Tan, Jiannong Cao, Mingming Lu, and Xiaopeng Fan. 2019. Modeling and improving the energy
performance of GPS receivers for location services. IEEE Sensors Journal 20, 8 (2019), 4512–4523.

[9] Dae-Ki Cho, Uichin Lee, Youngtae Noh, Taiwoo Park, and Junehwa Song. 2015. PlaceWalker: An energy-efficient place
logging method that considers kinematics of normal human walking. Pervasive and Mobile Computing 19 (2015),
24–36.

[10] Taehwa Choi, Yohan Chon, and Hojung Cha. 2017. Energy-efficient WiFi scanning for localization. Pervasive and
Mobile Computing 37 (2017), 124–138.

[11] Paolo Ciancarini, Shokhista Ergasheva, Zamira Kholmatova, Artem Kruglov, Giancarlo Succi, Xavier Vasquez, and
Evgeniy Zuev. 2020. Analysis of energy consumption of software development process entities. Electronics 9, 10 (2020),
1678.

[12] Luis Cruz and Rui Abreu. 2017. Performance-based guidelines for energy efficient mobile applications. In 2017
IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft). IEEE,
46–57.

[13] Luis Cruz and Rui Abreu. 2018. Using Automatic Refactoring to Improve Energy Efficiency of Android Apps. arXiv
preprint arXiv:1803.05889 (2018).

[14] Luis Cruz, Rui Abreu, and Jean-Noël Rouvignac. 2017. Leafactor: Improving energy efficiency of android apps via
automatic refactoring. In 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE, 205–206.

Manuscript submitted to ACM

https://doi.org/10.1016/j.infsof.2019.106220
https://doi.org/10.1016/j.infsof.2019.106220

26 Kowndinya and Marimuthu, et al.

[15] Anind Dey, Jeffrey Hightower, Eyal de Lara, and Nigel Davies. 2009. Location-based services. IEEE Pervasive
Computing 9, 1 (2009), 11–12.

[16] Joy Dutta, Pradip Pramanick, and Sarbani Roy. 2018. Energy-efficient GPS usage in location-based applications. In
Information and Decision Sciences. Springer, 345–353.

[17] Alcides Fonseca, Rick Kazman, and Patricia Lago. 2019. A manifesto for energy-aware software. IEEE Software 36, 6
(2019), 79–82.

[18] Stefanos Georgiou, Stamatia Rizou, and Diomidis Spinellis. 2019. Software Development Lifecycle for Energy Efficiency:
Techniques and Tools. ACM Comput. Surv. 52, 4, Article 81 (Aug. 2019), 33 pages. https://doi.org/10.1145/3337773

[19] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. 2013. Estimating mobile application energy consumption
using program analysis. In Proceedings of the 2013 International Conference on Software Engineering. IEEE Press,
92–101.

[20] Henning Heitkötter, Herbert Kuchen, and Tim A Majchrzak. 2015. Extending a model-driven cross-platform development
approach for business apps. Science of Computer Programming 97 (2015), 31–36.

[21] Henning Heitkötter, Tim A Majchrzak, and Herbert Kuchen. 2013. Cross-platform model-driven development of mobile
applications with md2. In Proceedings of the 28th Annual ACM Symposium on Applied Computing. 526–533.

[22] Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and James Collins. 2012. Global positioning system: theory and
practice. Springer Science & Business Media.

[23] Mohammad Ashraful Hoque, Matti Siekkinen, Kashif Nizam Khan, Yu Xiao, and Sasu Tarkoma. 2015. Modeling,
profiling, and debugging the energy consumption of mobile devices. ACM Computing Surveys (CSUR) 48, 3 (2015),
1–40.

[24] Haosheng Huang, Georg Gartner, Jukka M Krisp, Martin Raubal, and Nico Van de Weghe. 2018. Location based
services: ongoing evolution and research agenda. Journal of Location Based Services 12, 2 (2018), 63–93.

[25] Mohamed Ibrahim and Moustafa Youssef. 2012. CellSense: An accurate energy-efficient GSM positioning system. IEEE
Transactions on Vehicular Technology 61, 1 (2012), 286–296.

[26] Xiaoping Jia and Christopher Jones. 2015. An approach for the automatic adaptation of domain-specific modeling
languages for model-driven mobile application development. In ICSOFT. Springer, 365–379.

[27] Dohee Kim, Soyoon Lee, and Hyokyung Bahn. 2016. An Adaptive Location Detection scheme for energy-efficiency of
smartphones. Pervasive and Mobile Computing 31 (2016), 67–78.

[28] Mikkel Baun Kjærgaard, Jakob Langdal, Torben Godsk, and Thomas Toftkjær. 2009. Entracked: energy-efficient robust
position tracking for mobile devices. In Proceedings of the 7th international conference on Mobile systems, applications,
and services. ACM, 221–234.

[29] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele, and Christian Becker. 2015. A survey
on engineering approaches for self-adaptive systems. Pervasive and Mobile Computing 17 (2015), 184–206.

[30] Olivier Le Goaer and Sacha Waltham. 2013. Yet another DSL for cross-platforms mobile development. In Proceedings
of the First Workshop on the globalization of domain specific languages. 28–33.

[31] Kaisen Lin, Aman Kansal, Dimitrios Lymberopoulos, and Feng Zhao. 2010. Energy-accuracy trade-off for continuous
mobile device location. In Proceedings of the 8th international conference on Mobile systems, applications, and
services. ACM, 285–298.

[32] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano Di Penta, Rocco Oliveto, and Denys
Poshyvanyk. 2018. Multi-objective optimization of energy consumption of guis in android apps. ACM Transactions on
Software Engineering and Methodology (TOSEM) 27, 3 (2018), 1–47.

[33] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Jian Lu. 2014. Greendroid: Automated diagnosis of energy inefficiency
for smartphone applications. IEEE Transactions on Software Engineering 1 (2014), 1–1.

[34] Yemao Man and Edith C-H Ngai. 2014. Energy-efficient automatic location-triggered applications on smartphones.
Computer Communications 50 (2014), 29–40.

[35] Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin Sadowski, Lori Pollock, and James
Clause. 2016. An empirical study of practitioners’ perspectives on green software engineering. In Software Engineering
(ICSE), 2016 IEEE/ACM 38th International Conference on. IEEE, 237–248.

[36] Alex T Mariakakis, Souvik Sen, Jeongkeun Lee, and Kyu-Han Kim. 2014. Sail: Single access point-based indoor
localization. In Proceedings of the 12th annual international conference on Mobile systems, applications, and services.
ACM, 315–328.

[37] Andrea McIntosh, Safwat Hassan, and Abram Hindle. 2019. What can Android mobile app developers do about the
energy consumption of machine learning? Empirical Software Engineering 24, 2 (2019), 562–601.

[38] Rodrigo Morales, Rubén Saborido, Foutse Khomh, Francisco Chicano, and Giuliano Antoniol. 2018. Earmo: an energy-
aware refactoring approach for mobile apps. IEEE Transactions on Software Engineering 44, 12 (2018), 1176–1206.

Manuscript submitted to ACM

https://doi.org/10.1145/3337773

eGEN: An Energy-saving Modeling Language and Code Generator for Location-sensing of Mobile Apps27

[39] Manuel Núñez, Daniel Bonhaure, Magalí González, and Luca Cernuzzi. 2020. A model-driven approach for the
development of native mobile applications focusing on the data layer. Journal of Systems and Software 161 (2020),
110489.

[40] Guadalupe Ortiz, Alfonso García-de Prado, Javier Berrocal, and Juan Hernández. 2019. Improving Resource Consumption
in Context-Aware Mobile Applications through Alternative Architectural Styles. IEEE Access (2019).

[41] Thomas Olutoyin Oshin, Stefan Poslad, and Athen Ma. 2012. Improving the energy-efficiency of GPS based location
sensing smartphone applications. In 2012 IEEE 11th International Conference on Trust, Security and Privacy in
Computing and Communications. IEEE, 1698–1705.

[42] Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan. 2010. Energy-efficient rate-adaptive GPS-based positioning
for smartphones. In Proceedings of the 8th international conference on Mobile systems, applications, and services.
ACM, 299–314.

[43] Jeongyeup Paek, Kyu-Han Kim, Jatinder P Singh, and Ramesh Govindan. 2011. Energy-efficient positioning for
smartphones using cell-id sequence matching. In Proceedings of the 9th international conference on Mobile systems,
applications, and services. ACM, 293–306.

[44] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E Hassan. 2016. What do programmers know about software
energy consumption? IEEE Software 33, 3 (2016), 83–89.

[45] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Midkiff. 2012. What is Keeping My Phone Awake?:
Characterizing and Detecting No-sleep Energy Bugs in Smartphone Apps. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services (Low Wood Bay, Lake District, UK) (MobiSys ’12). ACM,
New York, NY, USA, 267–280. https://doi.org/10.1145/2307636.2307661

[46] Abhinav Pathak, Abhilash Jindal, Y Charlie Hu, and Samuel P Midkiff. 2012. What is keeping my phone awake?:
characterizing and detecting no-sleep energy bugs in smartphone apps. In Proceedings of the 10th international
conference on Mobile systems, applications, and services. ACM, 267–280.

[47] Rui Pereira, Tiago Carção, Marco Couto, Jácome Cunha, João Paulo Fernandes, and João Saraiva. 2020. SPELLing out
energy leaks: Aiding developers locate energy inefficient code. Journal of Systems and Software 161 (2020), 110463.

[48] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes, and João Saraiva. 2021.
Ranking programming languages by energy efficiency. Science of Computer Programming 205 (2021), 102609.

[49] Gustavo Pinto and Fernando Castor. 2017. Energy Efficiency: A New Concern for Application Software Developers.
Commun. ACM 60, 12 (2017), 68–75.

[50] Gustavo Pinto and Fernando Castor. 2017. Energy efficiency: a new concern for application software developers. Commun.
ACM 60, 12 (2017), 68–75.

[51] Ana Ribeiro, Joao F Ferreira, and Alexandra Mendes. 2021. EcoAndroid: An Android Studio plugin for developing
energy-efficient Java mobile applications. (2021).

[52] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting case study research in software engineering.
Empirical software engineering 14, 2 (2009), 131.

[53] Albrecht Schmidt, Michael Beigl, and Hans-W Gellersen. 1999. There is more to context than location. Computers &
Graphics 23, 6 (1999), 893–901.

[54] Andreas Schuler and Gabriele Anderst-Kotsis. 2020. Characterizing energy consumption of third-party API libraries
using API utilization profiles. In Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 1–11.

[55] Diego Vaquero-Melchor, Javier Palomares, Esther Guerra, and Juan de Lara. 2017. Active domain-specific languages:
Making every mobile user a modeller. In 2017 ACM/IEEE 20th International Conference on Model Driven Engineering
Languages and Systems (MODELS). IEEE, 75–82.

[56] Robert-Andrei Voicu, Ciprian Dobre, Lidia Bajenaru, and Radu-Ioan Ciobanu. 2019. Human physical activity recognition
using smartphone sensors. Sensors 19, 3 (2019), 458.

[57] Teng Xi, Wendong Wang, Edith C-H Ngai, Zheng Song, Ye Tian, and Xiangyang Gong. 2015. Energy-efficient collaborative
localization for participatory sensing system. In Global Communications Conference (GLOBECOM), 2015 IEEE.
IEEE, 1–6.

[58] Zheng Yang, Chenshu Wu, Zimu Zhou, Xinglin Zhang, Xu Wang, and Yunhao Liu. 2015. Mobility increases localizability:
A survey on wireless indoor localization using inertial sensors. ACM Computing Surveys (Csur) 47, 3 (2015), 54.

[59] Zhenyun Zhuang, Kyu-Han Kim, and Jatinder Pal Singh. 2010. Improving energy efficiency of location sensing on
smartphones. In Proceedings of the 8th international conference on Mobile systems, applications, and services. ACM,
315–330.

Manuscript submitted to ACM

https://doi.org/10.1145/2307636.2307661

	Abstract
	1 Introduction
	2 Background and Motivating Example
	2.1 Location-based Applications
	2.2 A Motivating Example

	3 eGEN Design and Development
	3.1 Overview
	3.2 DSML Grammar
	3.3 Code Generator

	4 Evaluation of eGEN
	4.1 Study Design
	4.2 Experimental Results
	4.3 Implications

	5 Threats to Validity
	6 Related Work
	6.1 DSL for Energy Specification
	6.2 Model-driven development of Android apps

	7 Conclusion and Future Work
	Acknowledgments
	References

