
Reflections on Software Failure Analysis

Paschal C. Amusuo
Purdue University, USA
pamusuo@purdue.edu

Aishwarya Sharma
Purdue University, USA
sharm234@purdue.edu

Siddharth R. Rao
Purdue University, USA
rao147@purdue.edu

Abbey Vincent
Purdue University, USA
vincen17@purdue.edu

James C. Davis
Purdue University, USA
davisjam@purdue.edu

ABSTRACT

Failure studies are important in revealing the root causes, behaviors,

and life cycle of defects in software systems. These studies either

focus on understanding the characteristics of defects in specific

classes of systems or the characteristics of a specific type of defect in

the systems it manifests in. Failure studies have influenced various

software engineering research directions, especially in the area of

software evolution, defect detection, and program repair.

In this paper, we reflect on the conduct of failure studies in soft-

ware engineering. We reviewed a sample of 52 failure study papers.

We identified several recurring problems in these studies, some of

which hinder the ability of the engineering community to trust

or replicate the results. Based on our findings, we suggest future

research directions, including identifying and analyzing failure

causal chains, standardizing the conduct of failure studies, and tool

support for faster defect analysis.

CCS CONCEPTS

· Software and its engineering→ Software defect analysis.

KEYWORDS

Failure analysis, software defects, empirical software engineering

ACM Reference Format:

Paschal C. Amusuo, Aishwarya Sharma, Siddharth R. Rao, Abbey Vincent,

and James C. Davis. 2022. Reflections on Software Failure Analysis. In

Proceedings of the 30th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22),

November 14ś18, 2022, Singapore, Singapore. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3540250.3560879

1 INTRODUCTION

The study of failures is integral to the success of engineered sys-

tems [27]. In software engineering, failure studies describe the char-

acteristics of defects in software systems. These studies, otherwise

known as bug studies, are either tailored toward understanding the

characteristics of defects in specific classes of systems (e.g., web

systems [5], Android apps [17], or embedded systems [19]) or the

characteristics of specific classes of defects (e.g., performance [15],

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3560879

Figure 1: The distribution of failure studies by year published.

concurrency [7], or security [20]). These studies are designed to

reveal the root causes of these defects, their manifestation, impact,

fix characteristics, and life-cycle.

Over the last decade, the number of failure studies has steadily in-

creased (Figure 1). These studies have influenced research into soft-

ware testing [12], defect detection [6], and repair techniques [24].

In this paper, we reflect on the conduct of software failure anal-

ysis research over the last 20 years. Using a systematic literature

review, we identified several flaws and challenges that affect this

research direction. Following the flaws and challenges we iden-

tified, we discussed future research directions that the software

engineering community can embark on, to aid the conduct of these

failure studies. Our research directions are focused on attempting

to answer various questions relevant to the efficient conduct and

impact of failure studies.

2 IDEALIZED FAILURE STUDY MODEL

Failure studies are research focused on understanding the charac-

teristics and causes of failures in engineered systems [16] [39]. In

software engineering, these studies commonly consider defects.

This section presents an idealized model of the failure study pro-

cess in software engineering. We derived this model by reviewing

steps currently taken to conduct software failure studies, comple-

mented with failure studies conducted in other engineering disci-

plines [8]. We used this model to analyze and review various failure

studies reported in the software engineering literature.

Figure 2 shows the various stages of this idealized model, which

is applied across engineering disciplines. First, the project scope is

defined. This usually involves identifying what class of defects to

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1615

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1001-525X
https://orcid.org/0000-0003-4033-3224
https://orcid.org/0000-0001-9512-2593
https://orcid.org/0000-0003-1922-0276
https://orcid.org/0000-0003-2495-686X
https://doi.org/10.1145/3540250.3560879
https://doi.org/10.1145/3540250.3560879
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3540250.3560879&domain=pdf&date_stamp=2022-11-09


ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Paschal C. Amusuo, Aishwarya Sharma, Siddharth R. Rao, Abbey Vincent, and James C. Davis

1. Define Problem Scope

- Understudied classes of systems

- Bias towards open-source
software systems

2. Collect Defect Reports &
Supplementary Data

- Difficulty identifying target
defect reports

3. Analyze Bug Characteristics

- Inconsistent taxonomies &
term definitons

- Absence of quality measures

4. Perform Root Cause Analysis

- Root causes are arbitrarily defined

- Absence of causal-chain
data to analyze

5. Report Results

- Missing replication data

6. Impact & Recommendations
for Industry

- Not tailored towards
improving engineering practice

Figure 2: Idealized model of software engineering failure study that our study identified flaws in.

study, the system to study, and how the target defects and system

would be identified. Then the defect reports and other relevant data

are collected and reviewed. The investigators use the information

extracted to analyze the characteristics of the various defects, such

as how they manifest, their impact, their life cycle, etc. In addition

to this, the investigators can also perform a root cause analysis

to determine the probable root cause and contributing causes of

the defects. Once the study is completed, investigators report their

results and discuss their implications. This report should also con-

tain their analyzed data to aid replicability by other investigators.

To ensure that practitioners learn from the results of the study, it

behooves the investigators to provide recommendations to these

practitioners while also working with them to validate the impact

of their results and recommendations.

The figure also depicts common shortcomings of the existing

studies in software engineering literature at various stages. We

discuss these shortcomings in the next section.

3 FLAWS IN FAILURE STUDY METHODS

This section presents the flaws we identified in this research direc-

tion, as practiced in software engineering.

3.1 Methodology

We first searched the proceedings of prominent software engineer-

ing conferences (ICSE, ESEC/FSE, ASE) and journals (IEEE TSE,

ESEM, JSS) and manually identified failure study papers. The results

helped us define our search phrase.1 We used this phrase to search

scholarly databases (Google Scholar, IEEE Xplore, ACM Digital Li-

brary). This search yielded 92 candidate papers. Working in teams

of 2, we manually reviewed the abstract of these papers, identified

and selected 52 papers that studied and characterized defects in

software, and were published in peer review venues.

We reviewed the selected papers and collected data related to the

various stages outlined in Figure 2. We analyzed the data extracted

and identified the flaws discussed in the next subsection.

To ensure the quality of our results, we had multiple authors

independently perform data extraction on a sample of 20 papers.

We computed the Cohen kappa score on this sample as 0.763, which

1Our final search query was "(empirical OR comprehensive OR taxonomy OR char-
acteristics) AND (bug OR bugs OR faults OR defects OR failures OR vulnerabilities)
AND (study OR review)"

shows substantial agreement [13]. Subsequently, the authors contin-

ued the data extraction independently while one more experienced

author reviewed the data extracted by the other authors.

Threat to validity: We sampled only 52 failure studies, which

may not have included all relevant failure studies. But we believe

this sample is representative, and our findings are valid and rele-

vant. The sample was selected through a methodological process, as

discussed above. We also included recent papers published in promi-

nent venues to ensure our findings were relevant to the current

peer-reviewed conduct. Also, each of the flaws we identified was

prevalent in over half of the sample of papers studied. Finally, while

some of the flaws identified may seem obvious, we are the first

to present empirical evidence of their existence while suggesting

research directions to manage them.

3.2 Recurring Flaws

3.2.1 Bias towards Open-source Software: Investigators conduct-

ing failure studies are biased toward studying defects in open-source

software (first row of Table 1). This is usually because open-source

software has publicly available code, documentation, and complete

evolution history. Unfortunately, focusing on only open-source soft-

ware may be inconsistent with the investigator’s goal, ultimately

aiding software engineering practice beyond open-source.

Prior research has investigated and reported differences between

open-source and commercial software [22] [26] [3]. Mockus et

al. [22] showed that the post-release defect density for Apache was

significantly different compared to 4 commercial projects. Paul-

son et al. [26] reported that more defects are being found and fixed

in open-source software, which may have contributed to the high

defect density reported in [22]. Boulanger [3] identified differences

between the software development practices for open-source and

commercial software projects. In open-source software, defects are

usually reported by customers, unlike in commercial software. This

could also affect the kinds of defects analyzed by failure studies.

As a result, the results from these failure studies that studied open-

source software may not generalize to commercial environments.

3.2.2 Root Causes are Subjectively Identified: Root cause analysis

is the most common aspect of defects considered by failure studies

(Figure 3). However, only one paper [19] reported using a root cause

analysis methodology to identify these root causes. According to

Paradies et al. [25], root causes should be basic causes that arewithin

1616



Reflections on Software Failure Analysis ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 1: Table showing further failure study analysis.

Analysis Yes No

Papers that studied defects in proprietary software 3 49

Papers that reused taxonomies from literature 10 42

Papers that reported the use of any tool 12 40

Papers that made practitioner-relevant contributions 14 38

Figure 3: Research questions investigated by failure studies.

the ambit of management to fix. Gangidi [9] also explained that a

systematic root cause analysis methodology should reveal deeper

systemic causes (e.g., policies, practices, management decisions).

The root causes identified by the failure studies we reviewed

mostly represent technical flaws and do not correspond with any

of these definitions. Wang [40] identified root causes such as mis-

use of mathematical formulas, inconsistency between hardware

and software, and improper handling of parameters. While these

are the immediate causes of the reported defects, they are neither

‘basic’ nor systemic. Deeper investigations into defects caused by

hardware/software inconsistency may reveal underlying causes

such as poor documentation, which may also have been attributed

to the absence of documentation guidelines. As another example,

Gunawi et al. [10] identified data races as one of the root causes

of data inconsistency in cloud systems, but deeper analysis might

have also revealed other underlying factors that led to these data

races. If papers conducted a deeper root cause analysis, their results

could be more helpful to practitioners and engineering teams.

3.2.3 Inconsistent Defect Taxonomies: Failure studies attempt to

characterize the defects in software systems to aid their analysis.

Our results, as shown in the second row of Table 1, show that most

failure studies invent the taxonomies they use for this characteriza-

tion, even when they study the same class of defects. For example,

Cao et al. [4] characterized performance bugs in deep learning

systems using a self-generated taxonomy but could have adapted

taxonomies from prior research on performance bugs [18] [21]

[41]. As a result, it becomes difficult to compare the distribution of

performance defects in [4] and earlier works such as [21].

We also found disagreement in the interpretation of terms in

the taxonomy when investigators choose to reuse taxonomies from

Figure 4: Distribution of failure studies by system type.

earlier studies. For example, Tan et al. [38] reported they reused the

taxonomy defined by Sullivan et al. [36] but acknowledged that the

definition of semantic bugs between the two studiesmay be different,

accounting for the huge discrepancy between the percentage of

semantic bugs found by the two papers.

3.2.4 Non-integration of Practicing Software Engineers in the Study:

Our review of failure study papers shows that practitioners are

not included during the conduct of these studies. Investigating

the perspectives of the software engineers who create or fix these

defects can be helpful in providing insights into the causes and

characteristics of these defects.

Furthermore, failure study papers are focused on enabling soft-

ware engineering research but fail to make contributions that are

relevant to software engineers. According to the fourth row of

Table 1, only 27% of reviewed papers proposed recommendations

pertinent to current software engineering practices. Mantyla [23]

provided guidelines for conducting code and documentation re-

views. Sun [37] made recommendations for generating test cases

for compilers. Others only discussed the research implications of

their work. This is contrary to failure studies in other disciplines

whose results recommended changes in practitioners’ practices

[8] [27] [31] [32]. With an increased focus on improving engineer-

ing practice, the results and recommendations from these studies

could reduce the occurrence of defects, which would significantly

increase software engineers’ productivity..

3.2.5 Defects in Embedded/IoT Systems are Understudied: From our

results, we observed that the software engineering community is

biased towards failure studies on web-based and desktop-based sys-

tems, while embedded/IoT systems are still understudied. As shown

in Figure 4, embedded/IoT systems accounted for only two papers,

while web-based systems (e.g., browsers) had 16 and desktop-based

systems (e.g., compilers) had 12. Embedded systems power our

airplanes, vehicles, and industries and deserve additional attention.

3.2.6 Miscellaneous Flaws: In addition to the primary flaws dis-

cussed above, we summarize three more issues.

Inconsistent quality measures: Defect analysis is subjective, and

single-author investigation methods are untrustworthy. Of the 52

papers reviewed, only 19 studies had multiple authors indepen-

dently analyze the data. Hence, the results of most studies are

untrustworthy without the use of quality control measures.

Absence of replicability data: Only 11 papers included links to

their replication package; 3 of these were inaccessible.

1617



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Paschal C. Amusuo, Aishwarya Sharma, Siddharth R. Rao, Abbey Vincent, and James C. Davis

Missing tool support: Failure studies are time-consuming and

lack tool support. Leesatapornwongsa et al. [14] and Shen et al. [35]

reported that it took them 15 and 24 months to conduct their study.

Yet, according to the third row of Table 1, only 23% of failure stud-

ies reported using any tool in their study. These studies require

investigators to analyze and categorize hundreds of defect reports

manually. When studying a specific class of defects, these investi-

gators rely on only keyword matching to filter prospective defect

reports and need to go through each filtered report to identify and

remove false positives. Mazuera-rozo et al. [21] identified 1,010

commits using keyword matching, and after manual analysis by

two authors, only 20% (204 commits) were true positives.

4 A RESEARCH AGENDA

4.1 Defect Causal Chains

To effectively identify the root causes of defects, as discussed in

ğ3.2.2, we suggest investigators use additional sources that pro-

vide more information about the causal chain of the defect. It is

uncertain if analysis of pull request comments, meeting logs, design

documents, or other artifacts will be helpful. Still, these documents

can provide more insights into the reason behind the codes written

by the developers. The research community can conduct further

research to determine which artifacts would be more helpful and

how investigators can adequately analyze them to identify the root

causes of defects.

In addition, software engineers have no standard approach to

documenting design or implementation decisions or efforts. While

standards such as ISO/IEC/IEE 12207 require detailed documenta-

tion by the software engineers, Agile methodologies [1] [2] rec-

ommend less comprehensive documentation. Hence, this presents

another challenge as there is no guarantee that these documents

will be available for analysis. The research results can also inform

engineering teams what documentation needs to be maintained if

they want to learn from their failures.

4.2 Standardizing the Conduct of Failure Studies

As we discussed in ğ3.2.3, there are inconsistencies in the con-

duct of failure studies. We suggest two ways to standardize the

conduct of these studies. First, add a standard for failure analysis

to the SIGSOFT empirical standards [28] to note the quality mea-

sures, replication packages, and expected general guidelines for

conducting a failure study. Second, we suggest the development

of a defect-type taxonomy map for software defects, similar to the

Common Weakness Enumeration (CWE) used for categorizing se-

curity vulnerabilities. Such a map would contain a taxonomy of

common defect types. It can be extensible that investigators con-

ducting failure studies for a specific system or defect classes can

build upon existing taxonomies with defect type categories particu-

lar to the class of system being investigated rather than inventing a

new taxonomy. This map would ensure that the results of all failure

studies are comparable, which will improve the generalizability of

research influenced by the results.

4.3 Increased Impact on Engineering Practices

Following the bias reported in ğ3.2.1, we propose increased research

emphasis on replicability studies to verify if failure studies con-

ducted on open-source software also hold for commercial software.

We also suggest increased collaboration between investigators of

failure studies and software engineering companies, which would

provide these investigators access to defect reports of commer-

cial software. This collaboration would ensure that failure studies’

results influence research, which would also be relevant to practi-

tioners in these companies.

We also recommend that, in addition to providing research di-

rections, software failure studies provide recommendations to en-

gineering teams that will reduce the occurrence of defects and the

time to debug and fix reported defects. This is akin to failure analysis

in other engineering disciplines, such as in the NTSB, where such

studies have led to various changes in engineering, management,

and regulatory practices [8].

4.4 Tool Support for Faster Defect Analysis

With the challenge of missing tool support discussed in ğ3.2.6, we

recommend the research and development of tools that would aid

the conduct of these studies. Natural Language Processing (NLP)

techniques have become increasingly helpful in understanding the

semantic meaning of documents, summarizing, and extracting use-

ful information from documents. They have successfully been used

to identify defects in requirement documents [33], identify dupli-

cate defect reports [34], extract tasks and user stories from app store

reviews [11], and summarize defect reports [30] [29]. Hence, the

research community can easily explore the use of NLP to identify

target defect reports, characterize the defects in them and extract

other relevant information about the defect (e.g., consequence, man-

ifestation behavior, component affected) from these reports. While

using NLP can not replace the need for expertise-based human anal-

ysis, automating the above-listed tasks would significantly reduce

the time the investigators spend conducting manual analysis.

5 CONCLUSION

In this paper, we reflect on the conduct of failure studies in software

engineering by surveying 52 published failure study papers. We

identified eight recurring flaws that have marred the conduct of

failure studies. These flaws impede the correctness, reliability, and

impact of the reported results of these studies.

Motivated by these challenges, we identify various ways the

research community can support the conduct of these failure studies.

We encourage further research on identifying and analyzing causal

chains for defects and tool support to simplify defect analysis while

recommending efforts to standardize the conduct of failure studies.

With these steps, software failure studies may improve software

engineering quality.

DATA AVAILABILITY

Our artifact can be found at https://doi.org/10.5281/zenodo.7041931.

This spreadsheet contains our analysis of the failure study papers

we surveyed.

1618

https://doi.org/10.5281/zenodo.7041931


Reflections on Software Failure Analysis ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

REFERENCES
[1] Kent Beck. 2001. Manifesto for Agile Software Development. https://

agilemanifesto.org/
[2] Kent Beck. 2005. Extreme Programming explained. John Wait.
[3] A. Boulanger. 2005. Open-source versus proprietary software: Is one more

reliable and secure than the other? IBM Systems Journal 44, 2 (2005), 239ś248.
https://doi.org/10.1147/sj.442.0239 Conference Name: IBM Systems Journal.

[4] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, and Xin Peng. 2021. Charac-
terizing Performance Bugs in Deep Learning Systems. arXiv:2112.01771 [cs] (Dec.
2021). http://arxiv.org/abs/2112.01771 arXiv: 2112.01771.

[5] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng Qin. 2019. Under-
standing Exception-Related Bugs in Large-Scale Cloud Systems. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
339ś351. https://doi.org/10.1109/ASE.2019.00040 ISSN: 2643-1572.

[6] Nicolas Dilley and Julien Lange. 2020. Bounded verification of message-passing
concurrency in Go using Promela and Spin. Electronic Proceedings in Theoretical
Computer Science 314 (April 2020), 34ś45. https://doi.org/10.4204/EPTCS.314.4
arXiv: 2004.01323.

[7] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. 2010. A
study of the internal and external effects of concurrency bugs. In 2010 IEEE/I-
FIP International Conference on Dependable Systems Networks (DSN). 221ś230.
https://doi.org/10.1109/DSN.2010.5544315 ISSN: 2158-3927.

[8] Matthew R. Fox. 2001. Failure analysis at the National Transportation Safety
Board - Journal of Failure Analysis and Prevention. https://link.springer.com/
article/10.1007/s11668-006-5004-5

[9] Prashant Gangidi. 2018. A systematic approach to root cause analysis using 3 ×
5 why’s technique. International Journal of Lean Six Sigma 10, 1 (Jan. 2018), 295ś
310. https://doi.org/10.1108/IJLSS-10-2017-0114 Publisher: Emerald Publishing
Limited.

[10] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-
anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.
Lukman, Vincentius Martin, and Anang D. Satria. 2014. What Bugs Live in
the Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of the
ACM Symposium on Cloud Computing (SOCC ’14). Association for Computing
Machinery, New York, NY, USA, 1ś14. https://doi.org/10.1145/2670979.2670986

[11] Hui Guo and Munindar P. Singh. 2020. Caspar: Extracting and Synthesizing User
Stories of Problems from App Reviews. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 628ś640. ISSN: 1558-1225.

[12] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepCrime:
mutation testing of deep learning systems based on real faults. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2021). Association for Computing Machinery, New York, NY, USA, 67ś78.
https://doi.org/10.1145/3460319.3464825

[13] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer
Agreement for Categorical Data. Biometrics 33, 1 (1977), 159ś174. https:
//doi.org/10.2307/2529310 Publisher: [Wiley, International Biometric Society].

[14] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gu-
nawi. 2016. TaxDC: ATaxonomy of Non-Deterministic Concurrency Bugs inData-
center Distributed Systems. In Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
ACM, Atlanta Georgia USA, 517ś530. https://doi.org/10.1145/2872362.2872374

[15] Penghui Li, Yinxi Liu, and Wei Meng. 2021. Understanding and Detecting
Performance Bugs in Markdown Compilers. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 892ś904. https:
//doi.org/10.1109/ASE51524.2021.9678611 ISSN: 2643-1572.

[16] Benjamin Liblit and Alexander Aiken. 2002. Building a better backtrace: Techniques
for postmortem program analysis. Computer Science Division, University of
California.

[17] Mario Linares-Vásquez, Gabriele Bavota, and Camilo Escobar-Velásquez. 2017.
An Empirical Study on Android-Related Vulnerabilities. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). 2ś13. https:
//doi.org/10.1109/MSR.2017.60

[18] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and
detecting performance bugs for smartphone applications. In Proceedings of
the 36th International Conference on Software Engineering (ICSE 2014). Asso-
ciation for Computing Machinery, New York, NY, USA, 1013ś1024. https:
//doi.org/10.1145/2568225.2568229

[19] Amir Makhshari and Ali Mesbah. 2021. IoT Bugs and Development Challenges.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, Madrid, ES, 460ś472. https://doi.org/10.1109/ICSE43902.2021.00051

[20] Alejandro Mazuera-Rozo, Jairo Bautista-Mora, Mario Linares-Vásquez, Sandra
Rueda, and Gabriele Bavota. 2019. The Android OS stack and its vulnerabilities:
an empirical study. Empirical Software Engineering 24, 4 (Aug. 2019), 2056ś2101.
https://doi.org/10.1007/s10664-019-09689-7

[21] Alejandro Mazuera-Rozo, Catia Trubiani, Mario Linares-Vásquez, and Gabriele
Bavota. 2020. Investigating types and survivability of performance bugs in
mobile apps. Empirical Software Engineering 25, 3 (May 2020), 1644ś1686. https:

//doi.org/10.1007/s10664-019-09795-6
[22] Audris Mockus, Roy T. Fielding, and James Herbsleb. 2000. A case study of

open source software development: the Apache server. In Proceedings of the
22nd international conference on Software engineering (ICSE ’00). Association for
Computing Machinery, New York, NY, USA, 263ś272. https://doi.org/10.1145/
337180.337209

[23] Mika V. Mäntylä and Casper Lassenius. 2009. What Types of Defects Are Really
Discovered in Code Reviews? IEEE Transactions on Software Engineering 35, 3
(May 2009), 430ś448. https://doi.org/10.1109/TSE.2008.71 Conference Name:
IEEE Transactions on Software Engineering.

[24] Frolin S. Ocariza, Jr., Karthik Pattabiraman, andAliMesbah. 2014. Vejovis: suggest-
ing fixes for JavaScript faults. In Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014). Association for Computing Machinery, New
York, NY, USA, 837ś847. https://doi.org/10.1145/2568225.2568257

[25] M. Paradies and D. Busch. 1988. Root cause analysis at Savannah River plant
(nuclear power station). In Conference Record for 1988 IEEE Fourth Conference on
Human Factors and Power Plants,. 479ś483. https://doi.org/10.1109/HFPP.1988.
27547

[26] James W Paulson, Giancarlo Succi, and Armin Eberlein. 2004. An empirical study
of open-source and closed-source software products. IEEE transactions on software
engineering 30, 4 (2004), 246ś256. https://doi.org/10.1109/TSE.2004.1274044

[27] Henry Petroski. 1994. Design Paradigms: Case Histories of Error and Judgment in
Engineering. Cambridge University Press. Google-Books-ID: C_ZroS6rY54C.

[28] Paul Ralph, Sebastian Baltes, Domenico Bianculli, Yvonne Dittrich, Michael
Felderer, Robert Feldt, Antonio Filieri, Carlo Alberto Furia, Daniel Graziotin,
Pinjia He, Rashina Hoda, Natalia Juristo, Barbara Kitchenham, Romain Robbes,
Daniel Mendez, Jefferson Molleri, Diomidis Spinellis, Miroslaw Staron, Klaas Stol,
Damian Tamburri, Marco Torchiano, Christoph Treude, Burak Turhan, and Sira
Vegas. 2020. ACM SIGSOFT Empirical Standards. https://onikle.com/articles/
288927

[29] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. 2010. Summarizing software
artifacts: a case study of bug reports. In 2010 ACM/IEEE 32nd International Con-
ference on Software Engineering, Vol. 1. 505ś514. https://doi.org/10.1145/1806799.
1806872 ISSN: 1558-1225.

[30] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. 2014. Automatic Summa-
rization of Bug Reports. IEEE Transactions on Software Engineering 40, 4 (April
2014), 366ś380. https://doi.org/10.1109/TSE.2013.2297712 Conference Name:
IEEE Transactions on Software Engineering.

[31] James Reason. 1990. Human Error. Cambridge University Press. Google-Books-
ID: WJL8NZc8lZ8C.

[32] J Reason. 1997. Organizational accidents: the management of human and organi-
zational factors in hazardous technologies. England: Cambridge University Press,
Cambridge (1997).

[33] Benedetta Rosadini, Alessio Ferrari, Gloria Gori, Alessandro Fantechi, Stefania
Gnesi, Iacopo Trotta, and Stefano Bacherini. 2017. Using NLP to Detect Require-
ments Defects: An Industrial Experience in the Railway Domain. In Requirements
Engineering: Foundation for Software Quality (Lecture Notes in Computer Science),
Paul Grünbacher and Anna Perini (Eds.). Springer International Publishing, Cham,
344ś360. https://doi.org/10.1007/978-3-319-54045-0_24

[34] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. 2007. Detection
of Duplicate Defect Reports Using Natural Language Processing. In 29th In-
ternational Conference on Software Engineering (ICSE’07). 499ś510. https:
//doi.org/10.1109/ICSE.2007.32 ISSN: 1558-1225.

[35] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 968ś980.
https://doi.org/10.1145/3468264.3468591

[36] M. Sullivan and R. Chillarege. 1992. A comparison of software defects in database
management systems and operating systems. In [1992] Digest of Papers. FTCS-
22: The Twenty-Second International Symposium on Fault-Tolerant Computing.
475ś484. https://doi.org/10.1109/FTCS.1992.243586

[37] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward under-
standing compiler bugs in GCC and LLVM. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA 2016). Association for Com-
putingMachinery, New York, NY, USA, 294ś305. https://doi.org/10.1145/2931037.
2931074

[38] Lin Tan, Chen Liu, Zhenmin Li, XuanhuiWang, Yuanyuan Zhou, and Chengxiang
Zhai. 2014. Bug characteristics in open source software. Empirical Software
Engineering 19, 6 (Dec. 2014), 1665ś1705. https://doi.org/10.1007/s10664-013-
9258-8

[39] E. Ubani and C. Ononuju. 2013. A study of failure and abandonment of public
sector-driven civil engineering projects in Nigeria: An empirical review. American
Journal of Scientific and Industrial Research 4, 1 (Feb. 2013), 75ś82. https://doi.
org/10.5251/ajsir.2013.4.1.75.82

[40] Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021.
An exploratory study of autopilot software bugs in unmanned aerial vehicles.

1619

https://agilemanifesto.org/
https://agilemanifesto.org/
https://doi.org/10.1147/sj.442.0239
http://arxiv.org/abs/2112.01771
https://doi.org/10.1109/ASE.2019.00040
https://doi.org/10.4204/EPTCS.314.4
https://doi.org/10.1109/DSN.2010.5544315
https://link.springer.com/article/10.1007/s11668-006-5004-5
https://link.springer.com/article/10.1007/s11668-006-5004-5
https://doi.org/10.1108/IJLSS-10-2017-0114
https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1109/ASE51524.2021.9678611
https://doi.org/10.1109/ASE51524.2021.9678611
https://doi.org/10.1109/MSR.2017.60
https://doi.org/10.1109/MSR.2017.60
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1109/ICSE43902.2021.00051
https://doi.org/10.1007/s10664-019-09689-7
https://doi.org/10.1007/s10664-019-09795-6
https://doi.org/10.1007/s10664-019-09795-6
https://doi.org/10.1145/337180.337209
https://doi.org/10.1145/337180.337209
https://doi.org/10.1109/TSE.2008.71
https://doi.org/10.1145/2568225.2568257
https://doi.org/10.1109/HFPP.1988.27547
https://doi.org/10.1109/HFPP.1988.27547
https://doi.org/10.1109/TSE.2004.1274044
https://onikle.com/articles/288927
https://onikle.com/articles/288927
https://doi.org/10.1145/1806799.1806872
https://doi.org/10.1145/1806799.1806872
https://doi.org/10.1109/TSE.2013.2297712
https://doi.org/10.1007/978-3-319-54045-0_24
https://doi.org/10.1109/ICSE.2007.32
https://doi.org/10.1109/ICSE.2007.32
https://doi.org/10.1145/3468264.3468591
https://doi.org/10.1109/FTCS.1992.243586
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.5251/ajsir.2013.4.1.75.82
https://doi.org/10.5251/ajsir.2013.4.1.75.82


ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Paschal C. Amusuo, Aishwarya Sharma, Siddharth R. Rao, Abbey Vincent, and James C. Davis

In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 20ś31. https:
//doi.org/10.1145/3468264.3468559

[41] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. 2012. A qualitative study
on performance bugs. In 2012 9th IEEE Working Conference on Mining Software
Repositories (MSR). 199ś208. https://doi.org/10.1109/MSR.2012.6224281 ISSN:
2160-1860.

1620

https://doi.org/10.1145/3468264.3468559
https://doi.org/10.1145/3468264.3468559
https://doi.org/10.1109/MSR.2012.6224281

	Abstract
	1 Introduction
	2 Idealized Failure Study Model
	3 Flaws in Failure Study Methods
	3.1 Methodology
	3.2 Recurring Flaws

	4 A Research Agenda
	4.1 Defect Causal Chains
	4.2 Standardizing the Conduct of Failure Studies
	4.3 Increased Impact on Engineering Practices
	4.4 Tool Support for Faster Defect Analysis

	5 Conclusion
	References

